Homework 8 - Problem Set

(Numbered according to 9th edition)

Problem 1: Section 9.1 \#20. Consider the linear system

$$
d x / d t=a_{11} x+a_{12} y, \quad d y / d t=a_{21} x+a_{22} y
$$

where a_{11}, \ldots, a_{22} are real constants. Let $p=a_{11}+a_{22}, q=a_{11} a_{22}-a_{12} a_{21}$, and $\Delta=p^{2}-4 q$. Observe that p and q are the trace and determinant, respectively, of the coefficient matrix of the given system. Show that the critical point $(0,0)$ is a
(a) Node if $q>0$ and $\Delta \geq 0$.
(b) Saddle point if $q<0$.
(c) Spiral point if $p \neq 0$ and $\Delta<0$
(d) Center if $p=0$ and $q>0$.

Hint: These conclusions can be obtained by studying the eigenvalues r_{1} and r_{2}. It may also be helpful to establish and then to use, the relations $r_{1} r_{2}=q$ and $r_{1}+r_{2}=p$.

Problem 2: Section 9.1 \#21. Continuing Problem 20 , show that the critical point $(0,0)$ is
(a) Asymptotically stable if $q>0$ and $p<0$;
(b) Stable if $q>0$ and $p=0$;
(c) Unstable if $q<0$ or $p>0$.
(d) Center if $p=0$ and $q>0$.
(the results of Problems 20 and 21 are summarized visually in Figure 9.1.9. page 497)

