Grading

Problems will be graded for accuracy and clarity of both mathematics and writing.

Problems

1. (a) Find a differential equation with the general solution

$$
y(t)=c_{1} e^{-t}+c_{2} e^{2 t} .
$$

(b) Provide the initial condition that leads to the solution with $c_{1}=1$ and $c_{2}=5$.
2. Consider a spring-mass system governed by the equation

$$
x^{\prime \prime}=-6 x^{\prime}-13 x
$$

with initial state $x(0)=0$ and $x^{\prime}(0)=4$.
(a) Find an expression for the motion of the spring-mass as a function of time t.
(c) Describe the long-term behavior of mass-spring as $t \rightarrow \infty$.
(b) At what time $0 \leq t<\infty$ is the value of $x(t)$ maximum? What is this maximum value?
3. Find the general solution to

$$
\begin{equation*}
y^{\prime \prime}+3 y^{\prime}-10 y=5 t^{2} \tag{1}
\end{equation*}
$$

4. Find the general solution to

$$
\begin{equation*}
y^{\prime \prime}-4 y^{\prime}+21 y=0 \tag{2}
\end{equation*}
$$

Solutions

Q1

$$
y(t)=e^{-4 t}+5 e^{-2 t}
$$

roots of charactristic eq:

$$
\begin{aligned}
r_{1}=-4, r_{2}=-2 & \Rightarrow(r+4)(r+2)=0 \\
& \Rightarrow r^{2}+6 r+8=0 \\
& \Rightarrow y^{\prime \prime}+6 y^{\prime}+8 y=0
\end{aligned}
$$

initial condition:

$$
y(0)=6, y^{\prime}(0)=-14
$$

Q2

$$
\begin{aligned}
& x^{\prime \prime}+4 x^{\prime}+5 x=0 \\
& x(0)=0, x^{\prime}(0)=1
\end{aligned}
$$

char. eq.

$$
\begin{aligned}
& r^{2}+4 r+5=0 \\
& \Rightarrow r=\frac{-4 \pm \sqrt{-4}}{2} \\
& \Rightarrow r_{1}=-2-i, r_{2}=-2+i \\
& x(t)=e^{-2 t}\left(c_{1} e^{-i t}+c_{2} e^{i t}\right)
\end{aligned}
$$

real form:

$$
x(t)=e^{-2 t}\left(c_{1} \cos t+c_{2} \sin t\right)
$$

given boundary conditions $c_{1}=0$ and $c_{2}=1$

$$
\Rightarrow x(t)=e^{-2 t} \sin (t)
$$

(b) Largest distance to the origin. We use the derivative test.

$$
x^{\prime}(t)=-2 e^{-2 t} \sin (t)+e^{-2 t} \cos (t)
$$

if $x^{\prime}\left(t_{1}\right)=0$ then $2 \sin \left(t_{1}\right)=\cos \left(t_{1}\right)$ and therefore $\tan \left(t_{1}\right)=1 / 2$. Smallest such value is $t_{1}=0.46$, where the second derivative is negative.
(c) The spring tends to an equilibrium rest stale near $x=0$.

Q3

$$
y^{\prime \prime}+y=e^{2 t}
$$

we use the method of undetermined coefs. complementary solution:

$$
\begin{aligned}
& y^{\prime \prime}+y=0 \\
\Rightarrow & r^{2}+1=0 \rightarrow r_{1}=i, r_{2}=-i \\
\Rightarrow & y_{1}(t)=e^{i t}, y_{2}(t)=e^{-i t}
\end{aligned}
$$

Particular Solution.

$$
y^{\prime \prime}+y=e^{2 t}
$$

Let $Y(t)=A e^{2 t}$,

$$
\begin{aligned}
& Y^{\prime}(t)=2 A e^{2 t} \\
& Y^{\prime \prime}(t)=4 A e^{2 t} \\
\Rightarrow & \left(4 A e^{2 t}\right)+A e^{2 A}=e^{2 t} \\
\Rightarrow & 5 A=1 \Rightarrow A=\frac{1}{5} \\
\Rightarrow & Y(t)=\frac{1}{5} e^{2 t}
\end{aligned}
$$

General solution:

$$
y(t)=c_{1} e^{i t}+c_{2} e^{-i t}+\frac{1}{5} e^{2 t}
$$

real form:

$$
y(t)=c_{1} \cos (t)+c_{2} \sin (t)+\frac{1}{5} e^{z t}
$$

Q4

$$
9 y^{\prime \prime}+6 y^{\prime}+y=0
$$

char. eq.

$$
\begin{aligned}
& 9 r^{2}+6 r+1=0 \\
& \Rightarrow r=\frac{-6 \pm \sqrt{0}}{18} \\
& \Rightarrow r_{1}=-\frac{1}{3}, r_{2}=-\frac{1}{3} \\
& (\text { repeated root }) \\
& y_{1}(t)=e^{-\frac{t}{3}} \\
& y_{2}(t)=t e^{-t / 3}
\end{aligned}
$$

general solution: $y(t)=c_{1} e^{-t / 3}+c_{2} t e^{-t / 3}$

Q5

$$
\begin{aligned}
& x^{\prime}=\left[\begin{array}{cc}
1 & i \\
-i & 1
\end{array}\right] x \\
& x(0)=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
\end{aligned}
$$

Eigenvalues:

$$
\begin{aligned}
& \left|\begin{array}{cc}
1-\lambda & i \\
-i & 1-\lambda
\end{array}\right|=0 \\
& \Rightarrow(1-\lambda)^{2}+i^{2}=0 \\
& \Rightarrow \lambda^{2}-2 \lambda=0 \\
& \Rightarrow \lambda_{1}=0, \lambda_{2}=2
\end{aligned}
$$

Eigenvector of λ_{1} :

$$
\begin{gathered}
{\left[\begin{array}{cc}
1 & i \\
-i & 1
\end{array}\right]\left[\begin{array}{l}
\xi_{1} \\
\xi_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
\xi^{(1)}=\left[\begin{array}{l}
i \\
-1
\end{array}\right]
\end{gathered}
$$

Eigenvector of λ_{2} :

$$
\begin{gathered}
{\left[\begin{array}{cc}
-1 & i \\
-i & -1
\end{array}\right]\left[\begin{array}{l}
\xi_{1} \\
\xi_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
\xi^{(2)}=\left[\begin{array}{l}
i \\
1
\end{array}\right]
\end{gathered}
$$

general solution:

$$
x(t)=c_{1}\left[\begin{array}{l}
i \\
-1
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

using the boundary condition

$$
x(0)=c_{1}\left[\begin{array}{l}
i \\
-1
\end{array}\right]+c_{2}\left[\begin{array}{l}
i \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
$$

we can take $c_{1}=c_{2}=-i$ and

$$
x(t)=\left[\begin{array}{l}
e^{2 t}+1 \\
-i e^{2 t}+i
\end{array}\right]
$$

