On the real linear algebra of vectors of zeros and ones

Louis J. Billera
Cornell University

DMD, Dartmouth
May 6, 2017
1 Prolog: Balanced and Unbalanced Collections

2 The matroid of 0-1 vectors
 - Unbalanced collections and the all-subset arrangement
 - Determinants of 0-1 matrices and Hadamard matrices
 - The characteristic polynomial and number of regions
 - Weak maps and bounds on the number of regions

3 Computing the characteristic polynomial
 - Finite field method and counting zeros mod p
 - Toward the broken circuit complex of M_n

4 Some Questions and References
For $S \subseteq [n] = \{1, 2, \ldots, n\}$, let $e_S := \sum_{i \in S} e_i$, where $e_i = (0, \ldots, 1, \ldots, 0)$ is the i^{th} unit vector in \mathbb{R}^n.
Balanced Collections

For $S \subseteq [n] = \{1, 2, \ldots, n\}$, let $e_S := \sum_{i \in S} e_i$, where $e_i = (0, \ldots, 1, \ldots, 0)$ is the i^{th} unit vector in \mathbb{R}^n.

A collection $\mathcal{F} \subseteq 2^{[n]}$ is said to be balanced if

$$\delta \cdot e_{[n]} \in \text{conv}\{e_S \mid S \in \mathcal{F}\}$$

for some $0 < \delta \leq 1$.

Equivalently, \mathcal{F} is balanced if the convex hull of the vertices of the cube $[0, 1]^n$ corresponding to the sets in \mathcal{F} meets the diagonal.
Balanced Collections

For $S \subseteq [n] = \{1, 2, \ldots, n\}$, let $e_S := \sum_{i \in S} e_i$, where $e_i = (0, \ldots, 1, \ldots, 0)$ is the i^{th} unit vector in \mathbb{R}^n.

A collection $\mathcal{F} \subseteq 2^{[n]}$ is said to be **balanced** if

$$\delta \cdot e_{[n]} \in \text{conv}\{e_S \mid S \in \mathcal{F}\}$$

for some $0 < \delta \leq 1$.

Equivalently, \mathcal{F} is balanced if the convex hull of the vertices of the cube $[0, 1]^n$ corresponding to the sets in \mathcal{F} meets the diagonal.
Balanced Collections

For $S \subseteq [n] = \{1, 2, \ldots, n\}$, let $e_S := \sum_{i \in S} e_i$, where $e_i = (0, \ldots, 1, \ldots, 0)$ is the i^{th} unit vector in \mathbb{R}^n.

A collection $\mathcal{F} \subseteq 2^{[n]}$ is said to be balanced if

$$\delta \cdot e_{[n]} \in \text{conv}\{e_S \mid S \in \mathcal{F}\}$$

for some $0 < \delta \leq 1$.

Equivalently, \mathcal{F} is balanced if the convex hull of the vertices of the cube $[0, 1]^n$ corresponding to the sets in \mathcal{F} meets the diagonal.

Example:

1) \mathcal{F} any partition of $[n]$
For $S \subseteq [n] = \{1, 2, \ldots, n\}$, let $e_S := \sum_{i \in S} e_i$, where $e_i = (0, \ldots, 1, \ldots, 0)$ is the i^{th} unit vector in \mathbb{R}^n.

A collection $\mathcal{F} \subseteq 2^{[n]}$ is said to be balanced if

$$\delta \cdot e_{[n]} \in \text{conv}\{e_S \mid S \in \mathcal{F}\}$$

for some $0 < \delta \leq 1$.

Equivalently, \mathcal{F} is balanced if the convex hull of the vertices of the cube $[0, 1]^n$ corresponding to the sets in \mathcal{F} meets the diagonal.

Example:
1) \mathcal{F} any partition of $[n]$
2) $\mathcal{F} = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}$ in $\{1, 2, 3\}$
For $S \subseteq [n] = \{1, 2, \ldots, n\}$, let $e_S := \sum_{i \in S} e_i$, where $e_i = (0, \ldots, 1, \ldots, 0)$ is the i^{th} unit vector in \mathbb{R}^n.

A collection $\mathcal{F} \subseteq 2^{[n]}$ is said to be balanced if

$$\delta \cdot e_{[n]} \in \text{conv}\{e_S \mid S \in \mathcal{F}\}$$

for some $0 < \delta \leq 1$.

Equivalently, \mathcal{F} is balanced if the convex hull of the vertices of the cube $[0, 1]^n$ corresponding to the sets in \mathcal{F} meets the diagonal.

Example:
1) \mathcal{F} any partition of $[n]$
2) $\mathcal{F} = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}$ in $\{1, 2, 3\}$
3) $\binom{[n]}{k}$ in $[n]$
For $S \subseteq [n] = \{1, 2, \ldots, n\}$, let $e_S := \sum_{i \in S} e_i$, where $e_i = (0, \ldots, 1, \ldots, 0)$ is the i^{th} unit vector in \mathbb{R}^n.

A collection $\mathcal{F} \subseteq 2^{[n]}$ is said to be balanced if

$$\delta \cdot e_{[n]} \in \text{conv}\{e_S \mid S \in \mathcal{F}\}$$

for some $0 < \delta \leq 1$.

Equivalently, \mathcal{F} is balanced if the convex hull of the vertices of the cube $[0, 1]^n$ corresponding to the sets in \mathcal{F} meets the diagonal.

Example:
1) \mathcal{F} any partition of $[n]$
2) $\mathcal{F} = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}$ in $\{1, 2, 3\}$
3) $\binom{[n]}{k}$ in $[n]$

A collection is said to be unbalanced if it is not balanced.
Examples: balanced/unbalanced

\[
\{\{1, 2\}, \{1, 3\}, \{2, 3\}\} \text{ is balanced}
\]

\[
\{\{1\}, \{2\}, \{1, 2\}\} \text{ is unbalanced}
\]
Unbalanced collections form an order ideal in the Boolean lattice 2^{2^n}, under the inclusion order on collections.
Unbalanced collections form an order ideal in the Boolean lattice 2^{2^n}, under the inclusion order on collections. (Balanced collections comprise the complementary order filter in 2^{2^n}.)
Unbalanced collections form an order ideal in the Boolean lattice 2^{2^n}, under the inclusion order on collections. (Balanced collections comprise the complementary order filter in 2^{2^n}.)

We are interested in unbalanced collections \mathcal{F} that are maximal in the inclusion order, the maximal unbalanced collections.
Unbalanced collections form an order ideal in the Boolean lattice $2^{[n]}$, under the inclusion order on collections. (Balanced collections comprise the complementary order filter in $2^{[n]}$.)

We are interested in unbalanced collections \mathcal{F} that are maximal in the inclusion order, the maximal unbalanced collections (equiv. minimal balanced collections).
Unbalanced collections form an order ideal in the Boolean lattice $2^{[n]}$, under the inclusion order on collections. (Balanced collections comprise the complementary order filter in $2^{[n]}$.)

We are interested in unbalanced collections \mathcal{F} that are maximal in the inclusion order, the maximal unbalanced collections (equiv. minimal balanced collections).

Basic linear alternative theorem: \mathcal{F} is unbalanced $\iff \exists w \in \mathbb{R}^n$, with $\sum_{i \in [n]} w_i = 0$ and $\sum_{i \in S} w_i > 0$ for $S \in \mathcal{F}$.
Unbalanced collections form an order ideal in the Boolean lattice 2^{2^n}, under the inclusion order on collections. (Balanced collections comprise the complementary order filter in 2^{2^n}.)

We are interested in unbalanced collections \mathcal{F} that are maximal in the inclusion order, the maximal unbalanced collections (equiv. minimal balanced collections).

Basic linear alternative theorem: \mathcal{F} is unbalanced $\iff \exists w \in \mathbb{R}^n$, with $\sum_{i \in [n]} w_i = 0$ and $\sum_{i \in S} w_i > 0$ for $S \in \mathcal{F}$.

Thus maximal unbalanced collections are the same as Björner’s PSS (positive set sum) systems.
Unbalanced collections form an order ideal in the Boolean lattice \(2^{[n]}\), under the inclusion order on collections. (Balanced collections comprise the complementary order filter in \(2^{[n]}\).)

We are interested in unbalanced collections \(\mathcal{F}\) that are maximal in the inclusion order, the maximal unbalanced collections (equiv. minimal balanced collections).

Basic linear alternative theorem: \(\mathcal{F}\) is unbalanced \(\iff\) \(\exists w \in \mathbb{R}^n\), with \(\sum_{i \in [n]} w_i = 0\) and \(\sum_{i \in S} w_i > 0\) for \(S \in \mathcal{F}\).

Thus maximal unbalanced collections are the same as Björner’s PSS (positive set sum) systems.

We are interested in enumerating these collections.
Why care about such collections?

Balanced collections were introduced more than 50 years ago by Lloyd Shapley in his study of economic equilibria. Of particular interest were minimal balanced collections, which determine the minimum linear description of cooperative games possessing a nonempty "core".

Counting maximal unbalanced collections originally arose in thermal field theory = quantum field theory + statistical mechanics. Max'l unbalanced collections ↔ "Generalized Retarded Functions". This number has been computed through n=9:

2 3 4 5 6 7 8 9
2 6 32 370 11,292 1,066,044 347,326,352 419,172,756,930
Why care about such collections?

Balanced collections were introduced more than 50 years ago by Lloyd Shapley in his study of economic equilibria.
Why care about such collections?

Balanced collections were introduced more than 50 years ago by **Lloyd Shapley** in his study of economic equilibria.

Of particular interest were **minimal balanced collections**, which determine the minimum linear description of cooperative games possessing a nonempty “core”.

Max'l unbalanced collections \(\leftrightarrow \) “Generalized Retarded Functions"
Why care about such collections?

Balanced collections were introduced more than 50 years ago by **Lloyd Shapley** in his study of economic equilibria.

Of particular interest were **minimal balanced collections**, which determine the minimum linear description of cooperative games possessing a nonempty “core”.

Counting **maximal unbalanced collections** originally arose in **thermal field theory**
Why care about such collections?

Balanced collections were introduced more than 50 years ago by Lloyd Shapley in his study of economic equilibria.

Of particular interest were minimal balanced collections, which determine the minimum linear description of cooperative games possessing a nonempty “core”.

Counting maximal unbalanced collections originally arose in thermal field theory = quantum field theory + statistical mechanics in mathematical physics.
Why care about such collections?

Balanced collections were introduced more than 50 years ago by Lloyd Shapley in his study of economic equilibria.

Of particular interest were minimal balanced collections, which determine the minimum linear description of cooperative games possessing a nonempty “core”.

Counting maximal unbalanced collections originally arose in thermal field theory = quantum field theory + statistical mechanics in mathematical physics.

Max’l unbalanced collections \leftrightarrow “Generalized Retarded Functions”
Why care about such collections?

Balanced collections were introduced more than 50 years ago by Lloyd Shapley in his study of economic equilibria.

Of particular interest were minimal balanced collections, which determine the minimum linear description of cooperative games possessing a nonempty “core”.

Counting maximal unbalanced collections originally arose in thermal field theory = quantum field theory + statistical mechanics in mathematical physics.

Max’l unbalanced collections ↔ “Generalized Retarded Functions”

This number has been computed through n=9:

<table>
<thead>
<tr>
<th>n</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>370</td>
</tr>
<tr>
<td>6</td>
<td>11,292</td>
</tr>
<tr>
<td>7</td>
<td>1,066,044</td>
</tr>
<tr>
<td>8</td>
<td>347,326,352</td>
</tr>
<tr>
<td>9</td>
<td>419,172,756,930</td>
</tr>
</tbody>
</table>
Why care about such collections?

Balanced collections were introduced more than 50 years ago by Lloyd Shapley in his study of economic equilibria.

Of particular interest were minimal balanced collections, which determine the minimum linear description of cooperative games possessing a nonempty “core”.

Counting maximal unbalanced collections originally arose in thermal field theory = quantum field theory + statistical mechanics in mathematical physics.

Max’l unbalanced collections ↔ “Generalized Retarded Functions”

This number has been computed through n=9:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>32</td>
<td>370</td>
<td>11,292</td>
<td>1,066,044</td>
<td>347,326,352</td>
<td>419,172,756,930</td>
</tr>
</tbody>
</table>
A few examples

For $n = 3$, the 6 maximal unbalanced collections are

\[\{\{1, 2\}, \{1, 3\}, \{1\}\}, \{\{1, 2\}, \{2, 3\}, \{2\}\}, \{\{1, 3\}, \{2, 3\}, \{3\}\} \]

\[\{\{2\}, \{3\}, \{2, 3\}\}, \{\{1\}, \{3\}, \{1, 3\}\}, \{\{1\}, \{2\}, \{1, 2\}\} \]
For $n = 3$, the 6 maximal unbalanced collections are

\[
\begin{align*}
\{\{1, 2\}, \{1, 3\}, \{1\}\}, \{\{1, 2\}, \{2, 3\}, \{2\}\}, \{\{1, 3\}, \{2, 3\}, \{3\}\} \\
\{\{2\}, \{3\}, \{2, 3\}\}, \{\{1\}, \{3\}, \{1, 3\}\}, \{\{1\}, \{2\}, \{1, 2\}\}
\end{align*}
\]
e.g., for weight vectors $w = (2, -1, -1)$ and $w = (-2, 1, 1)$.
A few examples

For $n = 3$, the 6 maximal unbalanced collections are

$$\left\{ \{1, 2\}, \{1, 3\}, \{1\} \right\}, \left\{ \{1, 2\}, \{2, 3\}, \{2\} \right\}, \left\{ \{1, 3\}, \{2, 3\}, \{3\} \right\}$$

$$\left\{ \{2\}, \{3\}, \{2, 3\} \right\}, \left\{ \{1\}, \{3\}, \{1, 3\} \right\}, \left\{ \{1\}, \{2\}, \{1, 2\} \right\}$$

e.g., for weight vectors $w = (2, -1, -1)$ and $w = (-2, 1, 1)$.

For $n = 4$, two of the 32 such collections are

$$\left\{ \{1\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\} \right\}$$

and

$$\left\{ \{1\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{2\} \right\}$$
A few examples

For $n = 3$, the 6 maximal unbalanced collections are

$$\begin{align*}
\{\{1, 2\}, \{1, 3\}, \{1\}\}, & \{\{1, 2\}, \{2, 3\}, \{2\}\}, & \{\{1, 3\}, \{2, 3\}, \{3\}\} \\
\{\{2\}, \{3\}, \{2, 3\}\}, & \{\{1\}, \{3\}, \{1, 3\}\}, & \{\{1\}, \{2\}, \{1, 2\}\}
\end{align*}$$

e.g., for weight vectors $w = (2, -1, -1)$ and $w = (-2, 1, 1)$.

For $n = 4$, two of the 32 such collections are

$$\begin{align*}
\{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}\}
\end{align*}$$

and

$$\begin{align*}
\{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{2\}\}
\end{align*}$$

for weight vectors $w = (3, -1, -1, -1)$ and $w = (3, 1, -2, -2)$.
Restricted all-subset arrangement in \mathbb{R}^n

Recall: $\mathcal{F} \subset 2^{[n]}$ is unbalanced \iff

$\exists w \in \mathbb{R}^n$, with $\sum_{i \in [n]} w_i = 0$ and $\sum_{i \in S} w_i > 0$ for $S \in \mathcal{F}$.
Recall: \(\mathcal{F} \subset 2^{[n]} \) is unbalanced \(\iff \)

\[\exists w \in \mathbb{R}^n, \text{ with } \sum_{i \in [n]} w_i = 0 \text{ and } \sum_{i \in S} w_i > 0 \text{ for } S \in \mathcal{F}. \]

This defines a hyperplane arrangement in \(\mathbb{R}^n \).
Restricted all-subset arrangement in \mathbb{R}^n

Recall: $\mathcal{F} \subset 2^{[n]}$ is unbalanced \iff \\
$\exists w \in \mathbb{R}^n$, with $\sum_{i \in [n]} w_i = 0$ and $\sum_{i \in S} w_i > 0$ for $S \in \mathcal{F}$.

This defines a hyperplane arrangement in \mathbb{R}^n, actually on the hyperplane $H_0 := \{x \in \mathbb{R}^n \mid \sum_{i \in [n]} x_i = 0\}$ (the space of all possible w’s),
Restricted all-subset arrangement in \mathbb{R}^n

Recall: $\mathcal{F} \subset 2^{[n]}$ is unbalanced \iff

$\exists w \in \mathbb{R}^n$, with $\sum_{i \in [n]} w_i = 0$ and $\sum_{i \in S} w_i > 0$ for $S \in \mathcal{F}$.

This defines a hyperplane arrangement in \mathbb{R}^n, actually on the hyperplane $H_0 := \{ x \in \mathbb{R}^n \mid \sum_{i \in [n]} x_i = 0 \}$ (the space of all possible w’s), called the restricted all subsets arrangement, with all the hyperplanes having normals $e_S, S \subset [n], S \neq \emptyset, [n]$.

Recall: $\mathcal{F} \subset 2^{[n]}$ is unbalanced \iff

$\exists w \in \mathbb{R}^n$, with $\sum_{i \in [n]} w_i = 0$ and $\sum_{i \in S} w_i > 0$ for $S \in \mathcal{F}$.

This defines a hyperplane arrangement in \mathbb{R}^n, actually on the hyperplane $H_0 := \{x \in \mathbb{R}^n \mid \sum_{i \in [n]} x_i = 0\}$ (the space of all possible w’s), called the \textit{restricted all subsets arrangement}, with all the hyperplanes having normals e_S, $S \subset [n], S \neq \emptyset, [n]$.

The \textbf{maximal (full-dimensional) regions} in this arrangement are in \textit{bijection} with the \textbf{maximal unbalanced collections} in $2^{[n]}$.
Restricted all-subset arrangement in \mathbb{R}^n

Recall: $\mathcal{F} \subset 2^{[n]}$ is unbalanced \iff
$\exists w \in \mathbb{R}^n$, with $\sum_{i \in [n]} w_i = 0$ and $\sum_{i \in S} w_i > 0$ for $S \in \mathcal{F}$.

This defines a hyperplane arrangement in \mathbb{R}^n, actually on the hyperplane $H_0 := \{ x \in \mathbb{R}^n \mid \sum_{i \in [n]} x_i = 0 \}$ (the space of all possible w’s), called the restricted all subsets arrangement, with all the hyperplanes having normals e_S, $S \subset [n]$, $S \neq \emptyset, [n]$.

The maximal (full-dimensional) regions in this arrangement are in bijection with the maximal unbalanced collections in $2^{[n]}$.

Restricted to H_0, the hyperplanes corresponding to S and $[n] \setminus S$ are the same, so there are $2^{n-1} - 1$ hyperplanes in this arrangement,
Recall: \(\mathcal{F} \subseteq 2^{[n]} \) is unbalanced \(\iff \exists w \in \mathbb{R}^n \text{ with } \sum_{i \in [n]} w_i = 0 \text{ and } \sum_{i \in S} w_i > 0 \text{ for } S \in \mathcal{F} \).

This defines a hyperplane arrangement in \(\mathbb{R}^n \), actually on the hyperplane \(H_0 := \{ x \in \mathbb{R}^n \mid \sum_{i \in [n]} x_i = 0 \} \) (the space of all possible \(w \)'s), called the restricted all subsets arrangement, with all the hyperplanes having normals \(e_S, S \subseteq [n], S \neq \emptyset, [n] \).

The maximal (full-dimensional) regions in this arrangement are in bijection with the maximal unbalanced collections in \(2^{[n]} \).

Restricted to \(H_0 \), the hyperplanes corresponding to \(S \) and \([n] \setminus S \) are the same, so there are \(2^{n-1} - 1 \) hyperplanes in this arrangement, and so \(2^{n-1} - 1 \) sets in any maximal unbalanced collection.
All-subset arrangement in \mathbb{R}^{n-1}

Combinatorially equivalent to the restricted all-subset arrangement in \mathbb{R}^n is the all-subset arrangement \mathcal{A}_{n-1} in \mathbb{R}^{n-1}, consisting of all hyperplanes with normals $e_S, S \subseteq [n-1], S \neq \emptyset$. Example: $n = 3$. The planes of \mathcal{A}_2 are $x_1 = 0$, $x_2 = 0$, $x_1 + x_2 = 0$, so \mathcal{A}_2 has 6 regions:
All-subset arrangement in \mathbb{R}^{n-1}

Combinatorially equivalent to the restricted all-subset arrangement in \mathbb{R}^n is the all-subset arrangement A_{n-1} in \mathbb{R}^{n-1}, consisting of all hyperplanes with normals e_S, $S \subseteq [n-1]$, $S \neq \emptyset$.

Again, regions of A_{n-1} are in bijection with maximal unbalanced collections in $2^{[n]}$.

Example: $n = 3$. The planes of A_2 are $x_1 = 0$, $x_2 = 0$, $x_1 + x_2 = 0$, so A_2 has 6 regions.
All-subset arrangement in \mathbb{R}^{n-1}

Combinatorially equivalent to the restricted all-subset arrangement in \mathbb{R}^n is the all-subset arrangement \mathcal{A}_{n-1} in \mathbb{R}^{n-1}, consisting of all hyperplanes with normals e_S, $S \subseteq [n-1]$, $S \neq \emptyset$.

Again, regions of \mathcal{A}_{n-1} are in bijection with maximal unbalanced collections in $2^{[n]}$.

Example: $n = 3$. The planes of \mathcal{A}_2 are $x_1 = 0$, $x_2 = 0$, $x_1 + x_2 = 0$, so \mathcal{A}_2 has 6 regions:
All-subset arrangement in \mathbb{R}^{n-1}

Combinatorially equivalent to the restricted all-subset arrangement in \mathbb{R}^n is the all-subset arrangement \mathcal{A}_{n-1} in \mathbb{R}^{n-1}, consisting of all hyperplanes with normals e_S, $S \subseteq [n-1]$, $S \neq \emptyset$.

Again, regions of \mathcal{A}_{n-1} are in bijection with maximal unbalanced collections in $2^{[n]}$.

Example: $n = 3$. The planes of \mathcal{A}_2 are $x_1 = 0$, $x_2 = 0$, $x_1 + x_2 = 0$, so \mathcal{A}_2 has 6 regions:
A_3 has 7 planes and 32 regions
A_3 has 7 planes and 32 regions
The matroid of all 0-1 vectors

To count the regions of A_n, we need to understand the real linear matroid M_n of all nonzero 0-1 vectors in \mathbb{R}^n.

Affine picture for M_3 a.k.a. non-Fano plane

Note: two-point lines are not drawn.
The matroid of all 0-1 vectors

To count the regions of A_n, we need to understand the real linear matroid M_n of all nonzero 0-1 vectors in \mathbb{R}^n. Here independence is linear independence.
The matroid of all 0-1 vectors

To count the regions of A_n, we need to understand the real linear matroid M_n of all nonzero 0-1 vectors in \mathbb{R}^n. Here independence is linear independence.

Equivalently, we can view M_n as the real affine matroid of all face barycenters of an $(n-1)$-simplex, with independence being affine independence.
The matroid of all 0-1 vectors

To count the regions of \mathcal{A}_n, we need to understand the real linear matroid M_n of all nonzero 0-1 vectors in \mathbb{R}^n. Here independence is linear independence.

Equivalently, we can view M_n as the real affine matroid of all face barycenters of an $(n-1)$-simplex, with independence being affine independence.

Affine picture for M_3 a.k.a. non-Fano plane

Note: two-point lines are not drawn.
The matroid of all 0-1 vectors

To count the regions of \mathcal{A}_n, we need to understand the real linear matroid M_n of all nonzero 0-1 vectors in \mathbb{R}^n. Here independence is linear independence.

Equivalently, we can view M_n as the real affine matroid of all face barycenters of an $(n-1)$-simplex, with independence being affine independence.

Affine picture for M_3
a.k.a. non-Fano plane

Note: two-point lines are not drawn.
To “know” the matroid M_n is to know about determinants of all 0-1 $n \times n$ matrices,
Determinants of 0-1 matrices

To “know” the matroid M_n is to know about determinants of all 0-1 $n \times n$ matrices, for example

$$\det \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} = -2.$$
Determinants of 0-1 matrices

To “know” the matroid M_n is to know about determinants of all 0-1 $n \times n$ matrices, for example

$$\det \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} = -2.$$

The matroid M_n knows only when $\det A = 0/ \neq 0$. The arithmetic matroid of Moci, et al., knows also $|\det A|$.

Hadamard (1893): For a 0-1 $n \times n$ matrix A, $|\det A| \leq (\frac{n+1}{2})^n$, with equality if and only if there exists a Hadamard matrix of order $n+1$. (So only if $n = 1$ or $n \equiv 3 \mod 4$.)
Determinants of 0-1 matrices

To “know” the matroid M_n is to know about determinants of all 0-1 $n \times n$ matrices, for example

$$\det \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} = -2.$$

The matroid M_n knows only when $\det A = 0/ \neq 0$. The arithmetic matroid of Moci, et al., knows also $|\det A|$.

How large can $|\det A|$ be for a 0-1 $n \times n$ matrix?
To “know” the matroid M_n is to know about determinants of all 0-1 $n \times n$ matrices, for example

$$\det \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} = -2.$$

The matroid M_n knows only when $\det A = 0 / \neq 0$. The arithmetic matroid of Moci, et al., knows also $|\det A|$.

How large can $|\det A|$ be for a 0-1 $n \times n$ matrix?

A Hadamard matrix is a ± 1 $n \times n$ matrix whose rows (equiv. columns) are mutually orthogonal. These can only exist when $n = 1, 2$ or $4k$; they are conjectured to exist whenever $n = 4k$.
Determinants of 0-1 matrices

To “know” the matroid M_n is to know about determinants of all 0-1 $n \times n$ matrices, for example

\[
\begin{vmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{vmatrix}
\]

\[\text{det} \begin{pmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix} = -2.
\]

The matroid M_n knows only when det $A = 0/ \neq 0$. The arithmetic matroid of Moci, et al., knows also $|\text{det} A|$.

How large can $|\text{det} A|$ be for a 0-1 $n \times n$ matrix?

A Hadamard matrix is a \(\pm 1\) $n \times n$ matrix whose rows (equiv. columns) are mutually orthogonal. These can only exist when $n = 1, 2$ or $4k$; they are conjectured to exist whenever $n = 4k$. (The smallest unknown case is $n = 668 = 4 \cdot 167$.)
Determinants of 0-1 matrices

To “know” the matroid M_n is to know about determinants of all 0-1 $n \times n$ matrices, for example

$$\det \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} = -2.$$

The matroid M_n knows only when $\det A = 0/ \neq 0$. The arithmetic matroid of Moci, et al., knows also $|\det A|$.

How large can $|\det A|$ be for a 0-1 $n \times n$ matrix?

A Hadamard matrix is a ± 1 $n \times n$ matrix whose rows (equiv. columns) are mutually orthogonal. These can only exist when $n = 1, 2$ or $4k$; they are conjectured to exist whenever $n = 4k$. (The smallest unknown case is $n = 668 = 4 \cdot 167$.)

Hadamard (1893): For a 0-1 $n \times n$ matrix A, $|\det A| \leq \frac{(n+1)^{\frac{n+1}{2}}}{2^n}$, with equality if and only if there exists a Hadamard matrix of order $n + 1$. (So only if $n = 1$ or $n \equiv 3 \mod 4$.)
Let $L_n = \text{lattice of flats of } M_n$, consisting of the linear (resp. affine) subspaces spanned by sets of 0-1 vectors, ordered by inclusion.
The characteristic polynomial of M_n

Let $L_n = \text{lattice of flats of } M_n$, consisting of the linear (resp. affine) subspaces spanned by sets of 0-1 vectors, ordered by inclusion.

The Möbius function of L_n is defined for $x, y \in L_n, x \leq y$, by

$$\mu(x, x) = 1, \text{ and } \sum_{x \leq z \leq y} \mu(x, z) = 0 \text{ when } x < y.$$
The characteristic polynomial of M_n

Let $L_n =$ lattice of flats of M_n, consisting of the linear (resp. affine) subspaces spanned by sets of 0-1 vectors, ordered by inclusion.

The Möbius function of L_n is defined for $x, y \in L_n, x \leq y$, by

$$\mu(x, x) = 1, \text{ and } \sum_{x \leq z \leq y} \mu(x, z) = 0 \text{ when } x < y.$$

The characteristic polynomial of M_n is defined by

$$\chi(M_n, t) = \sum_{x \in L_n} \mu(0, x) \ t^{\text{rank}(L_n) - \text{rank}(x)} = \sum_{k=0}^{n} w_k(L_n) \ t^{n-k}$$
The characteristic polynomial of \(M_n \)

Let \(L_n = \) lattice of flats of \(M_n \), consisting of the linear (resp. affine) subspaces spanned by sets of 0-1 vectors, ordered by inclusion.

The Möbius function of \(L_n \) is defined for \(x, y \in L_n, x \leq y \), by

\[
\mu(x, x) = 1, \text{ and } \sum_{x \leq z \leq y} \mu(x, z) = 0 \text{ when } x < y.
\]

The characteristic polynomial of \(M_n \) is defined by

\[
\chi(M_n, t) = \sum_{x \in L_n} \mu(0, x) t^{\text{rank}(L_n) - \text{rank}(x)} = \sum_{k=0}^{n} w_k(L_n) t^{n-k}
\]

where \(w_k := \sum_{\text{rank}(x) = k} \mu(0, x) \) are the Whitney numbers of the first kind.
Let L_n = lattice of flats of M_n, consisting of the linear (resp. affine) subspaces spanned by sets of 0-1 vectors, ordered by inclusion.

The Möbius function of L_n is defined for $x, y \in L_n$, $x \leq y$, by

$$\mu(x, x) = 1, \text{ and } \sum_{x \leq z \leq y} \mu(x, z) = 0 \text{ when } x < y.$$

The characteristic polynomial of M_n is defined by

$$\chi(M_n, t) = \sum_{x \in L_n} \mu(0, x) \ t^{\text{rank}(L_n) - \text{rank}(x)} = \sum_{k=0}^{n} w_k(L_n) \ t^{n-k}$$

where $w_k := \sum_{\text{rank}(x) = k} \mu(0, x)$ are the Whitney numbers of the first kind.

This polynomial is known only through $n = 7$.
\[\chi(M_1, t) = t - 1\]
\[\chi(M_2, t) = t^2 - 3t + 2 = (t - 1)(t - 2)\]
\[\chi(M_3, t) = t^3 - 7t^2 + 15t - 9 = (t - 1)(t^2 - 6t + 9)\]
\[\chi(M_4, t) = t^4 - 15t^3 + 80t^2 - 170t + 104 = (t - 1)(t^3 - 14t^2 + 66t - 104)\]
\[\chi(M_5, t) = t^5 - 31t^4 + 375t^3 - 2130t^2 + 5270t - 3485 = (t - 1)(t^4 - 30t^3 + 345t^2 - 1785t + 3485)\]
\[\chi(M_6, t) = t^6 - 63t^5 + 1652t^4 - 22435t^3 + 159460t^2 - 510524t + 371909 = (t - 1)(t^5 - 62t^4 + 1590t^3 - 20845t^2 + 138615t - 371909)\]
\[\chi(M_7, t) = t^7 - 127t^6 + 7035t^5 - 215439t^4 + 38318335t^3 - 37769977t^2 + 169824305t - 135677633 = (t - 1)(t^6 - 126t^5 + 6909t^4 - 208530t^3 + 3623305t^2 - 34146672t + 135677633)\]
To count the regions in \mathcal{A}_n, we use the theorem of LasVergnas(1980)/Winder(1965)/Zaslavsky(1975):
To count the regions in A_n, we use the theorem of LasVergnas(1980)/Winder(1965)/Zaslavsky(1975):

The number of maximal regions of A_n is

$$(-1)^n \chi(M_n, -1) = \sum_{x \in L_n} |\mu(0, x)| = \sum_{k=0}^{n} |w_k(L_n)|.$$
To count the regions in A_n, we use the theorem of LasVergnas(1980)/Winder(1965)/Zaslavsky(1975):

The number of maximal regions of A_n is

$$(-1)^n \chi(M_n, -1) = \sum_{x \in L_n} |\mu(0, x)| = \sum_{k=0}^{n} |w_k(L_n)|.$$

So, to determine the number of regions in $A_n = \text{the number of maximal unbalanced collections in } [n + 1]$, we could try to determine the characteristic polynomial $\chi(M_n, t)$.
Counting the regions in \(A_n \)

To count the regions in \(A_n \), we use the theorem of LasVergnas(1980)/Winder(1965)/Zaslavsky(1975):

The number of maximal regions of \(A_n \) is

\[
(-1)^n \chi(M_n, -1) = \sum_{x \in L_n} |\mu(0, x)| = \sum_{k=0}^{n} |w_k(L_n)|.
\]

So, to determine the number of regions in \(A_n \) = the number of maximal unbalanced collections in \([n + 1] \), we could try to determine the characteristic polynomial \(\chi(M_n, t) \).

We first get an easy lower bound on this number.
Consider the binary matroid \(M^2_n \) generated over the 2-element field \(\mathbb{F}_2 \) by all the nonzero elements of \(\{0, 1\}^n \),
Consider the binary matroid M^2_n generated over the 2-element field \mathbb{F}_2 by all the nonzero elements of $\{0, 1\}^n$, i.e., the projective geometry of rank n (dimension $n - 1$) over \mathbb{F}_2, $PG(n - 1, 2)$.

$$\begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} \equiv 0 \mod 2$$
The “binary all-subsets arrangement”

Consider the binary matroid M_n^2 generated over the 2-element field \mathbb{F}_2 by all the nonzero elements of $\{0, 1\}^n$, i.e., the projective geometry of rank n (dimension $n - 1$) over \mathbb{F}_2, $PG(n - 1, 2)$.

$$\det \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \equiv 0 \mod 2$$
Consider the binary matroid M^2_n generated over the 2-element field \mathbb{F}_2 by all the nonzero elements of $\{0, 1\}^n$, i.e., the projective geometry of rank n (dimension $n - 1$) over \mathbb{F}_2, $PG(n - 1, 2)$.

$PG(2, 2)$
a.k.a. Fano plane
Consider the binary matroid M^2_n generated over the 2-element field \mathbb{F}_2 by all the nonzero elements of $\{0, 1\}^n$, i.e., the projective geometry of rank n (dimension $n - 1$) over \mathbb{F}_2, $PG(n - 1, 2)$.

$PG(2, 2)$
a.k.a. Fano plane

$$\det \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \equiv 0 \mod 2$$
The identity map $M_n \rightarrow M_n^2$ is a rank-preserving weak map (inverse image of independent sets are independent), so by the theorem of Lucas (1975)
The identity map $M_n \rightarrow M_n^2$ is a rank-preserving weak map (inverse image of independent sets are independent), so by the theorem of Lucas (1975)

$$|w_k(M_n)| \geq |w_k(M_n^{(2)})|$$

for each k,

Since $\chi(M_n^{(2)}, t) = (n-1) \prod_{i=0}^{\infty} (t-2i)$.
The identity map $M_n \rightarrow M_n^2$ is a rank-preserving weak map (inverse image of independent sets are independent), so by the theorem of Lucas (1975)

$$|w_k(M_n)| \geq |w_k(M_n^{(2)})|$$

for each k, and so we conclude

$$(-1)^n \chi(M_n, -1) \geq (-1)^n \chi(M_n^{(2)}, -1).$$
The identity map $M_n \rightarrow M_n^2$ is a rank-preserving weak map (inverse image of independent sets are independent), so by the theorem of Lucas (1975)

$$|w_k(M_n)| \geq |w_k(M_n^{(2)})|$$

for each k, and so we conclude

$$(-1)^n \chi(M_n, -1) \geq (-1)^n \chi(M_n^{(2)}, -1).$$

Since

$$\chi(M_n^{(2)}, t) = \prod_{i=0}^{n-1} (t - 2^i).$$
The identity map $M_n \rightarrow M_n^2$ is a rank-preserving weak map (inverse image of independent sets are independent), so by the theorem of Lucas (1975)

$$|w_k(M_n)| \geq |w_k(M_n^{(2)})|$$

for each k, and so we conclude

$$(-1)^n \chi(M_n, -1) \geq (-1)^n \chi(M_n^{(2)}, -1).$$

Since

$$\chi(M_n^{(2)}, t) = \prod_{i=0}^{n-1} (t - 2^i).$$

we get
Theorem: The number of maximal unbalanced families in \([n + 1]\), equivalently, the number of chambers of the arrangement \(A_n\), is at least \(\prod_{i=0}^{n-1}(2^i + 1)\). Thus the number of maximal unbalanced collections is more than

\[
\prod_{i=0}^{n-1} 2^i = 2^{\frac{n(n-1)}{2}}
\]
Theorem: The number of maximal unbalanced families in \([n + 1]\), equivalently, the number of chambers of the arrangement \(A_n\), is at least \(\prod_{i=0}^{n-1} (2^i + 1)\). Thus the number of maximal unbalanced collections is more than

\[
\prod_{i=0}^{n-1} 2^i = 2^{\frac{n(n-1)}{2}}
\]

This answers a question raised by the physicist T.S. Evans, who asked if the number of such collections exceeded \(n!\).
Theorem: The number of maximal unbalanced families in \([n + 1]\), equivalently, the number of chambers of the arrangement \(A_n\), is at least \(\prod_{i=0}^{n-1} (2^i + 1)\). Thus the number of maximal unbalanced collections is more than

\[
\prod_{i=0}^{n-1} 2^i = 2^{\frac{n(n-1)}{2}}
\]

This answers a question raised by the physicist T.S. Evans, who asked if the number of such collections exceeded \(n!\).

Note: Zuev (1989) had effectively shown it is asymptotically \(2^{n^2}\).
Theorem: The number of maximal unbalanced families in \([n + 1]\), equivalently, the number of chambers of the arrangement \(A_n\), is at least \(\prod_{i=0}^{n-1} (2^i + 1)\). Thus the number of maximal unbalanced collections is more than

\[
\prod_{i=0}^{n-1} 2^i = 2^{\frac{n(n-1)}{2}}
\]

This answers a question raised by the physicist T.S. Evans, who asked if the number of such collections exceeded \(n!\).

Note: Zuev (1989) had effectively shown it is asymptotically \(2^{n^2}\). His argument uses a theorem of Odlyzko on random \(\pm 1\) vectors.
Computing $\chi(\mathcal{H}, t)$ – the finite field method

For polynomial $f = f(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$, define for a prime p

$$N_f(p) := \left| \left\{ (r_1, \ldots, r_n) \in (\mathbb{F}_p)^n \mid f(r_1, \ldots, r_n) = 0 \text{ in } \mathbb{F}_p \right\} \right|$$
Computing $\chi(\mathcal{H}, t) –$ the finite field method

For polynomial $f = f(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$, define for a prime p

$$N_f(p) := \left| \{(r_1, \ldots, r_n) \in (\mathbb{F}_p)^n \mid f(r_1, \ldots, r_n) = 0 \text{ in } \mathbb{F}_p \} \right|$$

For a rational hyperplane arrangement $\mathcal{H} \subset \mathbb{R}^n$, choose an integral normal $a_H \in \mathbb{Z}^n$ for each $H \in \mathcal{H}$.
Computing $\chi(\mathcal{H}, t) –$ the finite field method

For polynomial $f = f(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$, define for a prime p

$$N_f(p) := \left| \{(r_1, \ldots, r_n) \in (\mathbb{F}_p)^n \mid f(r_1, \ldots, r_n) = 0 \text{ in } \mathbb{F}_p\} \right|$$

For a rational hyperplane arrangement $\mathcal{H} \subset \mathbb{R}^n$, choose an integral normal $a_H \in \mathbb{Z}^n$ for each $H \in \mathcal{H}$. Define the polynomial

$$f_\mathcal{H} = f_\mathcal{H}(x_1, \ldots, x_n) := \prod_{H \in \mathcal{H}} \langle a_H, x \rangle$$
Computing $\chi(\mathcal{H}, t) –$ the finite field method

For polynomial $f = f(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$, define for a prime p

$$N_f(p) := \left| \{(r_1, \ldots, r_n) \in (\mathbb{F}_p)^n \mid f(r_1, \ldots, r_n) = 0 \text{ in } \mathbb{F}_p \} \right|$$

For a rational hyperplane arrangement $\mathcal{H} \subset \mathbb{R}^n$, choose an integral normal $a_H \in \mathbb{Z}^n$ for each $H \in \mathcal{H}$. Define the polynomial

$$f_\mathcal{H} = f_\mathcal{H}(x_1, \ldots, x_n) := \prod_{H \in \mathcal{H}} \langle a_H, x \rangle$$

“Finite field method” (Athanasiadis …. Crapo, Rota):
For polynomial $f = f(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$, define for a prime p

$$N_f(p) := \left| \{(r_1, \ldots, r_n) \in (\mathbb{F}_p)^n \big| f(r_1, \ldots, r_n) = 0 \text{ in } \mathbb{F}_p \} \right|$$

For a rational hyperplane arrangement $\mathcal{H} \subset \mathbb{R}^n$, choose an integral normal $a_H \in \mathbb{Z}^n$ for each $H \in \mathcal{H}$. Define the polynomial

$$f_\mathcal{H} = f_\mathcal{H}(x_1, \ldots, x_n) := \prod_{H \in \mathcal{H}} \langle a_H, x \rangle$$

“Finite field method” (Athanasiadis Crapo, Rota): For all but a finite number of primes p,

$$\chi(\mathcal{H}, p) = p^n - N_{f_\mathcal{H}}(p)$$
Computing $\chi(\mathcal{H}, t) –$ the finite field method

For polynomial $f = f(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$, define for a prime p

$$N_f(p) := \left| \{(r_1, \ldots, r_n) \in (\mathbb{F}_p)^n \mid f(r_1, \ldots, r_n) = 0 \text{ in } \mathbb{F}_p \} \right|$$

For a rational hyperplane arrangement $\mathcal{H} \subset \mathbb{R}^n$, choose an integral normal $a_H \in \mathbb{Z}^n$ for each $H \in \mathcal{H}$. Define the polynomial

$$f_\mathcal{H} = f_\mathcal{H}(x_1, \ldots, x_n) := \prod_{H \in \mathcal{H}} \langle a_H, x \rangle$$

“Finite field method” (Athanasiadis …. Crapo, Rota): For all but a finite number of primes p,

$$\chi(\mathcal{H}, p) = p^n - N_{f_\mathcal{H}}(p)$$

So for p large enough, $N_{f_\mathcal{H}}(p)$ is a polynomial in p (positive lead term, alternating signs),
Computing $\chi(\mathcal{H}, t) –$ the finite field method

For polynomial $f = f(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$, define for a prime p

$$N_f(p) := \left| \{(r_1, \ldots, r_n) \in (\mathbb{F}_p)^n \mid f(r_1, \ldots, r_n) = 0 \text{ in } \mathbb{F}_p \} \right|$$

For a rational hyperplane arrangement $\mathcal{H} \subset \mathbb{R}^n$, choose an integral normal $a_H \in \mathbb{Z}^n$ for each $H \in \mathcal{H}$. Define the polynomial

$$f_{\mathcal{H}} = f_{\mathcal{H}}(x_1, \ldots, x_n) := \prod_{H \in \mathcal{H}} \langle a_H, x \rangle$$

“Finite field method” (Athanasiadis …. Crapo, Rota): For all but a finite number of primes p,

$$\chi(\mathcal{H}, p) = p^n – N_{f_{\mathcal{H}}}(p)$$

So for p large enough, $N_{f_{\mathcal{H}}}(p)$ is a polynomial in p (positive lead term, alternating signs), i.e., \mathcal{H} is a “polynomial count variety”.
Computing $\chi(\mathcal{H}, t)$ – the finite field method

For polynomial $f = f(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$, define for a prime p

$$N_f(p) := \left| \left\{ (r_1, \ldots, r_n) \in (\mathbb{F}_p)^n \mid f(r_1, \ldots, r_n) = 0 \text{ in } \mathbb{F}_p \right\} \right|$$

For a rational hyperplane arrangement $\mathcal{H} \subset \mathbb{R}^n$, choose an integral normal $a_H \in \mathbb{Z}^n$ for each $H \in \mathcal{H}$. Define the polynomial

$$f_{\mathcal{H}}(x_1, \ldots, x_n) := \prod_{H \in \mathcal{H}} \langle a_H, x \rangle$$

"Finite field method" (Athanasiadis Crapo, Rota): For all but a finite number of primes p,

$$\chi(\mathcal{H}, p) = p^n - N_{f_{\mathcal{H}}}(p)$$

So for p large enough, $N_{f_{\mathcal{H}}}(p)$ is a polynomial in p (positive lead term, alternating signs), i.e., \mathcal{H} is a "polynomial count variety". As are the Grassmannian and the flag variety. Are there others?
To compute $\chi(M_n, t)$ we need to compute $N_{f_n}(p)$, where

$$f_n = f_{A_n} := \prod_{\emptyset \neq S \subseteq [n]} \sum_{i \in S} x_i, \quad \text{deg}(f_n) = 2^n - 1$$
Computing $\chi(M_n, t)$?

To compute $\chi(M_n, t)$ we need to compute $N_{f_n}(p)$, where

$$f_n = f_{A_n} := \prod_{\emptyset \neq S \subseteq [n]} \sum_{i \in S} x_i,$$

$$\text{deg}(f_n) = 2^n - 1$$

$N_{f_n}(p)$ is a polynomial for all $p > \frac{(n+1)^{n+1}}{2^n}$.
To compute $\chi(M_n, t)$ we need to compute $N_{f_n}(p)$, where

$$f_n = f_{A_n} := \prod_{\emptyset \neq S \subseteq [n]} \sum_{i \in S} x_i,$$

$$\text{deg}(f_n) = 2^n - 1$$

$N_{f_n}(p)$ is a polynomial for all $p > \frac{(n+1)^{n+1}}{2^n}$

For example, $f_3 = x_1x_2x_3(x_1 + x_2)(x_1 + x_3)(x_2 + x_3)(x_1 + x_2 + x_3)$, and $N_{f_3}(p) = 7p^2 - 15p + 9$ when $p > 2$, since we know

$$\chi(M_3, t) = t^3 - 7t^2 + 15t - 9.$$
To compute $\chi(M_n, t)$ we need to compute $N_{f_n}(p)$, where

$$f_n = f_{\mathcal{A}_n} := \prod_{\emptyset \neq S \subseteq [n]} \sum_{i \in S} x_i,$$

and $\deg(f_n) = 2^n - 1$

$N_{f_n}(p)$ is a polynomial for all $p > \frac{(n+1)\binom{n+1}{2}}{2^n}$

For example, $f_3 = x_1x_2x_3(x_1 + x_2)(x_1 + x_3)(x_2 + x_3)(x_1 + x_2 + x_3)$, and $N_{f_3}(p) = 7p^2 - 15p + 9$ when $p > 2$, since we know

$$\chi(M_3, t) = t^3 - 7t^2 + 15t - 9.$$

f_n is a symmetric polynomial, in fact Schur positive (Tewari ... Billey, Hersh).
Computing $\chi(M_n, t)$?

To compute $\chi(M_n, t)$ we need to compute $N_{f_n}(p)$, where

$$f_n = f_{A_n} := \prod_{\emptyset \neq S \subseteq [n]} \sum_{i \in S} x_i, \quad \text{deg}(f_n) = 2^n - 1$$

$N_{f_n}(p)$ is a polynomial for all $p > \frac{(n+1)^{n+1}}{2^n}$

For example, $f_3 = x_1x_2x_3(x_1 + x_2)(x_1 + x_3)(x_2 + x_3)(x_1 + x_2 + x_3)$, and $N_{f_3}(p) = 7p^2 - 15p + 9$ when $p > 2$, since we know

$$\chi(M_3, t) = t^3 - 7t^2 + 15t - 9.$$

f_n is a symmetric polynomial, in fact Schur positive (Tewari ... Billey, Hersh). Does this help?
Computing $\chi(M_n, t)$?

To compute $\chi(M_n, t)$ we need to compute $N_{f_n}(p)$, where

$$f_n = f_{A_n} := \prod_{\emptyset \neq S \subseteq [n]} \sum_{i \in S} x_i, \quad \deg(f_n) = 2^n - 1$$

$N_{f_n}(p)$ is a polynomial for all $p > \frac{(n+1)^{n+1}}{2^n}$

For example, $f_3 = x_1 x_2 x_3 (x_1 + x_2) (x_1 + x_3) (x_2 + x_3) (x_1 + x_2 + x_3)$, and $N_{f_3}(p) = 7p^2 - 15p + 9$ when $p > 2$, since we know

$$\chi(M_3, t) = t^3 - 7t^2 + 15t - 9.$$

f_n is a symmetric polynomial, in fact Schur positive (Tewari ... Billey, Hersh). Does this help?

General problem: Count the zeros mod p of your favorite symmetric and other combinatorially defined polynomials.
For a matroid M on a linearly ordered set X, a
- **circuit** is a minimally dependent set
- **broken circuit** is a circuit minus its largest element
Computing $\chi(M, t) – the broken circuit complex$

For a matroid M on a linearly ordered set X, a

- **circuit** is a minimally dependent set
- **broken circuit** is a circuit minus its largest element

The **broken circuit complex** of M, is the simplicial complex on vertex set X

\[BC(M) := \{ \sigma \subset X \mid \sigma \text{ contains no broken circuit} \} \]
For a matroid M on a linearly ordered set X, a
- circuit is a minimally dependent set
- broken circuit is a circuit minus its largest element

The broken circuit complex of M, is the simplicial complex on vertex set X

$$BC(M) := \{ \sigma \subset X \mid \sigma \text{ contains no broken circuit} \}$$

Recall the characteristic polynomial of M is defined by

$$\chi(M, t) = \sum_{x \in L} \mu(0, x) \ t^{\text{rank}(L) - \text{rank}(x)} = \sum_{k=0}^{n} w_k(L) \ t^{n-k}$$
Computing $\chi(M, t)$ – the broken circuit complex

For a matroid M on a linearly ordered set X, a
- **circuit** is a minimally dependent set
- **broken circuit** is a circuit minus its largest element

The **broken circuit complex** of M, is the simplicial complex on vertex set X

$$BC(M) := \{ \sigma \subset X \mid \sigma \text{ contains no broken circuit} \}$$

Recall the characteristic polynomial of M is defined by

$$\chi(M, t) = \sum_{x \in L} \mu(0, x) t^{\text{rank}(L) - \text{rank}(x)} = \sum_{k=0}^{n} w_k(L) t^{n-k}$$

Theorem (Whitney, 1932): $|w_k(M)| = f_{k-1}(BC(M))$
The reduced broken circuit complex

Note that if \bar{x} is the largest element in X, then \bar{x} is in no broken circuit, so $BC(M)$ is a cone with apex \bar{x}.

$\chi(M, t) = t^3 - 7t^2 + 15t - 9 = (t-1)(t^2 - 6t + 9)$

$BC(M) = (1,1,1) \ast BC(M)$

$f(BC) = (f-1, f_0, f_1) = (1, 6, 9)$

$f(BC) = (f-1, f_0, f_1, f_2) = (1, 7, 15, 9)$
The reduced broken circuit complex

Note that if \bar{x} is the largest element in X, then \bar{x} is in no broken circuit, so $BC(M)$ is a cone with apex \bar{x}. Define the reduced broken circuit complex to be

$$\overline{BC}(M) := BC(M) \setminus \bar{x}$$

so that $BC(M) = \bar{x} \ast \overline{BC}(M)$
The reduced broken circuit complex

Note that if \bar{x} is the largest element in X, then \bar{x} is in no broken circuit, so $BC(M)$ is a cone with apex \bar{x}. Define the reduced broken circuit complex to be

$$\overline{BC}(M) := BC(M) \setminus \bar{x}$$

so that $BC(M) = \bar{x} \ast \overline{BC}(M)$

Order $\{0, 1\}^n$ lexicographically (as if base 2 numbers) and recall

$$\chi(M_3, t) = t^3 - 7t^2 + 15t - 9 = (t - 1)(t^2 - 6t + 9)$$
The reduced broken circuit complex

Note that if \bar{x} is the largest element in X, then \bar{x} is in no broken circuit, so $BC(M)$ is a cone with apex \bar{x}. Define the reduced broken circuit complex to be

$$\overline{BC}(M) := BC(M) \setminus \bar{x}$$

so that $BC(M) = \bar{x} \ast \overline{BC}(M)$

Order $\{0, 1\}^n$ lexicographically (as if base 2 numbers) and recall

$$\chi(M_3, t) = t^3 - 7t^2 + 15t - 9 = (t - 1)(t^2 - 6t + 9)$$
The reduced broken circuit complex

Note that if \bar{x} is the largest element in X, then \bar{x} is in no broken circuit, so $BC(M)$ is a cone with apex \bar{x}. Define the reduced broken circuit complex to be

$$
BC(M) := BC(M) \setminus \bar{x} \text{ so that } BC(M) = \bar{x} \star BC(M)
$$

Order $\{0, 1\}^n$ lexicographically (as if base 2 numbers) and recall

$$
\chi(M_3, t) = t^3 - 7t^2 + 15t - 9 = (t - 1)(t^2 - 6t + 9)
$$

$BC(M_3)$

![Diagram of the reduced broken circuit complex for M_3.]
The reduced broken circuit complex

Note that if \bar{x} is the largest element in X, then \bar{x} is in no broken circuit, so $BC(M)$ is a cone with apex \bar{x}. Define the reduced broken circuit complex to be

$$BC(M) := BC(M) \setminus \bar{x} \text{ so that } BC(M) = \bar{x} \ast BC(M)$$

Order $\{0, 1\}^n$ lexicographically (as if base 2 numbers) and recall

$$\chi(M_3, t) = t^3 - 7t^2 + 15t - 9 = (t - 1)(t^2 - 6t + 9)$$

$BC(M_3) = (1, 1, 1) \ast BC(M_3)$
The reduced broken circuit complex

Note that if \(\bar{x} \) is the largest element in \(X \), then \(\bar{x} \) is in no broken circuit, so \(BC(M) \) is a cone with apex \(\bar{x} \). Define the reduced broken circuit complex to be

\[
\overline{BC}(M) := BC(M) \setminus \bar{x} \text{ so that } BC(M) = \bar{x} \star \overline{BC}(M)
\]

Order \(\{0, 1\}^n \) lexicographically (as if base 2 numbers) and recall

\[
\chi(M_3, t) = t^3 - 7t^2 + 15t - 9 = (t - 1)(t^2 - 6t + 9)
\]

\[
\overline{BC}(M_3) = (1, 1, 1) \star \overline{BC}(M_3)
\]

\[
f(\overline{BC}) = (f_{-1}, f_0, f_1) = (1, 6, 9)
\]

\[
f(BC) = (f_{-1}, f_0, f_1, f_2) = (1, 7, 15, 9)
\]
What can we say about $f_i(BC(M_n))$?

Unfortunately, not very much.

$$f_{−1} = 1$$

$$f_0 = 2$$

$$n−1$$

$$f_1 =$$

$$n−3$$

$$n−2$$

$$2$$

$$= 3$$

$$S((n+1),4) + 2S((n+1),3)$$

... Sterling #'s

The last is new. For example,

$$(4^3−3^3−2^3+1)/2 = (64−27−8+1)/2 = 15 = f_1(BC(M_3))$$.

To understand $f_1(BC(M_n))$, we must understand lines in the affine picture for M_n.

Recall the identity map $M_n \rightarrow M_{2n}$ is a rank-preserving weak map (inverse image of independent sets are independent).

M_{2n} is a binary matroid, so we'll call the simple matroid M_n "weakly binary" since it has a simple binary matroid as bijective weak image.

Proposition: k-flats in weakly binary matroids have at most $2^{k−1}$ points, so lines have either 2 or 3 points.
What can we say about $f_i(BC(M_n))$?

Unfortunately, not very much.
What can we say about $f_i(\mathcal{BC}(M_n))$?

Unfortunately, not very much.

- $f_{-1} = 1$
What can we say about $f_i(BC(M_n))$?

Unfortunately, not very much.

- $f_{-1} = 1$
- $f_0 = 2^n - 1$
Unfortunately, not very much.

- \(f_{-1} = 1 \)
- \(f_0 = 2^n - 1 \)
- \(f_1 = \frac{4^n - 3^n - 2^n + 1}{2} \)
What can we say about $f_i(BC(M_n))$?

Unfortunately, not very much.

- $f_{-1} = 1$
- $f_0 = 2^n - 1$
- $f_1 = \frac{4^n - 3^n - 2^n + 1}{2} = 3S(n + 1, 4) + 2S(n + 1, 3) \ldots$ Sterling $\#$'s
What can we say about $f_i(BC(M_n))$?

Unfortunately, not very much.

- $f_{-1} = 1$
- $f_0 = 2^n - 1$
- $f_1 = \frac{4n^3 - 3n^2 - 2n + 1}{2} = 3S(n + 1, 4) + 2S(n + 1, 3)$...Sterling #'s

The last is new. For example,

$$(4^3 - 3^3 - 2^3 + 1)/2 = (64 - 27 - 8 + 1)/2 = 15 = f_1(BC(M_3)).$$
What can we say about $f_i(BC(M_n))$?

Unfortunately, not very much.

- $f_{-1} = 1$
- $f_0 = 2^n - 1$
- $f_1 = \frac{4^n - 3^n - 2^n + 1}{2} = 3S(n + 1, 4) + 2S(n + 1, 3) \ldots$ Sterling #'s

The last is new. For example,

\[
\frac{(4^3 - 3^3 - 2^3 + 1)/2}{2} = \frac{(64 - 27 - 8 + 1)/2}{2} = 15 = f_1(BC(M_3)).
\]

To understand $f_1(BC(M_n))$, we must understand lines in the affine picture for M_n.
What can we say about $f_i(BC(M_n))$?

Unfortunately, not very much.

- $f_{-1} = 1$
- $f_0 = 2^n - 1$
- $f_1 = \frac{4^n - 3^n - 2^n + 1}{2} = 3S(n + 1, 4) + 2S(n + 1, 3)$... Sterling #'s

The last is new. For example,

\[
(4^3 - 3^3 - 2^3 + 1)/2 = (64 - 27 - 8 + 1)/2 = 15 = f_1(BC(M_3)).
\]

To understand $f_1(BC(M_n))$, we must understand lines in the affine picture for M_n.

Recall the identity map $M_n \to M_n^2$ is a rank-preserving weak map (inverse image of independent sets are independent). M_n^2 is a binary matroid, so we'll call the simple matroid M_n "weakly binary" since it has a simple binary matroid as bijective weak image.
What can we say about $f_i(BC(M_n))$?

Unfortunately, not very much.

- $f_{-1} = 1$
- $f_0 = 2^n - 1$
- $f_1 = \frac{4^n - 3^n - 2^n + 1}{2} = 3S(n + 1, 4) + 2S(n + 1, 3)$ … Sterling #’s

The last is new. For example,

$$(4^3 - 3^3 - 2^3 + 1)/2 = (64 - 27 - 8 + 1)/2 = 15 = f_1(BC(M_3)).$$

To understand $f_1(BC(M_n))$, we must understand lines in the affine picture for M_n.

Recall the identity map $M_n \rightarrow M_n^2$ is a rank-preserving weak map (inverse image of independent sets are independent). M_n^2 is a binary matroid, so we’ll call the simple matroid M_n “weakly binary” since it has a simple binary matroid as bijective weak image.

Proposition: k-flats in weakly binary matroids have at most $2^k - 1$ points, so lines have either 2 or 3 points.
Broken circuits on lines

In a weakly binary matroid,

- the only pairs that can contain broken circuits are broken circuits, and
In a weakly binary matroid,

- the only pairs that can contain broken circuits are broken circuits, and
- 3-point lines are precisely the 3-point circuits.
In a weakly binary matroid,

- the only pairs that can contain broken circuits are broken circuits, and
- 3-point lines are precisely the 3-point circuits.
- So, broken circuits of size two are the pairs consisting of the smallest two points on 3-point lines.
In a weakly binary matroid,

- the only pairs that can contain broken circuits are broken circuits, and
- 3-point lines are precisely the 3-point circuits.
- So, broken circuits of size two are the pairs consisting of the smallest two points on 3-point lines.
- \(f_1(BC(M_n)) = \binom{2^n-1}{2} \) — the number of 3-point lines
In a weakly binary matroid,

- the only pairs that can contain broken circuits are broken circuits, and
- 3-point lines are precisely the 3-point circuits.

So, broken circuits of size two are the pairs consisting of the smallest two points on 3-point lines.

\[f_1(BC(M_n)) = \binom{2^n - 1}{2} - \text{the number of 3-point lines} \]

A “line” in \(M_n \) is spanned by two distinct points \(e_S \) and \(e_T \), \(S, T \subset [n] \).
Broken circuits on lines

In a weakly binary matroid,

- the only pairs that can contain broken circuits are broken circuits, and
- 3-point lines are precisely the 3-point circuits.
- So, broken circuits of size two are the pairs consisting of the smallest two points on 3-point lines.
- $f_1(BC(M_n)) = \binom{2^n - 1}{2} - \text{the number of 3-point lines}$

A “line” in M_n is spanned by two distinct points e_S and e_T, $S, T \subset [n]$. For the line they span to have three points, it must be that $S \cap T = \emptyset$ (for the line $\{e_S, e_T, e_{S \cup T} = e_S + e_T\}$)
In a weakly binary matroid,

- the only pairs that can contain broken circuits are broken circuits, and
- 3-point lines are precisely the 3-point circuits.
- So, broken circuits of size two are the pairs consisting of the smallest two points on 3-point lines.
- \(f_1(BC(M_n)) = \binom{2^n - 1}{2} - \) the number of 3-point lines

A “line” in \(M_n \) is spanned by two distinct points \(e_S \) and \(e_T \), \(S, T \subset [n] \). For the line they span to have three points, it must be that \(S \cap T = \emptyset \) (for the line \(\{e_S, e_T, e_{S \cup T} = e_S + e_T\} \)) or \(S \subset T \) (for the line \(\{e_S, e_T, e_{T \setminus S} = e_T - e_S\} \)).
Broken circuits on lines

In a weakly binary matroid,

- the only pairs that can contain broken circuits are broken circuits, and
- 3-point lines are precisely the 3-point circuits.
- So, broken circuits of size two are the pairs consisting of the smallest two points on 3-point lines.
- \(f_1(BC(M_n)) = \binom{2^n - 1}{2} \) — the number of 3-point lines

A “line” in \(M_n \) is spanned by two distinct points \(e_S \) and \(e_T \), \(S, T \subset [n] \). For the line they span to have three points, it must be that \(S \cap T = \emptyset \) (for the line \(\{e_S, e_T, e_{S \cup T} = e_S + e_T\} \)) or \(S \subset T \) (for the line \(\{e_S, e_T, e_{T \setminus S} = e_T - e_S\} \)) or \(T \subset S \)
In a weakly binary matroid,

- the only pairs that can contain broken circuits are broken circuits, and
- 3-point lines are precisely the 3-point circuits.
- So, broken circuits of size two are the pairs consisting of the smallest two points on 3-point lines.
- \(f_1(BC(M_n)) = \binom{2^n-1}{2} - \) the number of 3-point lines

A “line” in \(M_n \) is spanned by two distinct points \(e_S \) and \(e_T \), \(S, T \subset [n] \). For the line they span to have three points, it must be that \(S \cap T = \emptyset \) (for the line \(\{e_S, e_T, e_{S \cup T} = e_S + e_T\} \)) or \(S \subset T \) (for the line \(\{e_S, e_T, e_{T \setminus S} = e_T - e_S\} \)) or \(T \subset S \ldots \)

So the number of broken circuits of size 2 is precisely the number of disjoint pairs of sets in \([n] \), i.e., \(\frac{3^n-2^{n+1}+1}{2} \). \(\square \)
Some questions

Determine $\chi(M_n, t)$ exactly for all n. Kamiya, Takemura and Terao have computed it for $n \leq 8$.

More specifically, determine $f_i(BC(M_n))$, for $n \geq 8$ and $i \geq 2$. There is some hope that $i = 2$ is a key here (cf. Odlyzko).

Are there other combinatorially interesting polynomial count varieties (besides rational hyperplane arrangements, Grassmannians and flag varieties)?

Count the zeros mod p of your favorite symmetric and other combinatorially defined polynomials, e.g. s_λ.

In general, can algebraic combinatorics be useful to arithmetic geometry?

The set of all maximal unbalanced collections in $[n]$ forms a pure simplicial complex of dimension $n - 1$. What is its topology? For $n = 3$, it is $S_1 \times I$.

Minimal balanced collections are broken circuits. They also can be viewed as generalized partitions. Is there a nice poset structure for them, say, ordered by "balanced refinement"?

(Partition lattice = lattice of flats of graphic matroid of K_n.)

Determine $\chi(M_n, t)$ exactly for all n. Kamiya, Takemura and Terao have computed it for $n \leq 8$.

- Are there other combinatorially interesting polynomial count varieties (besides rational hyperplane arrangements, Grassmannians and flag varieties)?

- Count the zeros mod p of your favorite symmetric and other combinatorially defined polynomials, e.g. s_λ.

- In general, can algebraic combinatorics be useful to arithmetic geometry?

- The set of all maximal unbalanced collections in $[n]$ forms a pure simplicial complex of dimension $2n - 1 - 2$ on vertex set $V = 2^n$. What is its topology? For $n = 3$, it is $S_1 \times I$.

- Minimal balanced collections are broken circuits. They also can be viewed as generalized partitions. Is there a nice poset structure for them, say, ordered by “balanced refinement”? (Partition lattice = lattice of flats of graphic matroid of K_n.)
Some questions

Determine $\chi(M_n, t)$ exactly for all n. Kamiya, Takemura and Terao have computed it for $n \leq 8$. More specifically, determine $f_i(BC(M_n))$, for $n \geq 8$ and $i \geq 2$. There is some hope that $i = 2$ is a key here (cf. Odlyzko).
Some questions

- Determine $\chi(M_n, t)$ exactly for all n. Kamiya, Takemura and Terao have computed it for $n \leq 8$. More specifically, determine $f_i(BC(M_n))$, for $n \geq 8$ and $i \geq 2$. There is some hope that $i = 2$ is a key here (cf. Odlyzko).

- Are there other combinatorially interesting polynomial count varieties (besides rational hyperplane arrangements, Grassmannians and flag varieties)?
Some questions

- Determine $\chi(M_n, t)$ exactly for all n. Kamiya, Takemura and Terao have computed it for $n \leq 8$. More specifically, determine $f_i(BC(M_n))$, for $n \geq 8$ and $i \geq 2$. There is some hope that $i = 2$ is a key here (cf. Odlyzko).

- Are there other combinatorially interesting polynomial count varieties (besides rational hyperplane arrangements, Grassmannians and flag varieties)? Count the zeros mod p of your favorite symmetric and other combinatorially defined polynomials, e.g. s_λ.

Some questions

- Determine $\chi(M_n, t)$ exactly for all n. Kamiya, Takemura and Terao have computed it for $n \leq 8$. More specifically, determine $f_i(BC(M_n))$, for $n \geq 8$ and $i \geq 2$. There is some hope that $i = 2$ is a key here (cf. Odlyzko).

- Are there other combinatorially interesting polynomial count varieties (besides rational hyperplane arrangements, Grassmannians and flag varieties)? Count the zeros mod p of your favorite symmetric and other combinatorially defined polynomials, e.g. s_λ. In general, can algebraic combinatorics be useful to arithmetic geometry?
Some questions

- Determine $\chi(M_n, t)$ exactly for all n. Kamiya, Takemura and Terao have computed it for $n \leq 8$. More specifically, determine $f_i(BC(M_n))$, for $n \geq 8$ and $i \geq 2$. There is some hope that $i = 2$ is a key here (cf. Odlyzko).

- Are there other combinatorially interesting polynomial count varieties (besides rational hyperplane arrangements, Grassmannians and flag varieties)? Count the zeros mod p of your favorite symmetric and other combinatorially defined polynomials, e.g. s_λ. In general, can algebraic combinatorics be useful to arithmetic geometry?

- The set of all maximal unbalanced collections in $[n]$ forms a pure simplicial complex of dimension $2^{n-1} - 2$ on vertex set $V = 2^n$. What is its topology? For $n = 3$, it is $S^1 \times I$.

Some questions

- Determine $\chi(M_n, t)$ exactly for all n. Kamiya, Takemura and Terao have computed it for $n \leq 8$. More specifically, determine $f_i(BC(M_n))$, for $n \geq 8$ and $i \geq 2$. There is some hope that $i = 2$ is a key here (cf. Odlyzko).

- Are there other combinatorially interesting polynomial count varieties (besides rational hyperplane arrangements, Grassmannians and flag varieties)? Count the zeros mod p of your favorite symmetric and other combinatorially defined polynomials, e.g. s_λ. In general, can algebraic combinatorics be useful to arithmetic geometry?

- The set of all maximal unbalanced collections in $[n]$ forms a pure simplicial complex of dimension $2^{n-1} - 2$ on vertex set $V = 2^n$. What is its topology? For $n = 3$, it is $S^1 \times I$.

- Minimal balanced collections are broken circuits. They also can be viewed as generalized partitions. Is there a nice poset structure for them, say, ordered by “balanced refinement”?

Some questions

- Determine $\chi(M_n, t)$ exactly for all n. Kamiya, Takemura and Terao have computed it for $n \leq 8$. More specifically, determine $f_i(BC(M_n))$, for $n \geq 8$ and $i \geq 2$. There is some hope that $i = 2$ is a key here (cf. Odlyzko).

- Are there other combinatorially interesting polynomial count varieties (besides rational hyperplane arrangements, Grassmannians and flag varieties)? Count the zeros mod p of your favorite symmetric and other combinatorially defined polynomials, e.g. s_λ. In general, can algebraic combinatorics be useful to arithmetic geometry?

- The set of all maximal unbalanced collections in $[n]$ forms a pure simplicial complex of dimension $2^{n-1} - 2$ on vertex set $V = 2^{[n]}$. What is its topology? For $n = 3$, it is $S^1 \times I$.

- Minimal balanced collections are broken circuits. They also can be viewed as generalized partitions. Is there a nice poset structure for them, say, ordered by “balanced refinement”? (Partition lattice = lattice of flats of graphic matroid of K_n.)

References (on counting p-points)

Lectures on $N_X(p)$
J.P. Serre

Hyperplane Arrangements: An Introduction
Alexandru Dimca
Lectures on $N_X(p)$
J.P. Serre

Hyperplane Arrangements
An Introduction
Alexandru Dimca

[includes references to the economics/physics applications, in particular:]

Thank you!!