- motivation
$4 D F Q s$ describe change
4 change = derivative
4 collat is the rate of change of a variable given the state of the "universe" right now?
4 Harry Potter adjucting the direction of his broom (the slope) leased on his position in the $x y$-plane
- general form of a DFQ:

$$
\frac{d y}{d x}=\text { some expression in terms of } x \text { and } y
$$

4 here:
$x \rightarrow$ independent variable (e.g. time of the day)
$y \rightarrow$ dependent variable (e.g. your mood)

$$
\frac{\Delta y}{\Delta x}=f(x, y) \rightarrow \Delta y=f(x, y) \cdot \Delta x
$$

4 tells you how the change in y is affected by the change in x

- examples
(1.) do you know any function $y(x)$ s.t. $\frac{d y}{d x}=2$?
$y(x)=2 x+c \rightarrow \infty-$ many such functions

4 what if $y(0)=5$? then: $5=2 \cdot 0+c \Rightarrow c=5$. so:

$$
y(x)=2 x+5
$$

(2.) do you know any function $y(x)$ s.t. $\frac{d y}{d x}=3 x$?

$$
y(x)=\frac{3}{2} x^{2}+c \rightarrow \infty-\text { many such functions }
$$

(3.) do you know any function $y(x)$ sit. $\frac{d y}{d x}=y$?

$$
y(x)=c \cdot e^{x} \text { or } y(x)=e^{x+c} \rightarrow \infty \text { - many solutions }
$$

4 eu hat if $y(0)=3$? then: $3=c \cdot e^{0} \Rightarrow c=3$. thus:

$$
y(x)=3 \cdot e^{x}
$$

(4.) do you know any function $y(x)$ s.t. $\frac{d y}{d x}=-2 y$?

$$
y(x)=C e^{-2 x} \rightarrow \infty-\text { many such functions }
$$

- terminology
$4 \frac{d y}{d x}=2 \rightarrow D F Q$
$4 y(x)=2 x+c \rightarrow$ general solution
$\llcorner y(0)=5 \rightarrow$ boundary condition
$4 y(x)=2 x+5 \rightarrow$ particular solution
(1.) $\frac{d y}{d x}=-y \quad-$ boundary condition: $y(0)=1$:

$$
y=c \cdot e^{-x}
$$

$$
y=1 \cdot e^{-x}
$$

- terminology
\rightarrow Classification of DFQs based on order:

1) first-order DFQ \rightarrow the highest derivative is the $1^{\text {st }}$

$$
\leftrightarrow y^{\prime}=y
$$

2) secend-order DFQ \rightarrow the highest derivative is the $2^{\text {nd }}$

$$
4 y^{\prime \prime}=y^{\prime}-y
$$

3) higher-order $D F Q \rightarrow \frac{d^{n}}{d x^{n}}[y]=f\left(x, y, \frac{d y}{d x}, \ldots, \frac{d^{n} y_{n}}{d x^{n}}\right)$

$$
F\left(x, y, \frac{d y}{d x}, \ldots, \frac{d^{n}}{d x^{n}}[y]\right)
$$

\rightarrow recall the meaning of the second derivative:
4 second derivative measures the concavity of a function:
i) if $y^{\prime \prime}<0: y$ is concave down at that point
ii) if $y^{\prime \prime}>0$: y is concave up at that point
iii) if $y^{\prime \prime}=0: \quad y=m x+b$
\rightarrow ordinary vs. partial DFQs:

1) ordinary DFQs \rightarrow usually 1 independent variable x
2) partial DFQs \rightarrow invoking partial derivatives
\rightarrow system of DFQs:
4 multiple (possibly related) DFQs and unknoeen functions.
$\frac{d y}{d t}=3 x+4 y$ the solution functions $x(t)$ and $y(t)$ must both $\left.\frac{d x}{d t}=x-y\right\}$ satisfy the equations
\rightarrow Gear vs. non-linear DFQs:
3) linear DFQs \rightarrow no powers in y or y^{\prime}

$$
-f_{0}(x) \cdot y+f_{1}(x) \cdot y^{\prime}+\ldots+f_{n}(x) \cdot y^{(n)}=g(x)
$$

2) non-linear DFQs $\rightarrow \frac{d y}{d x}+\sin (y)=0$

$$
4\left(y^{\prime}\right)^{2}+y^{2}=1 \quad y=\sin (x) \text { or } y=\cos (x)
$$

4 note: $e^{x} \cdot y^{\prime}+\sin (x) \cdot y^{\prime \prime}=0$ is linear

- modeling
(1.) population of field mice wo the predators. hypothesis: mouse population growth is proportional to the size of the current population: $\frac{d P}{d t} \propto P(t)$
$\frac{d P}{d t}=k \cdot P(t)$, where $P(t) \rightarrow$ population at time t
$k \rightarrow$ growth rate of the population
\rightarrow hoer fast P groeus.
\rightarrow e.g. $0.5 /$ month , -0.21 month
4 general solution to this DFQ: $P(t)=c \cdot e^{k t}$
4 exponential growth
(2.) Newton's second lev: $F=m \cdot a$ or $F=m \cdot \frac{d v}{d t}$

4 for a falling object: $F=$ gravity + aim resistance

$$
m \cdot \frac{d v}{d t}=m \cdot g-\gamma \cdot v
$$

$$
\text { AR } \mid \gamma v
$$

units: $\quad k g \cdot \frac{m}{s^{2}} \quad \mathrm{~kg} \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}-\frac{\mathrm{kg}}{\mathrm{s}} \cdot \frac{\mathrm{m}}{\mathrm{s}}$

$$
\text { gravity } \downarrow m g
$$

4 recall: if $y^{\prime}(t)=g(t)$, to get $y(t)$:

$$
y(t)=\int g(t) d t+C \quad \rightarrow F T O C
$$

\rightarrow first-order linear ODE s: $\frac{d y}{d t}+p(t) \cdot y=g(t)$
4 suppose $y^{\prime}+p y=g$.
4 note: $\left(\int p\right)^{\prime}=p$
L let $\mu=e^{\int p}$. observation: $\left(e^{\int p}\right)^{\prime}=p \cdot e^{\int p}$.
thus: $\left(e^{\int p} \cdot y\right)^{\prime}=p \cdot e^{\int p} \cdot y+e^{\int p} \cdot y^{\prime}$.
4 if we multiply * with $e^{\int p}$:
$e^{\int p} \cdot y^{\prime}+p \cdot e^{\int p} y=e^{\int p} \cdot g$ and notice the identity above.
4 thus: $\left(e^{\int p} \cdot y\right)^{\prime}=e^{\int p} \cdot g$ and integrating:

$$
e^{\int p} \cdot y=\int e^{\int p} \cdot g+C
$$

4 solution to first-order ODE:

$$
y(t)=\frac{1}{m(t)} \int^{t} \eta(s) \cdot g(s) d s \text {, where } \mu(t)=e^{\int p(t) d t}
$$

(1.) $\frac{d y}{d t}-2 y=4-t \quad p(t)=-2 \quad \int p(t) d t=-2 t(+c)$

4 integrating factor: $\mu(t)=e^{-2 t}$
4 multiply the $D F Q$ by $\mu(t)$:

$$
e^{-2 t} \frac{d y}{d t}-2 e^{-2 t} y=e^{-2 t}(4-t)
$$

4 replace the left-hand side with the identity $\left(e^{\int p} \cdot y\right)^{\prime}$

$$
\frac{d}{d t}\left(e^{-2 t} y\right)=e^{-2 t}(4-t)
$$

4 integrate wal respect to t :

$$
\begin{aligned}
& e^{-2 t} y=\int_{t_{0}}^{t} e^{-2 s}(4-s) d s+C \quad \begin{array}{l}
f(s)=4-s \quad g(s)=-\frac{1}{2} e^{-2 s} \\
f^{\prime}(s)=-1 \quad g^{\prime}(s)=e^{-2 s}
\end{array} \\
& \text { by IBP:}=(4-s) \cdot \frac{-1}{2} e^{-2 s}-\int+1 \cdot \frac{1}{2} e^{-2 s} d s+C \\
&\left.=\frac{1}{2}(s-4) e^{-2 s}+\frac{1}{4} \cdot e^{-2 s}+C\right]_{s=0}^{s=t}+C \\
&=\frac{1}{2}(t-4) e^{-2 t}+\frac{1}{4} \cdot e^{-2 t}-\frac{1}{2}(-4)-\frac{1}{4}+C \\
& e^{-2 t} y \left.=\frac{1}{2} t e^{-2 t}-2 e^{-2 t}+\frac{1}{4} e^{-2 t}+\underbrace{\frac{7}{4}+C}_{C} \right\rvert\, \cdot e^{2 t} \\
& y=\frac{1}{2} t-\frac{7}{4}+C \cdot e^{2 t} \rightarrow \text { general solution }
\end{aligned}
$$

(2.) $y^{\prime}+3 y=t+e^{-2 t} \quad p(t)=3 \Rightarrow \int p(t) d t=3 t(+c)$
\triangle integrating factor: $\quad n(t)=e^{3 t}$
4 multiply the $D F Q$ by $\mu(t)$:

$$
e^{3 t} \frac{d y}{d t}+3 e^{3 t} y=e^{3 t} t+e^{t}
$$

4 replace the left-hand side with the identity $\left(e^{\int p} \cdot y\right)^{\prime}$

$$
\frac{d}{d t}\left(e^{3 t} y\right)=e^{3 t} t+e^{t}
$$

$$
\begin{array}{ll}
f(s)=x & g(s)=\frac{1}{3} e^{3 s} \\
f^{\prime}(x)=1 & g^{\prime}(s)=e^{3 s}
\end{array}
$$

4 integrate col respect to t :

$$
\begin{aligned}
e^{3 t} \cdot y & =\int_{t_{0}}^{t} e^{3 s} \cdot s d s+\int_{t_{0}}^{t} e^{s} d s+c \\
& =s \cdot \frac{1}{3} e^{3 s}-\int 1 \cdot \frac{1}{3} e^{3 s} d s+e^{s}+c \\
& =\frac{1}{3} s e^{3 s}-\frac{1}{3} \int e^{3 s} d s+e^{s}+c \\
& \left.=\frac{1}{3} s e^{3 s}-\frac{1}{9} e^{3 s}+e^{s}+C\right]_{s=0}^{s=t}+c \\
e^{3 t} \cdot y & =\frac{1}{3} t e^{3 t}-\frac{1}{9} e^{3 t}+e^{t}+\underbrace{\frac{1}{9}-1+c}_{c}+e^{-3 t} \\
y & =\frac{1}{3} t-\frac{1}{9}+e^{-2 t}+c e^{-3 t} \rightarrow \text { general solution }
\end{aligned}
$$

(3.) $y^{\prime}+\frac{2}{t} y=\frac{\cos (t)}{t^{2}} \quad p(t)=\frac{2}{t} \quad \int \frac{2}{t} d t=2 \ln (|t|)+c$

4 integrating factor: $\rho(t)=e^{2 \ln (|t|)}=t^{2}$
4 multiply the DFQ by $n(t)$:

$$
t^{2} \frac{d y}{d t}+2 t y=\cos (t)
$$

4 replace the left-hand side with the identity $\left(e^{\int p} \cdot y\right)^{\prime}$

$$
\frac{d}{d t}\left(t^{2} \cdot y\right)=\cos (t)
$$

4 integrate esl respect to t :

$$
\begin{aligned}
& t^{2} \cdot y=\int \cos (t) d t+c \\
& t^{2} \cdot y=\sin (t)+c \\
& y=\frac{\sin (t)}{t^{2}}+\frac{c}{t^{2}} \quad \leftarrow \text { general solution }
\end{aligned}
$$

4 boundary condition: $y(\pi)=0$. then:

$$
\begin{aligned}
& \frac{\sin (\pi)}{\pi^{2}}=-\frac{c}{\pi^{2}} \quad \Rightarrow c=0 . \text { thus: } \\
& y=\frac{\sin (t)}{t^{2}} \quad \leftarrow \text { particular solution }
\end{aligned}
$$

- numerical approximation
$\frac{d y}{d x}=f(x, y) \Rightarrow \Delta y=f(x, y) \Delta x$
if you know how x is changing, you can figure out how y is changing

$$
\begin{aligned}
& x \leftarrow x_{0} \\
& y \leftarrow y_{0} \\
& \Delta x \leftarrow \varepsilon
\end{aligned}
$$

$$
\left.\begin{array}{l}
\Delta y \leftarrow f(x, y) \Delta x \\
x \leftarrow x+\Delta x \\
y \leftarrow y+\Delta y
\end{array}\right\} \text { repeat }
$$

- review
\rightarrow partial derivatives and chain rule

$$
\left.\begin{array}{ll}
f(x, y) & \frac{d}{d t}[f(x, y)]=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
\end{array} \right\rvert\, \cdot d t
$$

rewrite:
4 let $M(x, y)=\frac{\partial}{\partial x}[f(x, y)]$ and $N(x, y)=\frac{\partial}{\partial y}[f(x, y)]$. then:

$$
M(x, y) d x+N(x, y) d y=d f
$$

4 if $d f=0 \Rightarrow M(x, y) d x+N(x, y) d y=0$. then:
4 solution:

$$
f(x, y)=c
$$

$\rightarrow Q$: how do eve find this $f(x, y)$?

- separable equations

4 form: $M(x) d x+N(y) d y=0$. where $\quad\left\{\begin{array}{c}M(x)=\frac{\partial f}{\partial x} \\ \text { and } \\ N(y)=\frac{\partial f}{\partial y}\end{array}\right.$

$$
f(x, y)=\underbrace{\int M(x) d x}_{H_{1}(x)}+\underbrace{\int N(y) d y}_{H_{2}(y)}+C
$$

$$
f(x, y)=H_{1}(x)+H_{2}(y)
$$

4 note
$H_{1}^{\prime}(x)=M(x)$ and

4 general solution: $H_{1}(x)+H_{2}(y)=C$
(1.) $\frac{d y}{d x}=\frac{x^{2}}{1-y^{2}}$

$$
\begin{array}{rrr}
\left(1-y^{2}\right) d y=x^{2} d x & M(x)=-x^{2} & N(y)=1-y^{2} \\
\downarrow & H_{1}(x)=-\frac{1}{3} x^{3} & H_{2}(y)=y-\frac{1}{3} y^{3}
\end{array}
$$

4 general solution: $H_{1}(x)+H_{2}(y)=C$:

$$
-\frac{1}{3} x^{3}+y-\frac{1}{3} y^{3}=c \quad \Rightarrow \quad-x^{3}+3 y-y^{3}=c .
$$

4 particular solution: boundary condition: $y(1)=0$

$$
-1+0+0=c \Rightarrow c=-1 \Rightarrow-x^{3}+3 y-y^{3}=-1
$$

$$
\begin{aligned}
& \text { (2.) } y^{\prime}+y^{2} \sin (x)=0 \quad \text { boundary condition: } y(0)=1 \\
& \frac{d y}{d x}=-y^{2} \sin (x) \quad \text { and under } y \neq 0 \text { : } \\
& -\frac{1}{y^{2}} d y=\sin (x) d x \\
& \frac{1}{y^{2}} d y+\sin (x) d x=0 \\
& M(x)=\sin (x) \quad N(y)=\frac{1}{y^{2}} \\
& H_{1}(x)=-\cos (x) \quad H_{2}(y)=-\frac{1}{y} \\
& -\cos (x)-\frac{1}{y}=c \Rightarrow \cos (x)+\frac{1}{y}=c
\end{aligned}
$$

4 case $y=0: \frac{d y}{d x}=0$:
$1 d y=0$

$$
N(y)=1 \Rightarrow H_{2}(y)=y
$$

$y=c . \quad$ thus:

$$
\text { 4 total general solution: }\left\{\begin{array}{l}
\cos (x)+\frac{1}{y}=c, \text { for } y \neq 0 \\
y=c, \text { for } y=0
\end{array}\right.
$$

uparticular solution: $\quad y(0)=1 \quad$ well go over in next
(3.) $\frac{d y}{d x}=\frac{x^{2}}{y}$

$$
y d y-x^{2} d x=0
$$

$$
M(x)=-x^{2}
$$

$$
N(y)=y
$$

4 general solution:

$$
H_{1}(x)=-\frac{1}{3} x^{3} \quad H_{2}(y)=\frac{1}{2} y^{2}
$$

$$
\begin{aligned}
& \left.-\frac{1}{3} x^{3}+\frac{1}{2} y^{2}=c \right\rvert\, \cdot 6 \\
& -2 x^{3}+3 y^{2}=c
\end{aligned}
$$

- exact equations
\rightarrow form: $M(x, y) d x+N(x, y) d y=0$
4 question: does there $\exists f(x, y)$ st. $\quad\left\{\begin{array}{l}\frac{\partial}{\partial x}[f(x, y)]=M(x, y) \\ \frac{\partial}{\partial y}[f(x, y)]=N(x, y)\end{array}\right.$
(1.) $\frac{d y}{d x}=\frac{-y}{2 y+x}$
$y d x+(2 y+x) d y=0$
Q: does $f(x, y) \exists$ s.t. $\left\{\begin{array}{l}\frac{\partial f}{\partial x}=y \rightarrow f(x, y)=y x+c_{1}(y) \\ \frac{\partial f}{\partial y}=2 y+x \rightarrow f(x, y)=y^{2}+x y+c_{2}(x)\end{array}\right.$
$4 f(x, y)=y^{2}+y x+c_{3}$.
L general solution: $\quad d f=0: \quad f(x, y)=c$:

$$
y^{2}+y x=c
$$

$$
\begin{aligned}
& \text { (2.) } 2 x+y^{2}+2 x y \frac{d y}{d x}=0 \\
& 2 x y \frac{d y}{d x}=-2 x-y^{2} \\
& 2 x y d y=-\left(2 x+y^{2}\right) d x \\
& 2 x y d y+\left(2 x+y^{2}\right) d x=0 \\
& \text { ex } \\
& \text { does } f(x, y) \exists \text { st. }\left\{\begin{array}{l}
\frac{\partial f}{\partial x}=2 x+y^{2} \rightarrow f(x, y)=x^{2}+x y^{2}+c_{1}(y) \\
\frac{\partial f}{\partial y}=2 x y \rightarrow f(x, y)=y^{2} x+c_{2}(x)
\end{array}\right. \\
& 4 f(x, y)=x^{2}+x y^{2}+c_{3} . \\
& 4 \text { general solution: of }=0 \Rightarrow f(x, y)=c: \\
& x^{2}+x y^{2}=c
\end{aligned}
$$

- linear equations

1) general solution exists $\omega /$ an arbitrary constant c
2) there is an explicit expression/formula for the solution
\rightarrow note on explicit us. implicit:
4 explicit: $y=x^{2}+x+\sin (x)$
\rightarrow implicit: $x^{2}-y^{2}+2 x=c$

$$
y= \pm \sqrt{x^{2}+2 x-c}
$$

$$
x^{2}+y^{2}=c^{2}
$$

\qquad implicit
3) the points of discontimuity/singularity can be identified from the DE

- non-linear DFQs

4 none of the above applies
$\rightarrow Q$: given a $D F Q$, do we have a solution and is it unique?

- Theorem - Existence and Uniqueness - Linear

4 for first-order linear ODES (form: $y^{\prime}+p(t) y=g(t)$)
4 if functions $p(t)$ and $g(t)$ are continuous on the interval $\alpha<t<\beta$, containing the initial point $t=t_{0}$, then:
\exists a unique solution $y=\boldsymbol{\sigma}(t)$ for all $t \in(\mathcal{L}, \beta)$
which also satisfies the initial condition $y\left(t_{0}\right)=y_{0}$
\rightarrow interpretation:
L the given initial value problem has a solution (existence) and only one solution (uniqueness)
(1.) $y^{\prime}+\frac{2}{t} y=4 t \rightarrow$ first-order linear $O D E$

4 method of integrating factors

$$
\begin{aligned}
& p(t)=\frac{2}{t} \rightarrow \int p(t) d t=2 \int \frac{1}{t} d t=2 \ln (t) \\
& \mu(t)=e^{\int p(t) d t}=e^{2 \ln (t)}=\left(e^{\ln (t)}\right)^{2}=t^{2} .
\end{aligned}
$$

multiply both sides by $\rho(t)$:

$$
\begin{aligned}
& t^{2} y^{\prime}+2 t y=4 t^{3} \\
& \left(t^{2} y\right)^{\prime}=4 t^{3} \\
& \left.t^{2} y=\int_{t_{0}}^{t} 4 s^{3} d s+C=s^{4}\right]_{t_{0}}^{t}+C=t^{4}-t_{0}^{4}+C \\
& y=\frac{1}{t^{2}}\left(t^{4}-t_{0}^{4}+C\right)=t^{2}-\frac{t_{0}^{4}}{t^{2}}+\frac{C}{t^{2}}=\Phi(t)
\end{aligned}
$$

general solution
4 initial condition: $y(1)=2$:
$2=1-1+C \Rightarrow C=2$. thus:

$$
\phi(t)=t^{2}-\frac{1}{t^{2}}+\frac{2}{t^{2}}
$$

$$
\bar{\sigma}(t)=t^{2}+\frac{1}{t^{2}} .
$$

b) use the above $T \mathrm{hm}$ to find an interval in which this initial value problem has a unique solution:
$g(t)=4 t \rightarrow$ continuous everyeuhere
$p(t)=\frac{2}{t} \rightarrow$ continuous for $t<0$ or $t>0$.
4 now, given that $t_{0}=1$, the interval that contains this initial point to is the interval $t>0$. thus:

Theorem 2.4.1 guarantees that this problem evill have a unique solution on the interval $0<t<\infty$.

$$
\Phi(t)=t^{2}+\frac{1}{t^{2}}, t>0
$$

- Theorem - Existence and Uniqueness - Non-Linear

4 for any first-order ODE \quad (form: $y^{\prime}=f(t, y)$)
4 if functions f and $\frac{\partial f}{\partial y}$ are continuous in some rectangle $\alpha<t<\beta$ and $\gamma<y<\delta$, containing the point (t_{0}, y_{0}), then:
in some interval $\left(t_{0}-h\right)<t<\left(t_{0}+h\right)$ contained in $\alpha<t<\beta$, \exists a unique solution $y=\boldsymbol{\Phi}(t)$ of the initial value problem.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
"observe: this The still holds true for linear first-order ODES

$$
\begin{array}{cl}
y^{\prime}=-p(t) \cdot y+g(t) . & f(t, y)=-p(t) \cdot y+g(t) . \\
& \frac{\partial f}{\partial y}=-p(t)
\end{array}
$$

4 boundary condition: $y(0)=\frac{1}{2}$:

$$
0+\frac{1}{4}=c \Rightarrow c=\frac{1}{4} . t h u s:
$$

$$
x^{2}+y^{2}=\frac{1}{4} \quad \leftarrow \text { particular solution }
$$

4 note: this is implicit $\because \quad y= \pm \sqrt{-x^{2}+\frac{1}{4}}$
but given that $y(0)=\frac{1}{2}$, we consider the positive part of y : $y=+\sqrt{-x^{2}+\frac{1}{4}}$

$$
\begin{aligned}
& \text { (1.) } \frac{d y}{d x}=-\frac{x}{y} \rightarrow \text { nonlinear, separable } \quad y(0)=\frac{1}{2} \\
& y d y=-x d x \\
& x d x+y d y=0 \\
& M(x)=x \\
& N(y)=y \\
& H_{1}(x)=\frac{1}{2} x^{2} \\
& H_{2}(y)=\frac{1}{2} y^{2} \\
& \frac{1}{2} x^{2}+\frac{1}{2} y^{2}=c \\
& x^{2}+y^{2}=c \quad \leftarrow \text { general solution }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2.) } \begin{aligned}
& \frac{d y}{d x}=\frac{3 x^{2}+4 x+2}{2(y-1)}, y(0)=-1 \\
& \begin{aligned}
f(x, y)=\frac{3 x^{2}+4 x+2}{2(y-1)}, \begin{aligned}
\frac{\partial f}{\partial y} & =\frac{3 x^{2}+4 x+2}{2} \cdot\left(\frac{1}{y-1}\right)^{\prime} \\
& =-\frac{3 x^{2}+4 x+2}{2(y-1)^{2}}
\end{aligned}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

4 both $f(x, y)$ and $\frac{\partial f}{\partial y}$ are continuous everywhere besides the line $y=1$. thus:
we can draw a rectangle around the initial point $(0,-1)$. eve'll solve the $D F Q$ to see the dimensions of the rect.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{3 x^{2}+4 x+2}{2(y-1)} \\
& (2 y-2) d y-\left(3 x^{2}+4 x+2\right) d x=0 \\
& M(x)=3 x^{2}+4 x+2 \\
& H_{A}(x)=x^{3}+2 x^{2}+2 x \\
& y^{2}-2 y-x^{3}-2 x^{2}-2 x=C \\
& 1+2=C \Rightarrow C=3 . \\
& y^{2}-2 y=x^{3}+2 x^{2}+2 x+3 \\
& y^{2}-2 y+1=x^{3}+2 x^{2}+2 x+4 \\
& (y-1)^{2}=x^{3}+2 x^{2}+2 x+4
\end{aligned}
$$

$$
\begin{aligned}
& y=1 \pm \sqrt{x^{3}+2 x^{2}+2 x+4} \\
& y=1-\sqrt{x^{3}+2 x^{2}+2 x+4}
\end{aligned}
$$

but $\because y(0)=-1$, we choose the negative one
\rightarrow to find the interval in which this solution is valid, $x^{3}+2 x^{2}+2 x+4$ can't be negative:

$$
\begin{aligned}
& x^{3}+2 x^{2}+2 x+4=0 \\
& x^{2}(x+2)+2(x+2)=0 \\
& \left(x^{2}+2\right)(x+2)=0
\end{aligned}
$$

$x=-2$. thus, for a non-negative quantity under the radical, $x \geqslant-2$.

- second order linear DFQs

4 form: $\quad y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$
OR $P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=G(t)$

- homogeneous second-order DFQs w/ constant coefficients

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { evhere } a, b, c \rightarrow \text { const. }
$$

\rightarrow if we get an exponential solution, $y=y_{0} \cdot e^{\mu t}$, then:
$4 a r^{2} e^{\mu t}+b r e^{\mu t}+c e^{\mu t}=0 \Rightarrow e^{\mu t}\left(a \mu^{2}+b r+c\right)=0$. thus:

- characteristic equation: $a \mu^{2}+b \mu+c=0$

4 from here, find the roots μ_{1} and μ_{2} :

1) case 1: the discriminant $b^{2}-4 a c>0$. then:

4 weill be able to find two meal, unequal moots $M_{1} \neq M_{2}$.
4 general solution: $y(t)=c_{n} e^{\mu_{1} t}+c_{2} e^{\mu_{2} t}$
and to get C_{n} and C_{2}, plug in the initial conditions
(1.) a) for what values of r is the function $e^{r t}$ a solution for $a y^{\prime \prime}+b y^{\prime}+c y=0$, where a, b, c are constants

$$
\begin{aligned}
& y=e^{\mu t} y^{\prime}=\mu \cdot e^{\mu t} \quad y^{\prime \prime}=r^{2} e^{\mu t} \\
& a \cdot \mu^{2} e^{\mu t}+b \cdot \mu e^{\mu t}+c e^{\mu t}=0 \Rightarrow e^{\mu t}\left(a \mu^{2}+b \mu+c\right)=0 \\
& a \mu^{2}+b \mu+c=0 \\
& \mu=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

b) give a general form of solutions for $y^{\prime \prime}+y^{\prime}-6 y=0$ hint: this includes constant parameters C_{1} and C_{2}.

$$
\begin{aligned}
& \mu^{2}+\mu-6=0 \\
& \mu^{2}+3 \mu-2 \mu-6=0 \\
& (\mu-2)(r+3)=0 \\
& y(t)=c_{1} e^{2 t}+c_{2} e^{-3 t} \quad \because a=1, b=1, c=-6 \\
& \hline \quad \mu_{1}=2, \quad \mu_{2}=-3 . \text { thus: } \\
& \text { general solution }
\end{aligned}
$$

c) does the above method work for a non-hamogeneous equation: $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$

4 nope, because then you can't factor $e^{\text {rt. }}$.
(2.) Find the solution for the initial value problem:

$$
\begin{aligned}
& y^{\prime \prime}-5 y^{\prime}+6 y=0 \quad \text { wi boundary conditions } \\
& \\
& y(0)=2 \text { and } y^{\prime}(0)=3
\end{aligned}
$$

4 characteristic equation:

$$
\begin{aligned}
& \mu^{2}-5 \mu+6=0 \\
& (\mu-2)(\mu-3)=0 . \quad \mu_{1}=2 \quad \mu_{2}=3 .
\end{aligned}
$$

4 general solution: $y(t)=c_{1} e^{2 t}+c_{2} e^{3 t}$
4 particular solution: $\quad y(0)=2$ and $y^{\prime}(0)=3$

$$
\begin{aligned}
& \begin{array}{l}
2=c_{1}+c_{2} \quad \text { and } \quad \begin{array}{l}
y^{\prime}(t)=2 c_{1} e^{2 t}+3 c_{2} e^{2 t}, ~ s o: ~ \\
3=2 c_{1}+3 c_{2}
\end{array} \\
\left.\begin{array}{c}
c_{1}+c_{2}=2 \\
2 c_{1}+3 c_{2}=3
\end{array}\right\}
\end{array} \\
& {\left[\begin{array}{ll|l}
1 & 1 & 2 \\
2 & 3 & 3
\end{array}\right]-\left[\begin{array}{ll|c}
1 & 1 & 2 \\
0 & 1 & -1
\end{array}\right] \mapsto\left[\begin{array}{cc|c}
1 & 0 & 3 \\
0 & 1 & -1
\end{array}\right] \quad \begin{array}{l}
c_{1}=3 \\
c_{2}=-1
\end{array} \quad \text { thus: }} \\
& y(t)=3 e^{2 t}-e^{3 t} .
\end{aligned}
$$

(3.) find the solution for the initial value problem:

$$
4 y^{\prime \prime}-8 y^{\prime}+3 y=0, y(0)=2, \quad y^{\prime}(0)=\frac{1}{2} ; y=e^{\mu t}
$$

\rightarrow characteristic equation: $4 H^{2}-8 H+3=0$.

$$
4 \mu^{2}-6 H-2 \mu+3=0 \rightarrow(2 M-1)(2 M-3)=0 \rightarrow \begin{aligned}
& \mu_{1}=\frac{1}{2} \\
& \mu_{2}=\frac{3}{2}
\end{aligned}
$$

\rightarrow general solution: $y(t)=c_{1} e^{\frac{1}{2} t}+c_{2} e^{\frac{3}{2} t}$
\leadsto boundary conditions:

$$
\begin{aligned}
& y^{\prime}(t)=\frac{1}{2} C_{1} e^{\frac{1}{2} t}+\frac{3}{2} C_{2} e^{\frac{3}{2} t} ; f 0 r \quad y^{\prime}(0)=\frac{1}{2}: \\
& \frac{1}{2}=\frac{1}{2} C_{1}+\frac{3}{2} C_{2} \quad \text { and } 2=C_{1}+c_{2}: \\
& {\left[\begin{array}{ll|l}
1 & 1 & 2 \\
1 & 3 & 1
\end{array}\right]-\left[\begin{array}{cc|c}
1 & 1 & 2 \\
0 & 2 & -1
\end{array}\right]+\left[\begin{array}{cc|c}
1 & 1 & 2 \\
0 & 1 & -1 / 2
\end{array}\right]+\left[\begin{array}{ll|l}
1 & 0 & 5 / 2 \\
0 & 1 & -1 / 2
\end{array}\right] \quad C_{1}=\frac{5}{2}} \\
& C_{2}=-\frac{1}{2}
\end{aligned}
$$

4 particular solution:

$$
y(t)=\frac{5}{2} e^{\frac{1}{2} t}-\frac{1}{2} e^{\frac{3}{2} t}
$$

2) Case 2: the discriminant $b^{2}-4 a c=0$. then:

Love have 1 real root, 4 , of the characteristic equation.
4 general solution: $y(t)=c_{1} e^{r t}+c_{2} \cdot t \cdot e^{\mu t}$
and to get C_{1} and C_{2}, plug in the initial conditions

- Complex numbers

4 form: $a+b i$, where $i^{2}=-1$
\rightarrow properties:

1) addition:

$$
4(2+3 i)+(5+6 i)=7+9 i
$$

2) multiplication:

$$
4(2+4 i)(4+5 i)=8+10 i+16 i+20(-1)=-12+26 i
$$

\rightarrow the equation $a x^{2}+b x+c=0$ always has 2 solutions in complex numbers
(1.)

$$
\begin{aligned}
& x^{2}+1=0 \\
& x^{2}=-1
\end{aligned} \int \quad \begin{aligned}
& x^{2}=i^{2} \\
& x= \pm i
\end{aligned} \rightarrow x_{1}=i \quad \text { and } x_{2}=-i
$$

(2.)

$$
\begin{aligned}
& x^{2}+x+2=0 \rightarrow a=1, b=1, c=2 \\
& x=\frac{-1 \pm \sqrt{1-4 \cdot 2}}{2}=\frac{-1 \pm \sqrt{-7}}{2}=\frac{-1 \pm i \sqrt{7}}{2} \\
& x_{1}=\frac{-1+i \sqrt{7}}{2} \quad x_{2}=\frac{-1-i \sqrt{7}}{2}
\end{aligned}
$$

(3.) a) what could be a reasonable solution to

$$
\begin{aligned}
& \frac{d y}{d t}=i y, \quad y(0)=1 \\
& \frac{n}{y} d y=i d t \\
& \int \frac{1}{y} d y=\int i d t \\
& \ln (y)=i t+c \\
& y=e^{i t+c} \\
& y(t)=c \cdot e^{i t} \leftarrow \text { general solution }
\end{aligned}
$$

4 boundary condition: $\quad y(0)=1$:

$$
1=c \Rightarrow y(t)=e^{i t} \leftarrow \text { particular solution }
$$

b) show that $y(t)=\cos (t)+i \cdot \sin (t)$ is another solution

$$
\begin{aligned}
& \frac{d y}{d t}=i \cdot y \\
& -\sin (t)+i \cdot \cos (t)=i \cdot(\cos (t)+i \cdot \sin (t)) \\
& i \cdot \cos (t)-\sin (t)=i \cdot \cos (t)-\sin (t)
\end{aligned}
$$

c) given parts a) and b), give a formula relating the exponential function and \cos and sin:

4 notice how $\frac{d y}{d t}-i \cdot y=0$ is a linear DFQ with $p(t)=-i$ and $g(t)=0$. since $p(t)$ and $g(t)$ are continuous $\forall t$, this guarantees a unique solution $\forall t$.

4 since there has to be only a IVP solution ($T \mathrm{hm}$. \& \& U): $e^{i t}=\cos (t)+i \cdot \sin (t) \rightarrow$ this is called Euler's formula
d) what about the case when $t=\pi$?

$$
e^{i \pi}=-1 \Rightarrow e^{i \pi}+1=0
$$

- characteristic equation eel complex roots:
(1.) $y^{\prime \prime}+y^{\prime}+y=0 \quad y(0)=0, y^{\prime}(0)=1$
- characteristic equation: $\mu^{2}+\pi+1=0$

4 moots: $\mu=\frac{-1 \pm \sqrt{1-4}}{2}$
$M_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2}$ and $M_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}$. thus:
$\left.y_{1}(t)=e^{\mu 1 t}=e^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) t}=e^{-\frac{1}{2} t} \cdot e^{\frac{i \sqrt{3}}{2} t}\right)$ by Euler's formula $e^{i t}=\ldots$

$$
\begin{aligned}
& =e^{-\frac{1}{2} t} \cdot\left(\cos \left(\frac{\sqrt{3}}{2} \cdot t\right)+i \cdot \sin \left(\frac{\sqrt{3}}{2} t\right)\right) \\
y_{2}(t) & =e^{-\frac{1}{2} t} \cdot\left(\cos \left(-\frac{\sqrt{3}}{2} t\right)+i \cdot \sin \left(-\frac{\sqrt{3}}{2} t\right)\right) \\
& =e^{-\frac{1}{2} t} \cdot\left(\cos \left(\frac{\sqrt{3}}{2} t\right)-i \cdot \sin \left(\frac{\sqrt{3}}{2} t\right)\right)
\end{aligned}
$$

4 general complex solution: $y(t)=C_{1} \cdot e^{\mu_{1} t}+C_{2} \cdot e^{\mu_{2} t}$

$$
\begin{aligned}
y(t) & =c_{1} \cdot y_{1}(t)+c_{2} \cdot y_{2}(t) \\
y(t) & =c_{1} \cdot e^{-\frac{1}{2} t} \cdot\left(\cos \left(\frac{\sqrt{3}}{2} \cdot t\right)+i \cdot \sin \left(\frac{\sqrt{3}}{2} t\right)\right)+ \\
& +c_{2} \cdot e^{-\frac{1}{2} t} \cdot\left(\cos \left(\frac{\sqrt{3}}{2} t\right)-i \cdot \sin \left(\frac{\sqrt{3}}{2} t\right)\right)
\end{aligned}
$$

4 general, real-valued solution: $\quad C_{1}, C_{2} \in \mathbb{R}$

$$
y(t)=C_{1} \cdot e^{-\frac{1}{2} t} \cdot \cos \left(\frac{\sqrt{3}}{2} t\right)+C_{2} \cdot e^{-\frac{1}{2} t} \cdot \sin \left(\frac{\sqrt{3}}{2} t\right)
$$

(2.) $y^{\prime \prime}+y=0 . \quad a=1, b=0, c=1$. thus:

$$
M^{2}+1=0 \rightarrow r^{2}=-1 \rightarrow M_{1}=i, M_{2}=-i \text {. }
$$

4 general solution: since $\pi=0$ and $\mu=1$:

$$
\begin{aligned}
& y(t)=c_{1} e^{0} \cdot \cos (n t)+c_{2} e^{0} \cdot \sin (n t) \\
& y(t)=c_{1} \cdot \cos (t)+c_{2} \cdot \sin (t)
\end{aligned}
$$

3) case 3: the discriminant $b^{2}-4 a c<0$. then:

4 eve have 2 complex roots of the characteristic equation:

$$
\mu_{1}=\lambda+\rho \mu i \quad \mu_{2}=\lambda-\mu i
$$

4 general solution:

$$
y(t)=c_{n} e^{\lambda t} \cdot \cos (\mu t)+c_{2} e^{\lambda t} \cdot \sin (\rho n t)
$$

and to get C_{n} and C_{2}, plug in the initial conditions

- Existence and Uniqueness Theorem

4 the IVP $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) ; \quad y\left(t_{0}\right)=y_{0} \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$. has a unique solution $y=\varnothing(t)$ on any open time interval 1 , evhere: $p(t), q(t)$, and $g(t)$ are continuous ; $t_{0} \in I$.
\rightarrow interpretation:
4 if functions p, q, and g are continuous on an open interval 1 that contains the point p_{0}, then:

1) the IVP has a solution
2) the solution is unique
3) the solution $\bar{\Phi}$ is defined throughout the interval I evhere the coefficients $(p, q$, and $g)$ are cont. and $\bar{\Phi}$ is at least tevice differentiable there
(1.) $y^{\prime \prime}+\frac{1}{t-3} y^{\prime}+\frac{t+3}{t(t-3)} y=0 . \quad y(1)=2, \quad y^{\prime}(t)=1$.
" p, q, and g are continuous for $t \neq 0$ and $t \neq 3$. thus: $t \in(-\infty, 0) \cup(0,3) \cup(3, \infty)$.
4 since $t_{0}=1,1=(0,3)$. thus:
this IVP has a unique solution on the interval $t \in(0,3)$.

- the CUronskian
$\left\llcorner\right.$ suppose that y_{1} and y_{2} are tevo solutions of

$$
y^{\prime \prime}+p(t) \cdot y^{\prime}+2(t) \cdot y=0 \quad \text { ell } y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

4 then, finding a specific solution $y(t)=c_{1} \cdot y_{1}(t)+c_{2} \cdot y_{2}(t)$ is only possible if:
the $W_{\text {ronskian, }} \boldsymbol{W}=y_{1}\left(t_{0}\right) \cdot y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) \cdot y_{1}^{\prime}\left(t_{0}\right)$ is $\neq 0$

$$
\omega=\operatorname{det}\left(\left[\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right]\right)=y_{1}\left(t_{0}\right) \cdot y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) \cdot y_{1}^{\prime}\left(t_{0}\right) .
$$

L if we can find a t s.t. $\omega \neq 0$, we have a unique solution.

$$
\begin{aligned}
& \text { (2.) } y^{\prime \prime}+5 y^{\prime}+6 y=0 . \\
& \mu^{2}+5 \mu+6=0 \rightarrow(\mu+2)(\mu+3)=0 \rightarrow \mu_{1}=-2, \mu_{2}=-3 . \\
& y_{1}(t)=e^{-2 t}, y_{2}(t)=e^{-3 t} \\
& \omega=\left|\begin{array}{cc}
e^{-2 t} & e^{-3 t} \\
-2 e^{-2 t} & -3 e^{-3 t}
\end{array}\right|=-3 e^{-5 t}+2 e^{-5 t}=-e^{-5 t} \neq 0 .
\end{aligned}
$$

4 since $\omega \neq 0 \forall t$, weill be able to find a unique solution:

$$
y(t)=C_{1} e^{-2 t}+C_{2} e^{-3 t} \nLeftarrow t .
$$

a function

an operators

- linear function:

$$
\begin{aligned}
& f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right) \\
& f(c x)=c f(x)
\end{aligned}
$$

- linear operator: $\quad L\left(u_{1}+u_{2}\right)=L\left(u_{1}\right)+L\left(u_{2}\right)$

$$
L(c u)=c L(u)
$$

(1.) $L u=\frac{d^{2} u}{d t^{2}}+\cos (t) \cdot \frac{d u}{d t}+u$. is L a linear operator?

4 yes (the 2 conditions apply)
(2.) $L u=u \cdot \frac{d u}{d t}$. is L a linear operator?
1)

$$
\begin{aligned}
& L\left(u_{1}+u_{2}\right)=\left(u_{1}+u_{2}\right)\left(\frac{d u_{n}}{d t}+\frac{d u_{2}}{d t}\right) \\
&=u_{1} \cdot \frac{d u_{n}}{d t}+u_{1} \cdot \frac{d u_{2}}{d t}+u_{2} \cdot \frac{d u_{n}}{d t}+u_{2} \frac{d u_{2}}{d t} \\
& L u_{1}+L u_{2}= u_{1} \cdot \frac{d u_{1}}{d t}+u_{2} \frac{d u_{2}}{d t} \quad \text { and } \because L\left(u_{1}+u_{2}\right) \neq L u_{1}+L u_{2}: \\
& \quad \text { this } L \text { is not linear. }
\end{aligned}
$$

- non-homogeneous linear DFQs

1) $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$, where $g(t) \neq 0$
2) $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \rightarrow$ homogeneous
L let $L u=u^{\prime \prime}+p(t) u^{\prime}+q(t) u$. then:
3) $L u=g$ and 2) $L u=0$

4 assume $L u=g$ has two solutions: Y_{n} and Y_{2} :
$L Y_{1}=g$ and $L Y_{2}=g$
4 let's look at the difference $Y_{2}(t)-Y_{1}(t)$:

$$
L\left(Y_{2}-Y_{1}\right) \stackrel{\text { linearity }}{\stackrel{ }{=} L Y_{2}-L Y_{1}=g-g=0 . \quad \text { thus: }}
$$

$Y_{2}(t)-Y_{1}(t)$ is a solution to the homogeneous equation $L u=0$.
but eve also know how to find the general solution to a homogeneous equation: $y(t)=C_{n} \cdot y_{1}(t)+C_{2} \cdot y_{2}(t)$. thus:
$Y_{2}(t)-Y_{1}(t)=C_{1} \cdot y_{1}(t)+C_{2} \cdot y_{2}(t)$. therefore:

$$
Y_{2}(t)=c_{n} \cdot y_{1}(t)+c_{2} \cdot y_{2}(t)+Y_{1}(t)
$$

- Theorem ~ introduces the method of undetermined coefficients

4 if Y_{1} and Y_{2} are two solutions of the nonhomogeneous equation: $L y=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$, then:

1) their difference, $Y_{1}-Y_{2}$, is a solution to the corresponding homogeneous equation: $L y=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$
2) and \because we know that y_{1} and y_{2} are also solutions to the homogeneous equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$
3) the general solution to the non-homogeneous equation $L u=g$
is: $y(t)=c_{1} \cdot y_{1}(t)+c_{2} \cdot y_{2}(t)+Y(t)$, where $Y(t)$ is a particular solution of the $n-h . L u=g$
$n-h D F Q$
(1.) $y^{\prime \prime}+7 y^{\prime}+12 y=3 \cdot e^{2 t} \quad$ find a general solution to this

4 find complementary solutions of the homogeneous eq:

$$
y^{\prime \prime}+7 y^{\prime}+12 y=0
$$

$$
M^{2}+7 M+12=0 \rightarrow(M+4)(M+3)=0 \quad M_{1}=-3 \text { and } M_{2}=-4
$$

$y(t)=c_{1} e^{-3 t}+c_{2} e^{-4 t} \rightarrow$ general solution to the homogeneous eq.
\because find a particular solution for the $O G$ eq. $y^{\prime \prime}+7 y^{\prime}+12 y=3 \cdot e^{2 t}$
a solution evill be some $u(t)=A \cdot e^{2 t}, A \rightarrow$ undetermined coefficient
$u^{\prime}(t)=2 A e^{2 t}, u^{\prime \prime}(t)=4 A e^{2 t}$. plugging this in:

$$
\begin{aligned}
& 4 A \cdot e^{2 t}+14 A \cdot e^{2 t}+12 A \cdot e^{2 t}=3 e^{2 t} \\
& e^{2 t}(4 A+14 A+12 A)=3 e^{2 t} \rightarrow 30 A=3 \quad \rightarrow \quad A=\frac{1}{10}
\end{aligned}
$$

thus, a particular solution: $Y(t)=\frac{1}{10} \cdot e^{2 t}$

- general solution to the non-homogeneous DFQ:

$$
y(t)=c_{n} e^{-3 t}+c_{2} e^{-4 t}+\frac{1}{10} e^{2 t}
$$

\rightarrow if $g(t)=\mathbb{P}_{n}(t) \rightarrow$ polynomial */ degree n
4 finding a particular solution, $Y(t)$, for $a y "+b y '+c y=g$ form: $Y(t)=\left(A_{0}+A_{n} t+\ldots+A_{n} t^{n}\right) \cdot t^{s} ; \quad s=0,1,2$
(3.) $a y^{\prime \prime}+b y^{\prime}+c y=5 t^{2}+3 t+2$.
let $u(t)=A_{0}+A_{1} t+A_{2} t^{2}$. then:
$u^{\prime}(t)=A_{1}+2 A_{2} t \quad u^{\prime \prime}(t)=2 A_{2}$. plugging back in:

$$
a\left(2 A_{2}\right)+b\left(A_{1}+2 \cdot A_{2} t\right)+c\left(A_{0}+A_{1} t+A_{2} t^{2}\right)=2+3 t+5 t^{2} .
$$

$c \cdot A_{2}=5 . \quad c A_{1}+2 b A_{2}=3 . \quad c A_{0}+b A_{n}+2 a A_{2}=2$.

4 you can solve this system of equations (3 unknoouns \& 3 eq.s)

- but we run into a gee issues:
if 1) $c=0, b \neq 0$ we need an extra factor of t on the left:

$$
Y(t)=\left(A_{0}+A_{n} t+\ldots+A_{n} t^{n}\right) \cdot t^{n}
$$

2) $c=0, b=0$ we need an extra factor of t^{2} on the left:

$$
Y(t)=\left(A_{0}+A_{n} t+\ldots+A_{n} t^{n}\right) \cdot t^{2}
$$

4 if $g(t)=\mathbb{P}_{n}(t) \cdot e^{\alpha t}$, use the particular $Y^{-}(t)$:

$$
Y(t)=t^{s}\left(A_{0}+A_{n} t+\ldots+A_{n} t^{n}\right) \cdot e^{\alpha t}
$$

4 if $g(t)=\mathbb{P}_{n}(t) \cdot e^{\alpha t} \cdot \cos (B t)$, use the particular:

$$
\begin{aligned}
Y(t) & =t^{8}\left(A_{0}+A_{n} t+\ldots+A_{n} t^{n}\right) \cdot e^{\alpha t} \cdot \cos (B t)+ \\
& +t^{8}\left(B_{0}+B_{n} t+\ldots+B_{n} t^{n}\right) \cdot e^{\alpha t} \cdot \sin (B t)
\end{aligned}
$$

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

- we have complementary solutions for the homogeneous eq:

$$
y_{c}(t)=c_{1} \cdot y_{1}(t)+c_{2} \cdot y_{2}(t)
$$

4 bok for the particular solutions of the form:

$$
Y(t)=u_{1}(t) \cdot y_{1}(t)+u_{2}(t) \cdot y_{2}(t)
$$

with the condition $u_{1}{ }^{\prime} \cdot y_{n}+u_{2}^{\prime} \cdot y_{2}=0$.

4 let $Y=u_{1} \cdot y_{1}+u_{2} \cdot y_{2}$; then:

$$
\begin{aligned}
Y^{\prime} & =u_{1}^{\prime} \cdot y_{1}+u_{1} \cdot y_{1}{ }^{\prime}+u_{2}^{\prime} y_{2}+u_{2} \cdot y_{2}^{\prime} \quad \text { and } \because \text { of the condition: } \\
& =u_{1} \cdot y_{1}^{\prime}+u_{2} \cdot y_{2}^{\prime} \\
y^{\prime \prime} & =u_{1}^{\prime} \cdot y_{1}^{\prime}+u_{1} \cdot y_{1}^{\prime \prime}+u_{2}^{\prime} \cdot y_{2}^{\prime}+u_{2} \cdot y_{2}^{\prime \prime} ;
\end{aligned}
$$

4 plugging these into: $Y^{\prime \prime}+p Y^{\prime}+q Y^{\prime}=g$:

$$
\begin{aligned}
& \quad\left(u_{1}^{\prime} \cdot y_{1}^{\prime}+u_{1} \cdot y_{1}^{\prime \prime}+u_{2}^{\prime} \cdot y_{2}^{\prime}+u_{2} \cdot y_{2}{ }^{n}\right)+\ldots \\
& \ldots+p\left(u_{1} \cdot y_{1}^{\prime}+u_{2} \cdot y_{2}^{\prime}\right)+q\left(u_{1} \cdot y_{1}+u_{2} \cdot y_{2}\right)=g . \\
& u_{1}\left(y_{1}^{\prime \prime}+p \cdot y_{1}^{\prime}+q \cdot y_{1}\right)+u_{2}\left(y_{2}^{\prime \prime}+p \cdot y_{2}^{\prime}+q \cdot y_{2}\right)+ \\
& \quad+u_{1}^{\prime} \cdot y_{1}^{\prime}+u_{2}^{\prime} \cdot y_{2}^{\prime}=g .
\end{aligned}
$$

"now, recall that y_{1} and y_{2} solve the homogeneous ear. this:

$$
u_{1}^{\prime} \cdot y_{1}^{\prime}+u_{2}^{\prime} \cdot y_{2}^{\prime}=g
$$

Leve're left eu/ a system of equations:
$u_{1}{ }^{\prime} \cdot y_{1}^{\prime}+u_{2}{ }^{\prime} \cdot y_{2}{ }^{\prime}=g \quad$ variables: u_{1}^{\prime} and $u_{2}{ }^{\prime}$ $\left.u_{1}{ }^{\prime} \cdot y_{1}+u_{2}{ }^{\prime} \cdot y_{2}=0.\right\}$, the condition
: after solving for u_{1} ' and u_{2}^{\prime}, we obtain:
$u_{1}^{\prime}=\frac{-y_{2} \cdot g}{\omega\left(y_{1}, y_{2}\right)} \quad u_{2}^{2}=\frac{y_{1} \cdot g}{w\left(y_{1}, y_{2}\right)} \quad$ thus:

$$
u_{1}=\int \frac{-y_{2} \cdot g}{\omega\left(y_{1}, y_{2}\right)} \quad u_{2}=\int \frac{y_{1} \cdot g}{\omega\left(y_{1}, y_{2}\right)}
$$

4 particular solution:

$$
Y=-y_{1} \cdot \int \frac{y_{2} \cdot g}{\omega\left(y_{1}, y_{2}\right)}+y_{2} \cdot \int \frac{y_{1} \cdot g}{\omega\left(y_{1}, y_{2}\right)}
$$

4 general solution: $\quad y(t)=y_{c}(t)+Y(t)$:

$$
y(t)=c_{1} \cdot y_{1}(t)+c_{2} \cdot y_{2}(t)-y_{1} \cdot \int \frac{y_{2} \cdot g}{\omega\left(y_{1}, y_{2}\right)}+y_{2} \cdot \int \frac{y_{1} \cdot g}{\omega\left(y_{1}, y_{2}\right)}
$$

(1.) $y^{\prime \prime}+4 y=3 \cdot \csc (t)$

L finding complomenterry solutions for the homogeneous eq:

$$
\begin{aligned}
& y^{\prime \prime}+4 y=0 \quad M^{2}+4=0 \quad \rightarrow \mu_{1}=+2 i, \mu_{2}=-2 i \\
& y_{c}(t)=e^{0}\left[c_{1} \cdot \cos (2 t)+c_{2} \cdot \sin (2 t)\right]=c_{1} \cdot \underbrace{\cos (2 t)}_{y_{1}}+c_{2} \cdot \underbrace{\sin (2 t)}_{y_{2}} \\
& y_{1}=\cos (2 t), y_{2}=\sin (2 t)
\end{aligned}
$$

variation of parameters: replace c_{1} and $c_{2} \omega / u_{n}(t)$ and $u_{2}(t)$
4 condition: $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \rightarrow u_{1}^{\prime} \cos (2 t)+u_{2}^{\prime} \sin (2 t)=0$
4 our particular solution coil be: $y_{p}(t)=u_{n} \cdot y_{1}+u_{2} \cdot y_{2}$.

$$
\begin{aligned}
y_{p}(t) & =u_{1} \cdot \cos (2 t)+u_{2} \cdot \sin (2 t) \\
y_{p}(t)^{\prime} & =u_{1}^{\prime} \cos (2 t)-2 u_{1} \cdot \sin (2 t)+u_{2}^{\prime} \cdot \sin (2 t)+2 u_{2} \cdot \cos (2 t) . \\
& =2 u_{2} \cdot \cos (2 t)-2 u_{1} \cdot \sin (2 t) \\
y_{p}(t)^{\prime \prime} & =2 u_{2}^{\prime} \cdot \cos (2 t)-4 u_{2} \cdot \sin (2 t)-2 u_{1}^{\prime} \cdot \sin (2 t)-4 u_{1} \cdot \cos (2 t) \\
& =2\left(u_{2}^{\prime} \cos (2 t)-u_{1}^{\prime} \sin (2 t)\right)-4\left(u_{2} \cdot \sin (2 t)+u_{1} \cdot \cos (2 t)\right)
\end{aligned}
$$

plugging $y_{p}(t)^{n}$ and $y_{p}(t)$ into the original $D F Q$:

$$
\left.\left.\begin{array}{l}
2\left(u_{2}^{\prime} \cos (2 t)-u_{1}^{\prime} \sin (2 t)\right)-4\left(u_{2} \cdot \sin (2 t)+u_{n} \cdot \cos (2 t)\right)+\ldots \\
\ldots+4\left(u_{2} \cdot \sin (2 t)+u_{1} \cdot \cos (2 t)\right)=3 \csc (t)
\end{array}\right] \begin{array}{rl}
2 u_{2}^{\prime} \cos (2 t)-2 u_{1}^{\prime} \sin (2 t)=3 \csc (t) \quad \operatorname{solve} \operatorname{fon} u_{1}^{\prime}, u_{2}^{\prime}: \\
4 u_{1}^{\prime}=\frac{\omega_{1}}{\omega} \quad u_{2}^{\prime}=\frac{\omega_{2}}{\omega}
\end{array}\right] \begin{aligned}
\omega=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-2 \sin (2 t) & 2 \cos (2 t)
\end{array}\right|=\begin{array}{l}
2 \cos ^{2}(2 t)+2 \sin ^{2}(2 t)= \\
2\left(\cos ^{2}(2 t)+\sin ^{2}(2 t)\right)=2 .
\end{array} \\
\begin{aligned}
\omega_{2}=\left|\begin{array}{ll}
y_{1} & 0 \\
y_{1}^{\prime} & g
\end{array}\right|=\left|\begin{array}{cc}
\cos (2 t) & 0 \\
-2 \sin (2 t) & 3 \csc (t)
\end{array}\right|=3 \cos (2 t) \cdot \operatorname{coc}(t)= \\
=3 \cos (2 t) / \sin (t)
\end{aligned} \\
\begin{aligned}
& \omega_{1}=\left|\begin{array}{ll}
0 & y_{2} \\
g & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
0 & \sin (2 t) \\
3 \csc (t) & 2 \cos (2 t)
\end{array}\right|=-3 \sin (2 t) \cdot \csc (t)= \\
&=-3 \sin (2 t) / \sin (t)= \\
&=-6 \sin (t) \cdot \cos (t) / \sin (t)= \\
&=-6 \cos (t) .
\end{aligned}
\end{aligned}
$$

4 eve have:

$$
\begin{aligned}
& y_{c}(t)=c_{1} \cdot \cos (2 t)+c_{2} \cdot \sin (2 t) ; y_{1}=\cos (2 t), y_{2}=\sin (2 t) \\
& \omega=2, \quad \omega_{1}=-6 \cos (t), \quad \omega_{2}=3 \cos (2 t) / \sin (t)
\end{aligned}
$$

4 eve evant: $y_{p}(t)=u_{1} \cdot y_{1}+u_{2} \cdot y_{2}$

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{\omega_{1}}{\omega}=\frac{-6 \cos (t)}{2}=-3 \cos (t) \\
& u_{2}^{\prime}=\frac{\omega_{2}}{\omega}=\frac{3 \cos (2 t) / \sin (t)}{2}=\frac{3}{2} \frac{\cos (2 t)}{\sin (t)} \\
& u_{1}=\int-3 \cos (t) d t=-3 \int \cos (t) d t=-3 \sin (t)+c_{1} \\
& u_{2}=\frac{3}{2} \int \frac{\cos (2 t)}{\sin (t)} d t=3 \cos (t)-\frac{3}{2} \ln (|\csc (t)+\cot (t)|)+c_{2}
\end{aligned}
$$

4 plugging u_{1} and u_{2} into $y_{p}(t)$:

$$
\begin{aligned}
y_{p}(t)=-3 \sin (t) \cdot \cos (2 t)+\left(3 \cos (t)-\frac{3}{2}\right. & \ln (|\csc (t)+\cot (t)|)) \cdot \sin (2 t) \\
& +c_{1} \cdot \cos (2 t)+c_{2} \cdot \sin (2 t) .
\end{aligned}
$$

- linear algelora revieeu
\rightarrow matrix multiplication

1) girst way: $A B=\left[\begin{array}{llll}\overrightarrow{A b_{1}} & \overrightarrow{A b_{2}} & \ldots & A \overrightarrow{b_{n}}\end{array}\right]$

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccc}
2 & -1 & -2 \\
-4 & 2 & -3
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 2 \\
7 & -3
\end{array}\right]=\left[\overrightarrow{A b_{1}} \overrightarrow{A b_{2}}\right]} \\
2 \times 3 \\
\overrightarrow{A \times 2} \\
\overrightarrow{b_{1}}=\left[\begin{array}{ccc}
2 & -1 & -2 \\
-4 & 2 & -3
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
7
\end{array}\right]=2\left[\begin{array}{c}
2 \\
-4
\end{array}\right]-1\left[\begin{array}{c}
-1 \\
2
\end{array}\right]+7\left[\begin{array}{c}
-2 \\
-3
\end{array}\right]=\left[\begin{array}{c}
4 \\
-8
\end{array}\right]+\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+\left[\begin{array}{c}
-14 \\
-21
\end{array}\right]=\left[\begin{array}{c}
t \\
-9 \\
-31
\end{array}\right] \\
\overrightarrow{b_{1}} \\
A \overrightarrow{b_{2}}
\end{array}\right]\left[\begin{array}{ccc}
2 & -1 & -2 \\
-4 & 2 & -3
\end{array}\right]\left[\begin{array}{c}
-1 \\
2 \\
-3
\end{array}\right]=-1\left[\begin{array}{c}
2 \\
-4
\end{array}\right]+2\left[\begin{array}{c}
-1 \\
2
\end{array}\right]-3\left[\begin{array}{c}
-2 \\
-3
\end{array}\right]=\left[\begin{array}{c}
-2 \\
4
\end{array}\right]+\left[\begin{array}{c}
-2 \\
4
\end{array}\right]+\left[\begin{array}{c}
6 \\
9
\end{array}\right]=\left[\begin{array}{c}
t \\
2 \\
17
\end{array}\right] .
$$

2) second exay: (i, j) entry in $A B$ is $R i A \cdot C_{j} B$; dot-product

$$
\begin{gathered}
{\left[\begin{array}{ccc}
2 & -1 & -2 \\
-4 & 2 & -3
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 2 \\
7 & -3
\end{array}\right]=\left[\begin{array}{cc}
2 \cdot 2+1 \cdot 1-2 \cdot 7 & -2 \cdot 1-1 \cdot 2+2 \cdot 3 \\
2 \times 3 \cdot 2 \cdot 2 \cdot 2 \cdot 1-7 \cdot 3 & 1 \cdot 4+2 \cdot 2+3 \cdot 3
\end{array}\right]=\left[\begin{array}{cc}
-9 & 2 \\
-31 & 17
\end{array}\right]} \\
3 \times 2
\end{gathered}
$$

3) thing way: a sum of n manta $1 m \times n$ matrices: $C A \times R B$

$$
\begin{aligned}
& \underset{2 \times 3}{\left[\begin{array}{ccc}
2 & -1 & -2 \\
-4 & 2 & -3
\end{array}\right]} \underset{3 \times 2}{\left[\begin{array}{cc}
2 & -1 \\
-1 & 2 \\
7 & -3
\end{array}\right]}=\left[\begin{array}{c}
2 \\
-4
\end{array}\right]\left[\begin{array}{ll}
2 & -1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
2
\end{array}\right]\left[\begin{array}{ll}
-1 & 2
\end{array}\right]+\left[\begin{array}{l}
-2 \\
-3
\end{array}\right]\left[\begin{array}{ll}
7 & -3
\end{array}\right]= \\
& =\underset{2 \times 2}{\left[\begin{array}{cc}
4 & -2 \\
-8 & 4
\end{array}\right]}+\underset{2 \times 2}{\left[\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right]}+\underset{2 \times 2}{\left[\begin{array}{cc}
-14 & 6 \\
-21 & 9
\end{array}\right]}=\underset{2 \times 2}{\left[\begin{array}{cc}
-9 & 2 \\
-31 & 17
\end{array}\right]}
\end{aligned}
$$

\rightarrow linear transformations

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

- determinant

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad \operatorname{det}(A)=a_{11} \cdot a_{22}-a_{12} \cdot a_{21}
$$

\rightarrow geometric interpretation of det:

- the $|\operatorname{det}(A)|$ can bee thought of as the change of the area of the "unit square" after eve apply the lin. transformation A. C basis vectors $\langle n, 0\rangle,\langle 0, n\rangle$ in \mathbb{R}^{2}.
\rightarrow this is why $\operatorname{det}(A)=0$ means eve're losing a dimension (e.g. from \mathbb{R}^{2}, everything is squeezed onto a line $\rightarrow \mathbb{R}^{1}$)

$$
\begin{aligned}
& \operatorname{det}\left(\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\right)=a_{11} \cdot \operatorname{det}\left(\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]\right)-a_{n 2} \cdot \operatorname{det}\left(\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]\right)+\ldots \\
& \ldots+a_{13} \cdot \operatorname{det}\left(\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]\right)= \\
& =a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right)+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right)
\end{aligned}
$$

- eigenvectors eigenvalues

4 when $A \cdot \vec{x}=0$, for $\vec{x} \neq \overrightarrow{0}$, this means that \vec{x} gets mapped to the $\overrightarrow{0}$-vector this means that the unit disc is collapsed to a line segment (as a result of a projection along \vec{x})
4 this $\vec{x} \in \operatorname{Nul}(A)$.

4 for example:

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad \vec{x}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], A \vec{x}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

notice that $\operatorname{det}(A)=0$.
(1.)

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 3 & 2 \\
2 & 1 & 4
\end{array}\right], \vec{x}=\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right], \quad A \vec{x}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 3 & 2 \\
2 & 1 & 4
\end{array}\right] \cdot\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

notice that $\operatorname{det}(A)=0(3 \cdot 4-2 \cdot 1)-1(1 \cdot 4-2 \cdot 2)+0=0$.
(2.) Find vectors \vec{x} and numbers λ s.t. $A \vec{x}=\lambda \vec{x}$:
$\lambda=$ eigenvalue of A
$\vec{x}=$ eigenvector of A corresponding to λ.

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right] \rightarrow \lambda_{1}=2 . \quad \vec{x}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] ; \lambda_{2}=3 . \quad \overrightarrow{x_{2}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

$$
\because \quad A \overrightarrow{x_{1}}=\lambda_{1} \vec{x}_{1} \quad \text { and } A \overrightarrow{x_{2}}=\lambda_{2} \overrightarrow{x_{2}}
$$

4 this is $\because A$ is diagonal, thus: $D=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$ and $\begin{aligned} & \vec{x}_{1}=\vec{e}_{1} \\ & \vec{x}_{2}=\vec{e}_{2}\end{aligned}$
(3.) find vectors \vec{x} and numbers λ s.t. $A \vec{x}=\lambda \vec{x} ; A \neq D$:

$$
\begin{aligned}
& A \vec{x}=\lambda \cdot \sigma \vec{x} \\
& A \vec{x}-\lambda \cdot \sigma \vec{x}=0 \\
& (A-\lambda \cdot J \vec{x}) \vec{x}=0 \quad \text { and } \quad \because \vec{x} \neq 0:
\end{aligned}
$$

$\operatorname{det}(A-\lambda \cdot \mathscr{F} \vec{x})=0$. use this formula to find λ \vec{X} will be in the $\operatorname{Nul}\left(A-\lambda \cdot T_{n}\right)$

$$
A=\left[\begin{array}{cc}
3 & -1 \\
4 & -2
\end{array}\right] \rightarrow \begin{aligned}
& \operatorname{det}(A)=(3-\lambda)(-2-\lambda)+4=\lambda^{2}-\lambda-2 \\
& \lambda^{2}-\lambda-2=0 \rightarrow(\lambda-2)(\lambda+1)=0 . \text { thus: } \\
& \lambda_{1}=2 \quad \lambda_{2}=-1
\end{aligned}
$$

4 finding eigenvectors:

1) $\mathrm{for} \mathrm{H}_{1}=2: \operatorname{Nul}\left(A-2 \cdot J_{n}\right)$:

$$
\left[\begin{array}{cc|c}
1 & -1 & 0 \\
4 & -4 & 0
\end{array}\right]+\left[\begin{array}{cc|c}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] \text { so }: \vec{x}_{1}=\left[\begin{array}{l}
n \\
1
\end{array}\right]
$$

2) for $\lambda_{2}=-1$: $\operatorname{Nul}\left(A+1 \cdot I_{n}\right)$:

$$
\left[\begin{array}{rr|r}
4 & -1 & 0 \\
4 & -1 & 0
\end{array}\right]+\left[\begin{array}{lr|r}
1 & -\frac{1}{4} & 0 \\
0 & 0 & 0
\end{array}\right] \text { so: } \vec{x}_{2}=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

- one variable calculus
- when we zoom in on the graph of a smooth function, we see a line.

\rightarrow two variable calculus
"when we zoom in on the graph of the multivariable function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, we see a linear transformation which approximates?

$$
\begin{aligned}
& y_{1}=f_{1}\left(x_{1}, x_{2}\right)=a_{11} x_{1}+a_{12} x_{2}+b_{1} \\
& y_{2}=f_{2}\left(x_{1}, x_{2}\right)=a_{21} x_{1}+a_{22} x_{2}+b_{2} \\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
b_{11} \\
b_{22}
\end{array}\right]}
\end{aligned}
$$

- systems of DFQS:

4 for one variable:

$$
y^{\prime}=a y ; \text { solution: } y(t)=c \cdot e^{a t}
$$

4 for two variables:

$$
y^{\prime}=A \cdot y, \quad \text { where } A \rightarrow \text { matrix; }\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

4 for a system:

$$
\begin{aligned}
& y_{1}^{\prime}=a_{11} y_{1}+a_{12} y_{2} \\
& y_{2}^{\prime}=a_{21} y_{1}+a_{22} y_{2}
\end{aligned}
$$

\rightarrow goal: come up evith a strategy (linear change of variables) to tern any system $\vec{y}^{\prime}=A \cdot \vec{y}$ into a diagonal form:

$$
\vec{y}^{\prime}=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] \cdot \vec{y}
$$

- first-order linear systems

$$
\text { uform: } \begin{array}{rlr}
& x^{2}=P(t) \cdot x+g(t) \\
\downarrow & \vdots \\
& \in \mathbb{R}^{n} \in \mathbb{R}^{n \times n} \quad \in \mathbb{R}^{n} & \text { if } g(t)=0 \rightarrow \text { homogeneous }
\end{array}
$$

$$
\begin{aligned}
& x_{1}{ }^{\prime}=P_{11}(t) x_{1}+\ldots+P_{1 n}(t) x_{n}+g_{n}(t) \\
& x_{2}^{\prime}=P_{21}(t) x_{1}+\ldots+P_{2 n}(t) x_{n}+g_{2}(t) \\
& \vdots \\
& x_{n}=P_{n 1}(t) x_{1}+\ldots+P_{n n}(t) x_{n}+g_{n}(t)
\end{aligned}
$$

4 the system has n linearly independent solutions (a vector in \mathbb{R}^{n})

- first-order, homogeneous linear systems ell const. coefficients

4 form: $x^{\prime}=A x$, where A is a constant matrix
(1.) $\vec{x}^{\prime}=\left[\begin{array}{cc}2 & 0 \\ 0 & -3\end{array}\right] \vec{x} \rightarrow \begin{aligned} & x_{1}{ }^{\prime}=2 x_{1} \\ & x_{2}{ }^{\prime}=-3 x_{2}\end{aligned} \rightarrow x_{1}=c_{1} e^{2 t}, x_{2}=c_{2} \cdot e^{-3 t}$
\rightarrow checking x_{1} :
L checking x_{2} :

$$
\frac{d}{d t}\left[\begin{array}{c}
e^{2 t} \\
0
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
0 & -3
\end{array}\right] \cdot\left[\begin{array}{c}
e^{2 t} \\
0
\end{array}\right]=\left[\begin{array}{c}
2 e^{2+} \\
0
\end{array}\right], \quad \frac{d}{d t}\left[\begin{array}{c}
0 \\
e^{3 t}
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
0 & -3
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
e^{-3 t}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-3 e^{-3 t}
\end{array}\right] v
$$

4 thus, the two vector solutions:

$$
\vec{x}^{n}(t)=e^{2+}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \vec{x}^{2}(t)=e^{-3+}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

4 the Wronskian:

$$
w\left[\vec{x}^{n}, \vec{x}^{2}\right](t)=\left|\begin{array}{cc}
e^{2 t} & 0 \\
0 & e^{-3 t} \\
\vec{x}_{1} & \overrightarrow{\vec{x}_{2}}
\end{array}\right|=e^{-t} .
$$

4 since $\omega\left[\vec{x}^{n}, \vec{x}^{2}\right](t) \neq 0 \rightarrow \vec{x}^{n}(t)$ and $\vec{x}^{2}(t)$ form a fundamental set of solutions.

4 general solution: $\vec{x}(t)=c_{n} \cdot \vec{x}^{n}(t)+c_{2} \cdot \vec{x}^{2}(t)$

$$
\vec{x}(t)=c_{1} \cdot e^{2 t}\left[\begin{array}{l}
n \\
0
\end{array}\right]+c_{2} \cdot e^{-3 t}\left[\begin{array}{l}
0 \\
n
\end{array}\right]
$$

(2.) $\vec{x}^{\prime}=\left[\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right] \vec{x}$
\rightarrow assume $\vec{x}(t)=e^{\lambda t} \cdot \xi$ is a solution, evbere $\xi=\left[\begin{array}{l}\xi_{1} \\ \xi_{2}\end{array}\right]$

$$
\vec{x}^{\prime}=\lambda e^{\lambda t}\left[\begin{array}{l}
\xi_{1} \\
\xi_{2}
\end{array}\right]=e^{\lambda t}\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right] \cdot\left[\begin{array}{l}
\xi_{1} \\
\xi_{2}
\end{array}\right]
$$

4 substituting this:

$$
e^{\lambda t}\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right] \cdot\left[\begin{array}{l}
\xi_{1} \\
\xi_{2}
\end{array}\right]=e^{\lambda t}\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
\xi_{1} \\
\xi_{2}
\end{array}\right] \text {. thus: }
$$

$\left[\begin{array}{cc}1-\lambda & 1 \\ 4 & 1-\lambda\end{array}\right] \cdot\left[\begin{array}{l}\xi_{1} \\ \xi_{2}\end{array}\right]=0 \quad \begin{aligned} & \text { the only evay to have a non-zero } \\ & \text { is if } \operatorname{det}\left(A-\lambda \cdot \sigma_{n}\right)=0\end{aligned}$ is if $\operatorname{det}\left(A-\lambda \cdot J_{n}\right)=0$:

$$
(1-\lambda)^{4}-4=0 \rightarrow \quad \lambda_{1}=3 \text { and } \lambda_{2}=-1 .
$$

1)

$$
\begin{aligned}
& \varepsilon_{3}=\operatorname{sul}\left(A-3 \cdot J_{n}\right): \\
& {\left[\begin{array}{cc|c}
-2 & 1 & 0 \\
4 & -2 & 0
\end{array}\right] \mapsto\left[\begin{array}{cc|c}
1 & -\frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right] \quad \vec{x}=x_{2}\left[\begin{array}{c}
\frac{n}{2} \\
1
\end{array}\right] \quad \text { so: } \varepsilon_{3}=\operatorname{span}\left\{\left[\begin{array}{l}
n \\
2
\end{array}\right]\right\}}
\end{aligned}
$$

2) $\varepsilon_{-n}=\operatorname{Nul}\left(A+1 \cdot \sigma_{n}\right):$

$$
\left[\begin{array}{ll|l}
2 & 1 & 0 \\
4 & 2 & 0
\end{array}\right] \mapsto\left[\begin{array}{ll|l}
1 & \frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right] \quad \vec{x}=x_{2}\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] \quad \text { so: } \varepsilon_{-n}=\operatorname{span}\left\{\left[\begin{array}{c}
-1 \\
2
\end{array}\right]\right\}
$$

4 thus: $\xi^{n}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \xi^{2}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$, so:

$$
\vec{x}^{1}(t)=e^{3 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \text { and } \quad \vec{x}^{2}(t)=e^{-t}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

4. the $\omega_{r o n s h i a n: ~}^{\text {an }}$

$$
w=\left|\begin{array}{cc}
e^{3 t} & -e^{-t} \\
2 e^{3 t} & 2 e^{-t}
\end{array}\right|=2 e^{2 t}+2 e^{2 t}=4 e^{2 t} \neq 0 .
$$

4 since $\omega\left[\vec{x}^{n}, \vec{x}^{2}\right](t) \neq 0 \rightarrow \vec{x}^{n}(t)$ and $\vec{x}^{2}(t)$ form a fundamental set of solutions.

4 general solution: $\vec{x}(t)=c_{1} \cdot \vec{x}^{n}(t)+C_{2} \cdot \vec{x}^{2}(t)$

$$
\vec{x}(t)=c_{1} \cdot e^{3 t}\left[\begin{array}{l}
n \\
2
\end{array}\right]+c_{2} \cdot e^{-t}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

(1.) special case

$$
x^{\prime}=\left[\begin{array}{cc}
0 & -2 \\
2 & 0
\end{array}\right] x \quad \begin{aligned}
& \operatorname{det}\left(A-\lambda \cdot J_{n}\right)=(-\lambda)^{2}+4=\lambda^{2}+4 ; \text { thus: } \\
& \lambda^{2}+4=0 \rightarrow \lambda_{1}=2 i, \lambda_{2}=-2 i .
\end{aligned}
$$

1) $\varepsilon_{2 i}=\operatorname{Nul}\left(A-2 i \cdot I_{n}\right):$

$$
\left[\begin{array}{cc}
-2 i & -2 \\
2 & -2 i
\end{array}\right]+\left[\begin{array}{cc}
i & 1 \\
1 & -i
\end{array}\right]+\left[\begin{array}{cc}
1 & \frac{1}{i} \\
1 & -i
\end{array}\right]+\left[\begin{array}{cc}
1 & -i \\
1 & -i
\end{array}\right]+\left[\begin{array}{cc}
1 & -i \\
0 & 0
\end{array}\right] \quad \vec{x}=\times 2\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

2) $\varepsilon_{-2 i}=\operatorname{Nul}\left(A+2 i \cdot I_{n}\right):$

$$
\left[\begin{array}{cc}
2 i & -2 \\
2 & 2 i
\end{array}\right]+\left[\begin{array}{cc}
i & -1 \\
1 & i
\end{array}\right]+\left[\begin{array}{lc}
1 & \frac{-1}{i} \\
1 & i
\end{array}\right]+\left[\begin{array}{ll}
1 & i \\
1 & i
\end{array}\right]+\left[\begin{array}{ll}
1 & i \\
0 & 0
\end{array}\right] \quad \vec{x}=x_{2}\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

4 general solution: $\vec{x}(t)=C_{1} \cdot \vec{x}^{n}(t)+C_{2} \cdot \vec{x}^{2}(t)$, where:

$$
\begin{aligned}
& \vec{x}^{n}(t)=e^{\lambda_{n} \cdot t} \cdot\left[\begin{array}{c}
e_{i g} \\
v_{e_{C}}
\end{array}\right], \vec{x}_{2}(t)=e^{\lambda_{2} \cdot t} \cdot\left[\begin{array}{c}
e_{\dot{g}} \\
v_{e_{C}}
\end{array}\right] \\
& \vec{x}(t)=c_{n} \cdot e^{2 i t}\left[\begin{array}{c}
i \\
n
\end{array}\right]+c_{2} \cdot e^{-2 i t}\left[\begin{array}{c}
-i \\
1
\end{array}\right] \\
& w=\left|\begin{array}{ll}
i e^{2 i t} & -i e^{-2 i t} \\
e^{2 i t} \quad e^{-2 i t}
\end{array}\right|=i e^{0}+i e^{0}=2 i \neq 0
\end{aligned}
$$

\rightarrow thus, $\vec{x}^{\wedge}(t)$ and $\vec{x}^{2}(t) \rightarrow$ fundamental s.

- fundamental matrix of a system

4 for a system $x^{\prime}=A x$, the fundamental matrix $\overline{\mathcal{D}}(t)$: $\Phi(t)=\left[\begin{array}{ll}\vec{x}^{1}(t) & \vec{x}^{2}(t)\end{array}\right] \rightarrow \vec{x}^{1}, \vec{x}^{2}$ are column vectors
\rightarrow now, we're looking for a solution in terms of matrices:
$\leftrightarrow \mathscr{\Phi}(t)$ represents a matrix solution to the system
4 it's because $\Phi(t)$ is a "linear combination" of \vec{x}^{\prime} and \vec{x}^{2}, which are linearly independent $\rightarrow \boldsymbol{\mathcal { F }}(t)$ is invertible as eel.
4 in the space of matrices, you now only need to specify one boundary condition to fully describe the IVD of $1^{\text {st }}$-order sys.

4 for example:
for $x^{\prime}=a x$, solution: $x=e^{a t}$
for $x^{\prime}=A x$, solution: $x=e^{A t}$

- Taylor expansion:

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!}
$$

(1.) $x^{\prime}=\left[\begin{array}{ll}0 & -1 \\ 1 & 0\end{array}\right] \times \quad \begin{aligned} & \operatorname{det}\left(A-\lambda \cdot \sigma_{n}\right)=(-\lambda)^{2}+1=\lambda^{2}+1 . \\ & \lambda^{2}+1=0 \rightarrow \lambda_{1}=i, \lambda_{2}=-i\end{aligned}$ thus:

1) $\varepsilon_{i}=\operatorname{Nul}\left(A-i \cdot I_{n}\right):$

$$
\left[\begin{array}{cc}
-i & -1 \\
1 & -i
\end{array}\right]+\left[\begin{array}{cc}
i & 1 \\
1 & -i
\end{array}\right]+\left[\begin{array}{cc}
1 & \frac{1}{i} \\
1 & -i
\end{array}\right]+\left[\begin{array}{cc}
1 & -i \\
1 & -i
\end{array}\right]+\left[\begin{array}{cc}
n & -i \\
0 & 0
\end{array}\right] \quad \vec{x}=\times 2\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

2) $\varepsilon_{-i}=\operatorname{Nul}\left(A+i \cdot I_{n}\right):$

$$
\left[\begin{array}{cc}
i & -1 \\
1 & i
\end{array}\right]+\left[\begin{array}{ll}
1 & \frac{-1}{i} \\
1 & i
\end{array}\right]+\left[\begin{array}{ll}
1 & i \\
1 & i
\end{array}\right]+\left[\begin{array}{ll}
1 & i \\
0 & 0
\end{array}\right] \quad \vec{x}=\times 2\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

4 general solution: $\vec{x}(t)=C_{1} \cdot \vec{x}^{n}(t)+C_{2} \cdot \vec{x}^{2}(t)$, where:

$$
\begin{aligned}
& \vec{x}^{n}(t)=e^{\lambda_{n} \cdot t} \cdot\left[\begin{array}{l}
e_{g} \\
e_{e_{C}}
\end{array}\right], \vec{x}_{2}(t)=e^{\lambda_{2} \cdot t} \cdot\left[\begin{array}{c}
e_{\dot{g}} \\
e_{e_{C}}
\end{array}\right] \\
& \vec{x}(t)=c_{n} \cdot e^{i t}\left[\begin{array}{l}
i \\
n
\end{array}\right]+c_{2} \cdot e^{-i t}\left[\begin{array}{c}
-i \\
n
\end{array}\right] \rightarrow \Phi(t)=\left[\begin{array}{cc}
i e^{i t} & -i e^{-i t} \\
e^{i t} & e^{-i t}
\end{array}\right]
\end{aligned}
$$

L $\bar{\Phi}(t)$ is a solution to the matrix equation $x^{\prime}=A x$.

$$
w=\left|\begin{array}{cc}
i e^{i t} & -i e^{-i t} \\
e^{i t} & e^{-i t}
\end{array}\right|=i e^{0}+i e^{0}=2 i \neq 0
$$

4 thus, $\boldsymbol{\mathcal { F }}(t) \rightarrow$ fundamental solution

4 verify that $\boldsymbol{\sigma}(t)$ is a solution to this DFQ:

$$
\Phi(t)=\left[\begin{array}{rr}
i e^{i t} & -i e^{-i t} \\
e^{i t} & e^{-i t}
\end{array}\right] \quad \Phi^{\prime}(t)=\left[\begin{array}{cc}
-e^{i t} & -e^{-i t} \\
i e^{i t} & -i e^{-i t}
\end{array}\right]
$$

4 plugging into $\Phi^{\prime}(t)=A \cdot \Phi(t)$:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-e^{i t} & -e^{-i t} \\
i e^{i t} & -i e^{-i t}
\end{array}\right]=\left[\begin{array}{ll}
0 & -n \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
i e^{i t} & -i e^{-i t} \\
e^{i t} & e^{-i t}
\end{array}\right]} \\
& {\left[\begin{array}{cc}
-e^{i t} & -e^{-i t} \\
i e^{i t} & -i e^{-i t}
\end{array}\right]=\left[\begin{array}{cc}
-e^{i t} & -e^{-i t} \\
i e^{i t} & -i e^{-i t}
\end{array}\right] \curvearrowright}
\end{aligned}
$$

" initial condition: $\bar{\Phi}(0)=I_{n}$: thus, wine looking for

$$
\tilde{\vec{x}}^{\wedge}(t) \text { and } \tilde{\vec{x}}^{2}(t) \text { s.t. } \quad \tilde{\vec{x}}^{\wedge}(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and } \tilde{\vec{x}}^{2}(0)=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

$$
\begin{array}{ll}
\vec{x}^{1}(t)=C_{11} \cdot \vec{x}^{1}(t)+C_{12} \vec{x}^{2}(t) \\
\stackrel{\sim}{x}^{2}(t)=C_{21} \cdot \vec{x}^{1}(t)+C_{22} \vec{x}^{2}(t) & C=\left[\begin{array}{l}
C_{11} C_{12} \\
C_{21} \\
C_{22}
\end{array}\right]
\end{array}
$$

"note: since $\vec{x}^{\prime \prime}(t)=e^{i t}\left[\begin{array}{l}i \\ n\end{array}\right], \quad \vec{x}^{\prime \prime}(0)=\left[\begin{array}{l}i \\ n\end{array}\right] \begin{aligned} & \text { and similarly } \\ & \text { for } \vec{x}^{2}(0)\end{aligned}$
1)

$$
\begin{aligned}
& \tilde{\vec{x}}^{\prime}(t)=C_{11} \cdot \vec{x}^{\prime}(t)+C_{12} \vec{x}^{2}(t): \\
& {\left[\begin{array}{l}
n \\
0
\end{array}\right]=C_{11} \cdot\left[\begin{array}{l}
i \\
1
\end{array}\right]+C_{12} \cdot\left[\begin{array}{c}
-i \\
1
\end{array}\right]} \\
& {\left[\begin{array}{cc|c}
i & -i & 1 \\
n & 1 & 0
\end{array}\right]+\left[\begin{array}{cc|c}
1 & -1 & \frac{1}{i} \\
1 & 1 & 0
\end{array}\right]+\left[\begin{array}{cc|c}
1 & -1 & -i \\
1 & 1 & 0
\end{array}\right]+\left[\begin{array}{cc|c}
1 & -1 & -i \\
0 & 2 & i
\end{array}\right]+\left[\begin{array}{cc|c}
1 & 0 & -\frac{i}{2} \\
0 & 1 & \frac{i}{2}
\end{array}\right]}
\end{aligned}
$$

$$
C_{11}=-\frac{i}{2}, \quad C_{12}=\frac{i}{2} . \quad \text { thus: } \quad \tilde{\vec{x}}^{n}(t)=-\frac{i}{2} \cdot \vec{x}^{\wedge}(t)+\frac{i}{2} \vec{x}^{2}(t):
$$

$$
\widetilde{\vec{x}}^{n}(t)=-\frac{i}{2} e^{i t}\left[\begin{array}{l}
i \\
1
\end{array}\right]+\frac{i}{2} e^{-i t}\left[\begin{array}{c}
-i \\
1
\end{array}\right]=e^{i t}\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{i}{2}
\end{array}\right]+e^{-i t}\left[\begin{array}{c}
\frac{1}{2} \\
\frac{i}{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
e^{i t}+e^{-i t} \\
-i e^{i t}+i e^{-i t}
\end{array}\right]
$$

4 simplifying $\vec{x}^{n}(t)$:
a) $\frac{1}{2}\left(e^{i t}+e^{-i t}\right)=\frac{1}{2}(\cos (t)+i \cdot \sin (t)+\cos (t)-i \cdot \sin (t))=\cos (t)$
b) $\frac{1}{2}\left(-i e^{i t}+i e^{-i t}\right)=\frac{i}{2}\left(-e^{i t}+e^{-i t}\right)=\frac{i}{2}(-\cos (t)-i \sin (t)+\cos (t)-i \sin (t))$

$$
=\frac{i}{2}(-2 i \cdot \sin (t))=-i^{2} \sin (t)=\sin (t) \text { this: }
$$

$$
\widetilde{\vec{x}}^{n}(t)=\left[\begin{array}{l}
\cos (t) \\
\sin (t)
\end{array}\right]
$$

2)

$$
\begin{aligned}
& \tilde{\vec{x}}^{2}(t)=C_{21} \cdot \vec{x}^{1}(t)+C_{22} \vec{x}^{2}(t): \\
& {\left[\begin{array}{l}
0 \\
1
\end{array}\right]=c_{21} \cdot\left[\begin{array}{l}
i \\
1
\end{array}\right]+c_{22} \cdot\left[\begin{array}{c}
-i \\
1
\end{array}\right]} \\
& {\left[\begin{array}{cc|c}
i & -i & 0 \\
n & 1 & 1
\end{array}\right]+\left[\begin{array}{cc|c}
1 & -1 & 0 \\
1 & 1 & 1
\end{array}\right]+\left[\begin{array}{cc|c}
1 & -1 & 0 \\
0 & 2 & 1
\end{array}\right]+\left[\begin{array}{ll|l}
1 & 0 & \frac{1}{2} \\
0 & 1 & \frac{1}{2}
\end{array}\right] \quad \begin{array}{l}
C_{21}=\frac{1}{2} \\
C_{22}=\frac{1}{2}
\end{array}}
\end{aligned}
$$

thus: $\tilde{\vec{x}}^{2}(t)=\frac{1}{2} \vec{x}^{n}(t)+\frac{1}{2} \vec{x}^{2}(t):$

$$
\tilde{\vec{x}}^{2}(t)=\frac{n}{2} e^{i t}\left[\begin{array}{l}
i \\
n
\end{array}\right]+\frac{n}{2} \cdot e^{-i t}\left[\begin{array}{c}
-i \\
n
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
i e^{i t}-i e^{-i t} \\
e^{i t}+e^{-i t}
\end{array}\right]
$$

4 simplifying $\overrightarrow{\vec{x}}^{2}(t)$:
a) $\frac{n}{2}\left(i e^{i t}-i e^{-i t}\right)=\frac{i}{2}\left(e^{i t}-e^{-i t}\right)=\frac{i}{2}(\cos (t)+i \cdot \sin (t)-\ldots$

$$
\ldots-(\cos (t)-i \cdot \sin (t))=\frac{i}{2}(2 i \cdot \sin (t))=-\sin (t)
$$

b) $\frac{1}{2}\left(e^{i t}+e^{-i t}\right)=\frac{n}{2}(\cos (t)+i \cdot \sin (t)+\cos (t)-i \cdot \sin (t))=\cos (t)$

$$
\tilde{x}^{2}(t)=\left[\begin{array}{l}
-\sin (t) \\
\cos (t)
\end{array}\right]
$$

4 therefore:

$$
\bar{\Phi}(t)=\left[\begin{array}{lr}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right]
$$

particular solution to the IVP esl cong. $\mathcal{F}(0)=I_{n}$.
b) identify odd/ even patterns in the powers of A

$$
\begin{gathered}
A^{0}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad A^{1}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \quad A^{2}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \quad A^{3}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \\
\begin{array}{l}
\sigma_{n} \\
-\sigma_{n} \\
\downarrow
\end{array} \\
\begin{array}{c}
A^{4}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\downarrow \\
\sigma_{n}
\end{array} \quad A^{5}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
\downarrow \\
A
\end{array}\right.
\end{gathered} \quad \cdots \quad\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] .
$$

4 eve can see a pattern which repeats every 4 times: A. $-I_{n},-A, I_{n}$
c) calculate $e^{A t}=I_{n}+A t+\frac{(A t)^{2}}{2!}+\frac{(A t)^{3}}{3!}+\frac{(A t)^{4}}{4!}+\ldots$

$$
\begin{aligned}
I_{n} & =A^{0}=A^{4}=A^{8}=A^{12}=\ldots ; A=A^{1}=A^{5}=A^{9}=A^{13}=\ldots \\
-I_{n} & =A^{2}=A^{6}=A^{10}=A^{14}=\ldots ;-A=A^{3}=A^{7}=A^{11}=A^{15}=\ldots \\
e^{A t} & =I_{n}+\frac{(A t)^{2}}{2!}+\frac{(A t)^{4}}{4!}+\ldots+A t+\frac{(A t)^{3}}{3!}+\frac{(A t)^{5}}{5!}+\ldots= \\
& =I_{n}\left(1-\frac{t^{2}}{2!}+\frac{t^{4}}{4!}+\ldots\right)+A\left(t-\frac{t^{3}}{3!}+\frac{t^{5}}{5!}+\ldots\right)= \\
& =\cos (t) \cdot I_{n}+\sin (t) \cdot A
\end{aligned}
$$

d) Compare $\mathscr{\mathscr { L }}(t)$ and $e^{A t}$

$$
\begin{aligned}
& e^{A t}=\cos (t) \cdot \sigma_{n}+\sin (t) \cdot A=\left[\begin{array}{ll}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right] . \text { thus: } \\
& e^{A t}=\Phi(t)
\end{aligned}
$$

- repeated eigenvalues

$$
A=\left[\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right] \quad \begin{aligned}
& \operatorname{det}\left(A-\lambda \cdot \sigma_{n}\right)=\lambda^{2}-4 \lambda+4=(\lambda-2)^{2} . \\
& \text { thus: } \lambda=2 \rightarrow \text { only one eigenvalue }
\end{aligned}
$$

* we use eigenvalues and eigenvectors to write the general solution:

$$
\left.\vec{x}(t)=c_{n} \cdot e^{\lambda t} \cdot \xi^{1}+c_{2} \cdot e^{\lambda \Omega t} \cdot\right\}^{2}
$$

4 recall: each eigenvalue guarantees at least a eigenvector
4 when evorking in \mathbb{C}, eve'll alevays be able to find n lin. ind. eigenvectors (\forall matrices A)
4 bad news: if x is a repeated eigenvalue evil algebraic multiplicity 2, it's possible that we have only 1 eigenvector (geometric multiplicity < algebraic)
(1.) $x^{\prime}=\left[\begin{array}{cc}1 & -1 \\ 1 & 3\end{array}\right] x \rightarrow \lambda_{1}=\lambda_{2}=2$
1)

$$
\begin{aligned}
& \varepsilon_{2}=\operatorname{Nul}\left(A-2 \cdot \sigma_{n}\right): \\
& {\left[\begin{array}{cc}
-1 & -n \\
1 & n
\end{array}\right]+\left[\begin{array}{cc}
n & n \\
0 & 0
\end{array}\right] \quad \vec{x}=x_{2}\left[\begin{array}{c}
-1 \\
n
\end{array}\right] \quad \varepsilon_{2}=\operatorname{spoan}\left\{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\}} \\
& \vec{x}^{n}(t)=e^{2 t} \cdot\left[\begin{array}{c}
-1 \\
n
\end{array}\right] \quad \text { but what about } \vec{x}^{2}(t) ?
\end{aligned}
$$

4 possible form for $\vec{x}^{2}(t)$: a combination of tevo vectors:

$$
\dot{x}^{2}(t)=t \cdot e^{2 t} \xi+e^{2 t} \eta
$$

"plugging this into the OG eg $x^{\prime}=A x$:

$$
\begin{aligned}
& \left.x^{\prime}=e^{2 t} \cdot \xi+2 t e^{2 t} \cdot \xi+2 e^{2 t} \eta=e^{2 t}(\xi+2 \eta)+2 t e^{2 t} \cdot\right\} \\
& \left.e^{2 t}(\xi+2 \eta)+2 t e^{2 t} \cdot\right\}=A\left(t \cdot e^{2 t} \xi+e^{2 t} \eta\right)
\end{aligned}
$$

$$
\left.\begin{array}{l}
\xi+2 \cdot \eta=A \cdot \eta \\
2 \xi=A \cdot \xi
\end{array}\right\} \begin{aligned}
& \left(A-2 \cdot J_{n}\right) \eta=\xi \\
& \left(A-2 \cdot J_{n}\right) \cdot \xi=0
\end{aligned}
$$

already T since
$\rightarrow \xi$ is an eigenvector es/ eigenvalue 2.
$4 \operatorname{span}\{\varepsilon, \eta\}$ is a plane.
even you apply A to ξ (or η), you'll stay within that plane
$\rightarrow \eta \rightarrow$ generalized eigenvector associated to eigenvalue λ. η is any vector satisfying $\left(A-\lambda \cdot \sigma_{n}\right)^{m} \cdot \eta=\xi$

4 solving for $\eta:\left(A-2 \cdot \sigma_{n}\right) \cdot \eta=\xi$

$$
\begin{aligned}
& \left(\left[\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right]-\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\right) \cdot \eta=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1 & -n \\
1 & n
\end{array}\right] \cdot \eta=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \quad\left[\begin{array}{cc|c}
-n & -n & -1 \\
1 & n & 1
\end{array}\right]+\left[\begin{array}{ll|l}
1 & n & 1 \\
0 & 0 & 0
\end{array}\right]+\vec{\eta}=\left[\begin{array}{c}
n-\eta_{2} \\
\eta_{2}
\end{array}\right]}
\end{aligned}
$$

$\vec{\eta}=\left[\begin{array}{l}n \\ 0\end{array}\right]+\eta_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] \quad$ notice hoe v this is ξ, so eve can get rid of it (won't contribute anything new in our $\vec{x}^{2}(t)$)

$$
\vec{\eta}=\left[\begin{array}{l}
n \\
0
\end{array}\right]
$$

thus:

$$
\vec{x}^{2}(t)=t \cdot e^{2 t} \xi+e^{2 t} \eta=t \cdot e^{2 t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+e^{2 t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

4 general solution: $\quad \vec{x}(t)=c_{1} \cdot \vec{x}^{n}(t)+c_{2} \cdot \vec{x}^{2}(t)$

$$
\vec{x}(t)=c_{1} \cdot e^{2 t} \cdot\left[\begin{array}{c}
-1 \\
n
\end{array}\right]+c_{2}\left(t e^{2 t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+e^{2 t}\left[\begin{array}{l}
n \\
0
\end{array}\right]\right)
$$

4 fundamental matrix:

$$
\bar{\Phi}(t)=\left[\begin{array}{cc}
-e^{2 t} & -t e^{2 t}+e^{2 t} \\
e^{2 t} & t e^{2 t}
\end{array}\right]=e^{2 t}\left[\begin{array}{cc}
-n & 1-t \\
1 & t
\end{array}\right]
$$

\checkmark boundary condition: $\Phi(0)=I_{n}$:

$$
\left[\begin{array}{cc|cc}
-n & 1 & 1 & 0 \\
1 & 0 & 0 & n
\end{array}\right]+\left[\begin{array}{cc|cc}
n & -n & -1 & 0 \\
0 & n & n & n
\end{array}\right]+\left[\begin{array}{ll|ll}
1 & 0 & \left.\left.\begin{array}{ll}
0 & n \\
0 & n \\
n & n
\end{array}\right] \quad \begin{array}{lll}
C_{11}=0 & C_{12}=1 \\
C_{21}=n & C_{22}=n
\end{array}\right]
\end{array}\right.
$$

1) $\tilde{\vec{x}}^{1}(t)=C_{11} \cdot \vec{x}^{1}+C_{12} \cdot \vec{x}^{2}$:

$$
\tilde{\vec{x}}^{\prime}(t)=t \cdot e^{2 t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+e^{2+}\left[\begin{array}{l}
n \\
0
\end{array}\right]=e^{2 t}\left[\begin{array}{c}
1-t \\
t
\end{array}\right]
$$

2) $\tilde{\vec{x}}^{2}(t)=C_{2 n} \cdot \vec{x}^{1}+C_{22} \cdot \vec{x}^{2}$:

$$
\overrightarrow{\vec{x}}^{2}(t)=e^{2 t} \cdot\left[\begin{array}{c}
-1 \\
n
\end{array}\right]+t \cdot e^{2 t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+e^{2+}\left[\begin{array}{l}
n \\
0
\end{array}\right]=e^{2 t}\left[\begin{array}{c}
-t \\
1+t
\end{array}\right]
$$

4 particular solution: $\quad \Phi(t)=e^{2 t}\left[\begin{array}{cc}1-t & -t \\ t & 1+t\end{array}\right]$

- Change of coordinates fer homogeneous systems

4 to solve $\vec{x}=A \vec{x}$, we find a linear transformation $\vec{x}=T \vec{y}$ such that the system becomes diagonal.

$$
\vec{x}=T \vec{y}, \quad \vec{x}^{\prime}=T \vec{y}^{\prime}
$$

ω in newer \vec{y}-coordinate: $\vec{x}^{\prime}=A \vec{x}$ becomes $T \vec{y}^{\prime}=A T \vec{y}$
$T \vec{y}^{\prime}=A T \vec{y} \quad \Rightarrow \quad T^{-1} T \vec{y}^{\prime}=T^{-1} A T \vec{y} \quad$ thus:
$\vec{y}^{\prime}=T^{-1} A T \cdot \vec{y} \rightarrow$ eve evant $T^{-1} A T$ to be diagonal:

$$
D=T^{-1} A T \quad \Rightarrow \quad \vec{y}=D \cdot \vec{y} \text {, where } D=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

4 here, λ_{1} and λ_{2} are our OG eigenvalues of A. these eigenvalues correspond to eigenvectors \vec{e}_{1} and \vec{e}_{2} (elementary vectors), since the matrix is D.
\rightarrow solution in the \vec{y}-coordinate system:

$$
\vec{y}(t)=c_{1} \cdot e^{\lambda_{1} t}\left[\begin{array}{l}
n \\
0
\end{array}\right]+c_{2} \cdot e^{\lambda_{2} t}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

\rightarrow bach in the \vec{x}-coordinate system:
\rightarrow since $\vec{x}=T \cdot \vec{y}$:

$$
\vec{x}(t)=C_{n} \cdot e^{\lambda_{11} t} \underbrace{\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right]}_{T} \cdot\left[\begin{array}{l}
n \\
0
\end{array}\right]+C_{2} \cdot e^{\lambda_{2} t} \underbrace{\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right]}_{T} \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

$$
\vec{x}(t)=c_{n} \cdot e^{\lambda_{1} t}\left[\begin{array}{l}
T_{11} \\
T_{21}
\end{array}\right]+c_{2} \cdot e^{\lambda_{2} t}\left[\begin{array}{l}
T_{12} \\
T_{22}
\end{array}\right]
$$

$\downarrow \quad \downarrow$
$\xi^{2} \rightarrow$ these are eigenvectors of A
${ }^{4}$ thus, the \vec{x}-coordinate system has the same eigenvalues, λ_{1} and λ_{2} as in \vec{y}, but different eigenvectors.

4 ewhen making T, malar it:

$$
T=\left[\begin{array}{ll}
\xi^{\wedge} & \xi^{2}
\end{array}\right]
$$

- the phase plane ~ linear systems
\rightarrow motivation: qualitative inspection of systems (since many DFQs can't be solved analytically)
4 questions about the stability of a solution.
4 solution of a system $\vec{x}^{\prime}=A \vec{x}, \quad \vec{x}=\boldsymbol{\varnothing}(t)$, is a vector function that can be seen as a parametric curve. which represents the trajectory of a moving particle (whose velocity is \vec{x}^{\prime})

4 the $x_{1} x_{2}$-plane is called the phase plane, and the corresponding set of trajectories is called a phase portrait.

L given the system $\vec{x}=A \vec{x}$, you get a unique trajectory on the graph, given different initial conditions (which give you C's)
for example: if, for $\vec{x}^{\prime}=A \vec{x}$, the initial condition was $\vec{x}(0)=\langle 0,0\rangle$ (you stent at the origin), then: for any A, you'd just stay at the origin. why? \because the \vec{x} ' tells you how you move, and any $A \cdot\langle 0,0\rangle=\langle 0,0\rangle$ (the origin)
4 thus: $\vec{x}=\langle 0,0\rangle$ is a fixed / critical point $\forall+$ and $\forall A$.
4 in general: points \vec{x} where $\vec{x}^{\prime}=0$ are called critical pts. and they correspond to equilibrium / constant solutions.

wealth $\rightarrow \vec{x}$;
earning $\rightarrow \vec{x}$
$\vec{x}^{\prime}>0 \rightarrow$ equning ; $\vec{x}^{\prime}<0 \rightarrow$ spending

$$
\vec{x}=A \vec{x}:
$$

$$
\vec{x}^{\prime}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \begin{aligned}
& x_{1}^{\prime}=a x_{1}+b x_{2} \rightarrow \text { person i's spending/earning } \\
& x_{2}^{\prime}=c x_{1}+d x_{2} \rightarrow \text { person 2's spending/earning }
\end{aligned}
$$

4 if $a>0$: "if VIm rich, $^{\prime}$ get richer; if TIm poor, J get poorer"

4 if $a<0$: "if $f^{\prime} m$ rich, I spend more; balancing (B) if I'm poor, g spend less." feedback loop'

4 if $b>0$: "if the other person is evealthy, I get wealthier; if the other person is poor, of get poorer.

4 if $b<0$: "if the other person is wealthy, of get poorer: if the other person is poor, I get ewealthier.

- so far, our matrices every only constant (not changing)
"now, we consider a matrix st. it "depends" on its state
- autonomous systems

4 the system doesn't depend on time (t is the independent var)

$$
\frac{d x_{1}}{d t}=F\left(x_{1}, x_{2}\right) \quad \frac{d x_{2}}{d t}=G\left(x_{1}, x_{2}\right)
$$

4 this time, A is not constant:

$$
\vec{x}^{\prime}=\left[\begin{array}{l}
F\left(x_{1}, x_{2}\right) \\
G\left(x_{1}, x_{2}\right)
\end{array}\right] \cdot \vec{x} \quad \text { or } f(\vec{x})=\left[\begin{array}{l}
F(\vec{x}) \\
G(\vec{x})
\end{array}\right] \quad f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

4 critical point: any point $\left(x_{1}, x_{2}\right)$ sit. $f(\vec{x})=\overrightarrow{0}$; i.e. $F\left(x_{1}, x_{2}\right)=0$ and $G\left(x_{1}, x_{2}\right)=0$

4 critical points \vec{x}^{0} correspond to constant/ equilibrium solutions of the system. we talked about the stability / instability/ asyenptotic stability of these \vec{x}^{0} s.
(1.) $F\left(x_{1}, x_{2}\right)=3 x_{1}-2 x_{2} ; G\left(x_{1}, x_{2}\right)=-x_{1}$

4 this is what eve've been doing so far: this is a linear, homogeneous system eu/ constant coefficients:

$$
\vec{x}^{\prime}=\left[\begin{array}{cc}
3 & -2 \\
-1 & 0
\end{array}\right] \vec{x}
$$

\rightarrow critical points:

4 since A is an invertible matrix $(\operatorname{det}(A) \neq 0) \rightarrow$ it evill only have one critical point \rightarrow the origin $(\because \operatorname{mank}(A)=2)$
$4 \vec{x}=\overrightarrow{0}$ is alevays a critical point
4 type of critical point:

$$
A=\left[\begin{array}{cc}
3 & -2 \\
-1 & 0
\end{array}\right] \quad \operatorname{det}\left(A-\lambda \cdot g_{n}\right)=(3-\lambda)(-\lambda)-2=\lambda^{2}-3 \lambda-2, s 0: ~\left(\begin{array}{c}
\\
\\
\lambda=\frac{3 \pm \sqrt{9+8}}{2}=\frac{3 \pm \sqrt{n 7}}{2} \quad \lambda_{1}>0, \lambda_{2}<0
\end{array}\right.
$$

4 and then you find the eigenvectors... twins out there's tevo lin. independent
\rightarrow Since the eigenvalues are of the opposite sign and \mathbb{R}, the origin is a saddle point \rightarrow unstable
(2.)

$$
\begin{aligned}
& F\left(x_{1}, x_{2}\right)=-\left(x_{1}-x_{2}\right)\left(1-x_{1}-x_{2}\right) \\
& G\left(x_{1}, x_{2}\right)=x_{1}\left(2+x_{2}\right)
\end{aligned}
$$

4 this is no longer a linear system
\rightarrow critical points: find all the points $\left(x_{1}, x_{2}\right)$ s.t. $f(\vec{x})=\overrightarrow{0}$:

$$
\left.\begin{array}{l}
-\left(x_{1}-x_{2}\right)\left(1-x_{1}-x_{2}\right)=0 \\
x_{1}\left(2+x_{2}\right)=0
\end{array}\right\} \quad \begin{array}{lll}
x_{1}=x_{2} & \text { or } & x_{1}+x_{2}=1 \\
x_{1}=0 & \text { or } & x_{2}=-2
\end{array}
$$

4 critical points:

1) $(0,0) \rightarrow$ saddle
2) $(0,1) \rightarrow$ spiral
3) $(-2,-2) \rightarrow$ node
4) $(3,-2) \rightarrow$ node

4 the blue and the green must intersect $(F(\vec{x})=0$ \& $G(\vec{x})=0)$
\rightarrow classifying critical points:

$$
\begin{array}{ll}
F\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{1}-x_{2}^{2}+x_{2} \\
G\left(x_{1}, x_{2}\right)=2 x_{1}+x_{1} x_{2}
\end{array} \quad \mathcal{J}=\left[\begin{array}{ll}
\frac{\partial F}{\partial x_{1}} & \frac{\partial F}{\partial x_{2}} \\
\frac{\partial G}{\partial x_{1}} & \frac{\partial G}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
2 x_{1}-1 & -2 x_{2}+1 \\
x_{2}+2 & x_{1}
\end{array}\right]
$$

1) $\vec{x}^{0}=(0,0)$; near \vec{x}^{0} : $\overrightarrow{\vec{x}}=\left[\begin{array}{rr}-1 & 1 \\ 2 & 0\end{array}\right] \vec{x} \quad \begin{array}{ll}p=-1 & \lambda_{1}=1 \\ q=-2 & \lambda_{2}=-2\end{array}$ $(0,0)$ is a saddle point (unstable)
2) $\vec{x}^{0}=(0,1)$; near \vec{x}^{0} : $\vec{x}^{\prime}=\left[\begin{array}{cc}-1 & -1 \\ 3 & 0\end{array}\right] \vec{x} \quad \begin{array}{ll}p=-1 & \Delta=p^{2}-4 q \\ & q=3\end{array}$ $(0,1)$ is a spinal point, asymptotically stable
3) $\vec{x}^{0}=(-2,-2)$; near $\vec{x}^{0}: \vec{x}=\left[\begin{array}{cc}-5 & 5 \\ 0 & -2\end{array}\right] \vec{x} \quad \begin{array}{ll}p=-7 & \Delta=p^{2}-4 q \\ q=10 & \Delta=39\end{array}$ $(-2,-2)$ is a node, the asymptotically stable one
4) $\vec{x}^{0}=(3,-2)$; near \vec{x}^{0} : $\quad \vec{x}=\left[\begin{array}{ll}5 & 5 \\ 0 & 3\end{array}\right] \vec{x} \quad \begin{array}{ll}p=8 & \Delta=p^{2}-4 q \\ & q=15 \\ \Delta & =4\end{array}$ $(3,-2)$ is a node, the unstable one
5) case: $g: \mathbb{R} \rightarrow \mathbb{R}$:

4 linear approximation of g near $a \in \mathbb{R}$:

$$
g^{\prime}(a) \approx \frac{g(x)-g(a)}{x-a} \Rightarrow g(x) \approx \underbrace{g(a)+g^{\prime}(a)(x-a)}_{\text {linear }}
$$

ω if $g(a)=0 \Rightarrow g(x) \approx g^{\prime}(a)(x-a)$
\rightarrow the Call. quote: if you zoom in on a cere, you see a line, and the slope of that line is its derivative

4 case 2): $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ (vectors to numbers)
4 linear approximation of F near $(a, b) \in \mathbb{R}^{2}$:

$$
F\left(x_{1}, x_{2}\right) \approx F(a, b)+\frac{\partial F}{\partial x_{1}}(a, b)\left(x_{1}-a\right)+\frac{\partial F}{\partial x_{2}}(a, b)\left(x_{2}-b\right)
$$

4 again, the RHS is linear
3) case: $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \quad$ (vector to vector) $f(\vec{x})=\left[\begin{array}{l}F(\vec{x}) \\ G(\vec{x})\end{array}\right]$

4 linear approximation of $\&$ near $(a, b) \in \mathbb{R}^{2}$; for $f(a, b)=\overrightarrow{0}$:

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)=\left[\begin{array}{l}
F(\vec{x}) \\
G(\vec{x})
\end{array}\right] & \approx\left[\begin{array}{ll}
\frac{\partial F}{\partial x_{1}}(a, b)\left(x_{1}-a\right)+\frac{\partial F}{\partial x_{2}}(a, b)\left(x_{2}-b\right) \\
\frac{\partial G}{\partial x_{1}}(a, b)\left(x_{1}-a\right)+\frac{\partial G}{\partial x_{2}}(a, b)\left(x_{2}-b\right)
\end{array}\right] \\
& \approx\left[\begin{array}{ll}
\frac{\partial F}{\partial x_{1}}(a, b) & \frac{\partial F}{\partial x_{2}}(a, b) \\
\frac{\partial G}{\partial x_{1}}(a, b) & \frac{\partial G}{\partial x_{2}}(a, b)
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1}-a \\
x_{2}-b
\end{array}\right]
\end{aligned}
$$

(1.) consider an autonomous system: $f(\vec{x})=\frac{d \vec{x}}{d t}$
\rightarrow for (a, b) being a critical point (i.e. $f(a, b)=\overrightarrow{0})$
\checkmark then, near a critical point (a, b), the system is approximately equal to:

$$
\vec{x}^{\prime}=\underbrace{\left[\begin{array}{ll}
\frac{\partial F}{\partial x_{1}}(a, b) & \frac{\partial F}{\partial x_{2}}(a, b) \\
\frac{\partial G}{\partial x_{1}}(a, b) & \frac{\partial G}{\partial x_{2}}(a, b)
\end{array}\right]}_{\text {Jacobian }} \cdot\left[\begin{array}{l}
x_{1}-a \\
x_{2}-b
\end{array}\right] \quad * \text { near }(a, b)
$$

(2.) linear approximation near critical points of the pendulum:

$$
\begin{aligned}
& \frac{d}{d t}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
y \\
-\gamma y-\omega^{2} \sin (x)
\end{array}\right] \quad \begin{array}{l}
F(x, y)=y \\
G(x, y)=-\gamma y-\omega^{2} \sin (x) \\
f=\left[\begin{array}{cc}
\frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \\
\frac{\partial G}{\partial x} & \frac{\partial G}{\partial y}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\omega^{2} \cos (x) & -\sigma
\end{array}\right]
\end{array} \$.
\end{aligned}
$$

4 then, near the critecal point $(a, b)=(\pi, 0)$, approx:

$$
\frac{d}{d t}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\omega^{2} \cos (x) & -0
\end{array}\right] \cdot\left[\begin{array}{l}
x-\pi \\
y-0
\end{array}\right]
$$

\rightarrow Change coordinate system:

$$
\left[\begin{array}{l}
\tilde{x} \\
\tilde{y}
\end{array}\right]=\left[\begin{array}{c}
x-\pi \\
y-0
\end{array}\right] \quad \frac{d}{d t}\left[\begin{array}{c}
\tilde{x} \\
\tilde{y}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
e^{2} & -\gamma
\end{array}\right] \cdot\left[\begin{array}{c}
\tilde{x} \\
\tilde{y}
\end{array}\right] \rightarrow \begin{aligned}
& \text { new system } \\
& \text { of ODE }
\end{aligned}
$$

$4 \operatorname{near}\left[\begin{array}{l}\pi \\ 0\end{array}\right] \longmapsto \quad A=\left[\begin{array}{cc}0 & 1 \\ e \omega^{2} & -\gamma\end{array}\right] \quad \begin{aligned} & p=\operatorname{tr}(A)=-\gamma \\ & q=\operatorname{det}(A)=-\omega^{2}\end{aligned}$
4 since $p<0$ and $g<0$, ow critical point is a saddle point which is unstable

- we evanna find trajectories independent of time ("un-parameteriz")
(1.) autonomous system:

$$
\begin{aligned}
& d x / d t=4-2 y \\
& d y / d t=12-3 x^{2}
\end{aligned}
$$

4 eliminate time: divide the second eq. by the first eq.

$$
\begin{aligned}
& \frac{d y / d t}{d x / d t}=\frac{d y}{d x}=\frac{12-3 x^{2}}{4-2 y} \rightarrow \text { this is separable: } \\
& 4-2 y d y=12-3 x^{2} d x \quad \Rightarrow \int 4-2 y d y=\int 12-3 x^{2} d x
\end{aligned}
$$

$4 y-y^{2}=12 x-x^{3}+c \longleftarrow$ there's no time involved
4 general solution: $4 y-y^{2}-12 x+x^{3}=C$ (just the trajectory)
\qquad

