Stability with Maximal Accuracy for a Hyperbolic Equation Gilbert Strang, MIT

We describe a long-ago result for explicit difference methods of maximum accuracy for the hyperbolic advection equation $u_t = u_x$. Lax and Wendroff compute each value $U(t + \Delta t, n\Delta x)$ from three previous values $U(t, (n+k)\Delta x), k = -1, 0, 1$. This has 2nd order accuracy and it is stable for $\Delta t \leq \Delta x$. The natural extension uses 2N + 1 previous values $k = -N, \ldots, N$ and has order of accuracy 2N.

Theorem : This extension is also stable for $\Delta t \leq \Delta x$ (but not all the way to the Courant-Friedrichs-Lewy limit $\Delta t \leq N \Delta x$).

Similarly, a 1st-order method uses U(t, x) and $U(t, x + \Delta x)$ to compute $U(t + \Delta t, x)$. It is stable for $\Delta t \leq \Delta x$ (Courant-Friedrichs-Lewy condition). The natural "lopsided extension" with $k = 1 - N, \ldots, N$ uses 2N values of U at time t to compute each U at $t + \Delta t$. Its order of accuracy is 2N - 1 and it is stable but only in the same range $\Delta t \leq \Delta x$. Both results extend to symmetric hyperbolic systems $u_t = Su_x$ (with symmetric matrix S).

For equally spaced interpolation U(x) of $\exp(ix)$ at 2N + 1 or 2N points, these results mean stability $|U(x)| \leq 1$ in the center interval (but not further).