Bijections for the deformations of the braid arrangement

Olivier Bernardi - Brandeis University

Hyperplane arrangements

A hyperplane arrangement of dimension n is a finite collection of affine hyperplanes in \mathbb{R}^n .

Example:

Hyperplane arrangements

A hyperplane arrangement of dimension n is a finite collection of affine hyperplanes in \mathbb{R}^n .

Example:

The complement of the hyperplanes is divided into regions.

Braid arrangement

Def: The braid arrangement of dimension n has hyperplanes $\{x_i - x_j = 0\}$

for all $0 \le i < j \le n$.

Braid arrangement

Def: The braid arrangement of dimension n has hyperplanes $\{x_i - x_j = 0\}$ for all $0 \le i < j \le n$.

Example: n = 3

Deformations of the braid arrangement

Def: Fix $S \subset \mathbb{Z}$ finite.

The S-deformed braid arrangement $A_S(n) \subset \mathbb{R}^n$ has hyperplanes

$$\{x_i - x_j = s\}$$

for all $0 \le i < j \le n$, and all $s \in S$.

Deformations of the braid arrangement

Def: Fix $S \subset \mathbb{Z}$ finite. The *S*-deformed braid arrangement $A_S(n) \subset \mathbb{R}^n$ has hyperplanes $\{x_i - x_j = s\}$ for all $0 \le i < j \le n$, and all $s \in S$.

Known counting results for $S \subseteq \{-1, 0, 1\}$

[Stanley, Postnikov, Athanasiadis, ...]

Known counting results for $S \subseteq \{-1, 0, 1\}$

 $\mathcal{B}(n) = \text{set of rooted binary trees with } n \text{ labeled nodes.}$

Known counting results for $S \subseteq \{-1, 0, 1\}$				
$S\!=\!\{-1,0,1\}$	$S\!=\!\{0,1\}$	$S = \{-1, 1\}$	$S\!=\!\{1\}$	$S\!=\!\{0\}$
Catalan	Shi	Semi-order	Linial	Braid
$T \!\in\! \mathcal{B}(n)$	$T\!\in\!\mathcal{B}(n)$ s.t.	$T\!\in\!\mathcal{B}(n)$ s.t.	$T\!\in\!\mathcal{B}(n)$ s.t.	$T\!\in\!\mathcal{B}(n)$ s.t.
			• • •	

"*Why?*" Ira Gessel

Bijection

Trees: $\mathcal{T}_S(n)$ = set of trees in $\mathcal{B}(n)$ such that:

Trees: $\mathcal{T}_S(n)$ = set of trees in $\mathcal{B}(n)$ such that:

Map: $\Phi_S : \mathcal{T}_S(n) \mapsto$ regions of $\mathcal{A}_S(n)$ $\Phi_S(T) = \{ x_i - x_j < s \}$ $\{x_i - x_j > s\}$ $s \in S, \ 1 \leq i < j \leq n$ $s \in S, \ 1 \leq i < j \leq n$ $(s,i,j) \in T^+$ $(s,i,j) \notin T^+$

where T^+ is

Trees: $\mathcal{T}_S(n)$ = set of trees in $\mathcal{B}(n)$ such that:

 $\mathsf{a} \prec_T \mathsf{b} \prec_T \mathsf{c} \prec_T \mathsf{d} \prec_T \mathsf{e} \cdots$

Trees: $\mathcal{T}_S(n)$ = set of trees in $\mathcal{B}(n)$ such that:

$$\begin{split} \text{Map: } \Phi_S : \mathcal{T}_S(n) \mapsto \text{ regions of } \mathcal{A}_S(n) \\ \Phi_S(T) &= \bigcap_{\substack{s \in S, \ 1 \leq i < j \leq n \\ (s,i,j) \in T^+ \end{array}}} \{x_i - x_j < s\} \bigcap_{\substack{s \in S, \ 1 \leq i < j \leq n \\ (s,i,j) \notin T^+ \end{array}}} \{x_i - x_j > s\} \\ \text{where } (0,i,j) \in T^+ \quad \text{if } i \prec_T j, \\ (-1,i,j) \in T^+ \quad \text{if } right-child(i) \preceq_T j, \\ (1,i,j) \in T^+ \quad \text{if } i \prec_T right-child(j). \end{split}$$

Trees: $\mathcal{T}_S(n)$ = set of trees in $\mathcal{B}(n)$ such that:

$$\begin{split} \text{Map: } \Phi_S: \mathcal{T}_S(n) \mapsto \text{ regions of } \mathcal{A}_S(n) \\ \Phi_S(T) &= \bigcap_{\substack{s \in S, \ 1 \leq i < j \leq n \\ (s,i,j) \in T^+ \end{array}}} \{x_i - x_j < s\} \bigcap_{\substack{s \in S, \ 1 \leq i < j \leq n \\ (s,i,j) \notin T^+ \end{array}}} \{x_i - x_j > s\} \\ \text{where } (0,i,j) \in T^+ \quad \text{if } i \prec_T j, \\ (-1,i,j) \in T^+ \quad \text{if } right-child(i) \preceq_T j, \\ (1,i,j) \in T^+ \quad \text{if } i \prec_T right-child(j). \end{split}$$

Thm: Φ_S is a bijection between $\mathcal{T}_S(n)$ and the regions of $\mathcal{A}_S(n)$.

```
Example: Linial S = \{1\}
```


• $\mathcal{T}^{(m)} = \text{set of rooted } (m+1)\text{-ary trees with labeled nodes.}$

- $\mathcal{T}^{(m)}$ = set of rooted (m+1)-ary trees with labeled nodes.
- The last node among the children of u is denoted cadet(u).

- $\mathcal{T}^{(m)} = \text{set of rooted } (m+1)\text{-ary trees with labeled nodes.}$
- The last node among the children of u is denoted cadet(u).

Def: \mathcal{T}_S = set of trees in $\mathcal{T}^{(m)}$ such that for all v = cadet(u),

- $\bullet \quad \# \mathsf{left-siblings}(v) \notin S \cup \{0\} \quad \Rightarrow \quad u < v,$
- $# left-siblings(v) \notin S \implies u > v.$

Def: *S* is **transitive** if it satisfies:

- if $a, b \notin S$, with ab > 0, then $a + b \notin S$,
- if $a, b \notin S$, with ab < 0, then $a b \notin S$,
- if $0, a \notin S$, with a > 0, then $-a \notin S$.

Def: *S* is **transitive** if it satisfies:

- if $a, b \notin S$, with ab > 0, then $a + b \notin S$,
- if $a, b \notin S$, with ab < 0, then $a b \notin S$,
- if $0, a \notin S$, with a > 0, then $-a \notin S$.

Examples of transitive sets:

- Any subset of $\{-1, 0, 1\}$.
- Any interval of integers containing 1.
- S such that $[-k..k] \subseteq S \subseteq [-2k..2k]$ for some k.

Def: *S* is **transitive** if it satisfies:

- if $a, b \notin S$, with ab > 0, then $a + b \notin S$,
- if $a, b \notin S$, with ab < 0, then $a b \notin S$,
- if $0, a \notin S$, with a > 0, then $-a \notin S$.

Examples of transitive sets:

- Any subset of $\{-1, 0, 1\}$.
- Any interval of integers containing 1.
- S such that $[-k..k] \subseteq S \subseteq [-2k..2k]$ for some k.

Thm: If S is transitive, then Φ_S is a bijection between $\mathcal{T}_S(n)$ and the regions of $\mathcal{A}_S(n)$.

Direct proof for $S \subseteq \{-1, 0, 1\}$

Warm up: Braid arrangement

Warm up: Braid arrangement

Warm up: Braid arrangement

Catalan schemes = labeled non-nesting parenthesis systems

Shi/SO/Linial regions as equivalence classes of schemes Definition:

• Shi moves $(S = \{0, 1\})$:

• Linial moves $(S = \{1\}) =$ Shi moves + semi-order moves
Shi/SO/Linial regions as equivalence classes of schemes Definition:

• Shi moves $(S = \{0, 1\})$:

• Linial moves $(S = \{1\}) =$ Shi moves + semi-order moves

Remark: Shi/SO/Linial regions are in bijection with equivalence classes of schemes under Shi/SO/Linial moves.

Linial regions as equivalence classes of schemes

Shi/SO/Linial regions as equivalence classes of schemes

Total order on schemes: C < C' if at first place they differ one has

- \searrow in C and \nearrow in C',
- or \nearrow in both, but label in C < label in C'.

Remark: Shi/SO/Linial regions are in bijection with schemes which are **maximal** in their equivalence class.

Shi/SO/Linial regions as equivalence classes of schemes

Lemma: Schemes are Shi/SO/Linial-maximal if and only if they are **locally maximal** (cannot increase by a single move).

Shi/SO/Linial regions as equivalence classes of schemes

Lemma: Schemes are Shi/SO/Linial-maximal if and only if they are **locally maximal** (cannot increase by a single move).

Corollary:

• Shi regions are in bijection with schemes such that

• SO regions are in bijection with schemes such that

• Linial regions are in bijection with schemes such that

Bijection: Schemes \longleftrightarrow **labeled binary trees**

Bijection: Schemes \leftrightarrow labeled binary trees

Bijection: Schemes \longleftrightarrow **labeled binary trees**

Corollary:

• Shi regions are in bijection with trees such that

• **SO regions** are in bijection with trees such that

• Linial regions are in bijection with trees such that

$$\bigvee_{u} \Rightarrow u > v \quad \text{and} \quad \bigvee_{u} \Rightarrow u > v$$

General $S \subseteq [-m..m]$?

In general, we obtain surjection $\Phi_S : \mathcal{T}_S(n) \to \text{ regions of } \mathcal{A}_S(n)$

General $S \subseteq [-m..m]$?

In general, we obtain surjection $\Phi_S : \mathcal{T}_S(n) \to \text{ regions of } \mathcal{A}_S(n)$

Problem: Not always true that locally-maximal schemes are maximal.

General $S \subseteq [-m..m]$?

In general, we obtain surjection $\Phi_S : \mathcal{T}_S(n) \to \text{ regions of } \mathcal{A}_S(n)$

Problem: Not always true that locally-maximal schemes are maximal.

But it is true for transitive sets S. In this case Φ_S is bijection. To prove it, it suffices to show that $|\mathcal{T}_S(n)| = \#$ regions of $\mathcal{A}_S(n)$.

Counting results

Boxed trees

• $\mathcal{T}^{(m)} = \text{set of } (m+1)\text{-ary trees with labeled nodes.}$

Boxed trees

- $\mathcal{T}^{(m)} = \text{set of } (m+1)\text{-ary trees with labeled nodes.}$
- A *m*-boxed tree is a tree in $\mathcal{T}^{(m)}$ decorated with boxes partitioning the nodes into cadet-sequences.

Main counting result

Let $S \subset \mathbb{Z}$. Let $m = \max(|s|, s \in S)$.

Def: S-boxed is m-boxed tree such that in each box

$$\forall i < j, \qquad (c_i + c_{i+1} + \dots + c_{j-1}) \in S \cup \{0\} \quad \Rightarrow \quad v_i < v_j, \\ -(c_i + c_{i+1} + \dots + c_{j-1}) \in S \qquad \Rightarrow \quad v_i > v_j.$$

Main counting result

Let $S \subset \mathbb{Z}$. Let $m = \max(|s|, s \in S)$.

Def: S-boxed is m-boxed tree such that in each box

$$\forall i < j, \qquad (c_i + c_{i+1} + \dots + c_{j-1}) \in S \cup \{0\} \quad \Rightarrow \quad v_i < v_j, \\ -(c_i + c_{i+1} + \dots + c_{j-1}) \in S \qquad \Rightarrow \quad v_i > v_j.$$

Theorem: For any $S \subseteq [-m..m]$ # regions of $A_S(n) = \sum_{T \in \mathcal{U}_S(n)} (-1)^{n-\#boxes}$,

where $\mathcal{U}_{S}(n)$ is the set of S-boxed trees with n nodes.

Main counting result

Let $S \subset \mathbb{Z}$. Let $m = \max(|s|, s \in S)$.

Def: S-boxed is m-boxed tree such that in each box

$$\forall i < j, \qquad (c_i + c_{i+1} + \dots + c_{j-1}) \in S \cup \{0\} \quad \Rightarrow \quad v_i < v_j, \\ -(c_i + c_{i+1} + \dots + c_{j-1}) \in S \qquad \Rightarrow \quad v_i > v_j.$$

Theorem: For any $S \subseteq [-m..m]$

regions of
$$A_S(n) = \sum_{T \in \mathcal{U}_S(n)} (-1)^{n - \# \text{boxes}}$$
,

where $\mathcal{U}_{S}(n)$ is the set of S-boxed trees with n nodes.

Corollary: If S is transitive, then # regions of $A_S(n) = |T_S(n)|$. Thus, Φ_S is a bijection.

Proof of corollary.

Locality: For a transitive set S, a tree is S-boxed if $\forall i, \quad c_i \in S \cup \{0\} \implies v_i < v_{i+1},$ $-c_i \in S \implies v_i > v_{i+1}.$

Proof of corollary.

Locality: For a transitive set S, a tree is S-boxed if $\forall i$, $c_i \in S \cup \{0\} \Rightarrow v_i < v_{i+1}$, $-c_i \in S \Rightarrow v_i > v_{i+1}$.

Rk: For $v = \operatorname{cadet}(u)$,

u, v satisfies condition of $\mathcal{T}_S \iff u, v$ cannot be in the same box.

Proof of corollary.

Locality: For a transitive set S, a tree is S-boxed if $\forall i$, $c_i \in S \cup \{0\} \Rightarrow v_i < v_{i+1}$, $-c_i \in S \Rightarrow v_i > v_{i+1}$.

Rk: For $v = \operatorname{cadet}(u)$, u, v satisfies condition of $\mathcal{T}_S \iff u, v$ cannot be in the same box.

Lemma 1: #regions $\mathcal{A}_{S}(n) = \sum_{G = ([n], E)} (-1)^{|E| + c(G) - n} |W_{S}(G)|,$

where c(G) = #components, and

 $W_S(G) = \{(x_1, \dots, x_n) \mid x_i - x_j \in S, \forall \{i, j\} \in E \text{ with } i < j, \\ \text{and } x_i = 0 \text{ if } i \text{ smallest in its component} \}.$

Lemma 1: #regions $\mathcal{A}_S(n) = \sum_{G=([n],E)} (-1)^{|E|+c(G)-n} |W_S(G)|$, where c(G)=#components, and

 $W_S(G) = \{(x_1, \dots, x_n) \mid x_i - x_j \in S, \forall \{i, j\} \in E \text{ with } i < j, \\ \text{and } x_i = 0 \text{ if } i \text{ smallest in its component} \}.$

Proof:

Zaslavsky formula: For any arrangement $\mathcal{A} \subset \mathbb{R}^n$, #regions of $\mathcal{A} = \sum_{\mathcal{B} \subset \mathcal{A}, \ \bigcap \mathcal{B} \neq \emptyset} (-1)^{|\mathcal{B}| + \dim(\bigcap \mathcal{B}) - n}$. Lemma 1: #regions $\mathcal{A}_S(n) = \sum_{G = ([n], E)} (-1)^{|E| + c(G) - n} |W_S(G)|$, where c(G) =#components, and $W_S(G) = \{(x_1, \dots, x_n) \mid x_i - x_j \in S, \forall \{i, j\} \in E \text{ with } i < j,$

and $x_i = 0$ if *i* smallest in its component}.

Lemma 1: #regions $\mathcal{A}_S(n) = \sum_{G = ([n], E)} (-1)^{|E| + c(G) - n} |W_S(G)|$, where c(G) =#components, and $W_S(G) = \{(x_1, \dots, x_n) \mid x_i - x_j \in S, \forall \{i, j\} \in E \text{ with } i < j,$

and $x_i = 0$ if *i* smallest in its component}.

Def: $\mathcal{Z}_{S,\delta}(n) = \{(x_1, \ldots, x_n) \in [\delta]^n \mid x_i - x_j \notin S, \forall i < j\}.$

Def: $\mathcal{Z}_{S,\delta}(n) = \{(x_1, \ldots, x_n) \in [\delta]^n \mid x_i - x_j \notin S, \forall i < j\}.$

Example: (4, 13, 19, 13, 15, 3, 12, 21, 7) is in $\mathcal{Z}_{\{-1,2\},22}(9)$.

Def: $\mathcal{Z}_{S,\delta}(n) = \{(x_1, \dots, x_n) \in [\delta]^n \mid x_i - x_j \notin S, \forall i < j\}.$ Lemma 2: $\log(R_S(t)) = \lim_{\delta \to \infty} -\frac{1}{\delta} \log(Z_{S,\delta}(-t)),$ where $R_S(t) = \sum_{n \ge 0} \# \operatorname{regions}_S(n) \frac{t^n}{n!}, \text{ and } Z_{S,\delta}(t) = \sum_{n \ge 0} |\mathcal{Z}_{S,\delta}(n)| \frac{t^n}{n!}.$

Def:
$$\mathcal{Z}_{S,\delta}(n) = \{(x_1, \dots, x_n) \in [\delta]^n \mid x_i - x_j \notin S, \forall i < j\}.$$

Lemma 2: $\log(R_S(t)) = \lim_{\delta \to \infty} -\frac{1}{\delta}\log(Z_{S,\delta}(-t)),$

Proof:

•
$$|\mathcal{Z}_{S,d}(n)| = \sum_{\substack{x_1,...,x_n \in [\delta] \\ x_1,...,x_n \in [\delta]}} \prod_{\substack{i < j \\ \prod i < j}} \mathbf{1}_{x_i - x_j \notin S}$$

 $= \sum_{\substack{x_1,...,x_n \in [\delta] \\ x_1,...,x_n \in [\delta]}} \sum_{\substack{G = ([n], E) \\ G = ([n], E)}} (-1)^{|E|} \prod_{\{i,j\} \in E, i < j} \mathbf{1}_{x_i - x_j \in S}$
 $= \sum_{\substack{G = ([n], E) \\ G = ([n], E)}} (-1)^{|E|} |\mathcal{W}_{S,\delta}(G)|,$
where $\mathcal{W}_{S,\delta}(G) = \{(x_1, \dots, x_n) \in [\delta]^n \mid x_i - x_j \in S, \forall \{i, j\} \in E, i < j\}$

Def:
$$\mathcal{Z}_{S,\delta}(n) = \{(x_1, \dots, x_n) \in [\delta]^n \mid x_i - x_j \notin S, \forall i < j\}.$$

Lemma 2: $\log(R_S(t)) = \lim_{\delta \to \infty} -\frac{1}{\delta} \log(Z_{S,\delta}(-t)),$

Proof:

•
$$|\mathcal{Z}_{S,d}(n)| = \sum_{\substack{x_1,...,x_n \in [\delta] \\ x_1,...,x_n \in [\delta]}} \prod_{\substack{i < j \\ \prod \\ i < j}} \mathbf{1}_{x_i - x_j \notin S}$$

$$= \sum_{\substack{x_1,...,x_n \in [\delta] \\ x_1,...,x_n \in [\delta]}} \sum_{\substack{G = ([n], E) \\ G = ([n], E)}} (-1)^{|E|} \prod_{\{i,j\} \in E, i < j} \mathbf{1}_{x_i - x_j \in S}$$

$$= \sum_{\substack{G = ([n], E) \\ G = ([n], E)}} (-1)^{|E|} |\mathcal{W}_{S,\delta}(G)|,$$
where $\mathcal{W}_{S,\delta}(G) = \{(x_1, \ldots, x_n) \in [\delta]^n \mid x_i - x_j \in S, \forall \{i, j\} \in E, i < j\}$

• Exponential formula (log \Rightarrow connected graphs), and limit $\delta \rightarrow \infty$.

Def: $\mathcal{Z}_{S,\delta}(n) = \{(x_1, \dots, x_n) \in [\delta]^n \mid \forall i < j, x_i - x_j \notin S\}.$ **Lemma 3:** $Z_{S,\delta}(t) = U_S(t)^{-m-\delta-2} U_S^{\bullet}(t)$ where $U_S(t) = \sum_{S \text{-boxed tree}} (-1)^{\#\text{boxes}} \frac{t^v}{v!}$, and $U_S^{\bullet}(t) = \text{related series.}$ **Def:** $Z_{S,\delta}(n) = \{(x_1, \dots, x_n) \in [\delta]^n \mid \forall i < j, \ x_i - x_j \notin S\}.$ **Lemma 3:** $Z_{S,\delta}(t) = U_S(t)^{-m-\delta-2} U_S^{\bullet}(t)$ **Proof:** $(1 - \frac{\Phi}{2}) + \frac{\Phi}{2} +$ Def: $\mathcal{Z}_{S,\delta}(n) = \{(x_1, \dots, x_n) \in [\delta]^n \mid \forall i < j, \ x_i - x_j \notin S\}.$ Lemma 3: $Z_{S,\delta}(t) = U_S(t)^{-m-\delta-2} U_S^{\bullet}(t)$ Proof: $\mathcal{Q} = \mathcal{Q} = \mathcal{Q}$

Summary of the proof

$$\log (R_S(t)) = \lim_{\delta \to \infty} -\frac{1}{\delta} \log(Z_{S,\delta}(-t))$$

=
$$\lim_{\delta \to \infty} -\frac{1}{\delta} \log(U_S(-t)^{-\delta - m - 2} U_S^{\bullet}(-t)) = \log (U_S(-t))$$

Extensions

Characteristic polynomial, coboundary polynomial of $\mathcal{A}_{S}(n)$:

$$\sum_{n=0}^{\infty} \chi_{\mathcal{A}_{S}(n)}(q) \frac{t^{n}}{n!} = R(0, -t)^{-q},$$
$$\sum_{n=0}^{\infty} P_{\mathcal{A}_{S}(n)}(q, y) \frac{t^{n}}{n!} = R(y, -t)^{-q},$$
where $R(y, t) = \sum_{T \ m\text{-boxed}} \frac{t^{|T|}}{|T|!} (-1)^{\#\text{boxes}} y^{\#S\text{-pairs}}.$

Extensions

Characteristic polynomial, coboundary polynomial of $\mathcal{A}_{S}(n)$:

$$\sum_{n=0}^{\infty} \chi_{\mathcal{A}_{S}(n)}(q) \frac{t^{n}}{n!} = R(0, -t)^{-q},$$

$$\sum_{n=0}^{\infty} P_{\mathcal{A}_{S}(n)}(q, y) \frac{t^{n}}{n!} = R(y, -t)^{-q},$$
where $R(y, t) = \sum_{T \ m\text{-boxed}} \frac{t^{|T|}}{|T|!}(-1)^{\#\text{boxes}} y^{\#S\text{-pairs}}.$

Bijection and counting results for more general arrangements: $\mathcal{A}_{(S_{i,j})_{1 \leq i < j \leq n}} \subset \mathbb{R}^n$ with hyperplanes $\{x_i - x_j \in S_{i,j}\}$.

