Recent developments on chromatic quasisymmetric functions

Michelle Wachs
University of Miami
Let $C(G)$ be set of proper colorings of graph $G = ([n], E)$, where a proper coloring is a map $c : [n] \rightarrow \mathbb{P}$ such that $c(i) \neq c(j)$ if $\{i, j\} \in E$.

Chromatic symmetric function (Stanley, 1995)

$$X_G(x) := \sum_{c \in C(G)} x_{c(1)}x_{c(2)} \cdots x_{c(n)}$$
Let $C(G)$ be set of proper colorings of graph $G = ([n], E)$, where a proper coloring is a map $c : [n] \to \mathbb{P}$ such that $c(i) \neq c(j)$ if $\{i, j\} \in E$.

Chromatic symmetric function (Stanley, 1995)

$$X_G(x) := \sum_{c \in C(G)} x_{c(1)}x_{c(2)} \cdots x_{c(n)}$$

$$X_G(1, 1, \ldots, 1, 0, 0, \ldots) = \chi_G(m)$$
Chromatic symmetric functions

Let Π_G be the bond lattice of G.

Whitney (1932):

$$\chi_G(m) = \sum_{\pi \in \Pi_G} \mu(\hat{0}, \pi)m^{\left|\pi\right|}$$

Stanley (1995): Let p_{λ} denote the power-sum symmetric function associated with $\lambda \vdash n$. Then

$$X_G(x) = \sum_{\pi \in \Pi_G} \mu(\hat{0}, \pi)p_{\text{type}(\pi)}(x)$$

Equivalently

$$\omega X_G(x) = \sum_{\pi \in \Pi_G} \mu(\hat{0}, \pi)p_{\text{type}(\pi)}(x),$$

which implies that $\omega X_G(x)$ is p-positive.
Chromatic symmetric functions

Let Π_G be the bond lattice of G.

Whitney (1932):

$$\chi_G(m) = \sum_{\pi \in \Pi_G} \mu(\hat{0}, \pi) m^{||\pi||}$$

Stanley (1995): Let p_λ denote the power-sum symmetric function associated with $\lambda \vdash n$. Then

$$X_G(x) = \sum_{\pi \in \Pi_G} \mu(\hat{0}, \pi) p_{\text{type}(\pi)}(x).$$

Equivalently

$$\omega X_G(x) = \sum_{\pi \in \Pi_G} |\mu(\hat{0}, \pi)| p_{\text{type}(\pi)}(x),$$

which implies that $\omega X_G(x)$ is p-positive.
b-Positivity

Important **bases** for the vector space Λ_n of homogeneous symmetric functions of degree n:

- complete homogeneous symmetric functions: $\{h_\lambda : \lambda \vdash n\}$
- elementary symmetric functions: $\{e_\lambda : \lambda \vdash n\}$
- power-sum symmetric functions: $\{p_\lambda : \lambda \vdash n\}$
- Schur functions: $\{s_\lambda : \lambda \vdash n\}$

Involution $\omega : \Lambda_n \rightarrow \Lambda_n$ defined by $\omega(h_\lambda) = e_\lambda$.

Let $b = \{b_\lambda : \lambda \vdash n\}$ be a basis for Λ_n. A symmetric function $f \in \Lambda_n$ is said to be **b-positive** if $f = \sum_{\lambda \vdash n} c_\lambda b_\lambda$, where $c_\lambda \geq 0$.

h-positive \implies **p-positive and Schur-positive**.

f is **e-positive** $\iff \omega f$ is **h-positive**.

The incomparability graph $\text{inc}(P)$ of a finite poset P on $[n]$ is the graph whose edges are pairs of incomparable elements of P.

A poset P is said to be $(a+b)$-free if P contains no induced subposet isomorphic to the disjoint union of an a-element chain and a b-element chain.

Conjecture (Stanley-Stembridge (1993)) If P is $(3+1)$-free then $X_{K_{3,1}}$ is e-positive.

$$X_{K_{3,1}} = 4e_4 + 5e_{3,1} - 2e_{2,2} + e_{2,1,1}$$
The incomparability graph $\text{inc}(P)$ of a finite poset P on $[n]$ is the graph whose edges are pairs of incomparable elements of P.

A poset P is said to be $(a+b)$-free if P contains no induced subposet isomorphic to the disjoint union of an a element chain and a b element chain.

$$X_{K_{3,1}} = 4e_4 + 5e_{3,1} - 2e_{2,2} + e_{2,1,1}$$
e-positivity

\[X_{K_{3,1}} = 4e_4 + 5e_{3,1} - 2e_{2,2} + e_{2,1,1} \]

- The incomparability graph \(\text{inc}(P) \) of a finite poset \(P \) on \([n]\) is the graph whose edges are pairs of incomparable elements of \(P \).
- A poset \(P \) is said to be \((a + b)\)-free if \(P \) contains no induced subposet isomorphic to the disjoint union of an \(a \) element chain and a \(b \) element chain.

Conjecture (Stanley-Stembridge (1993))

If \(P \) is \((3 + 1)\)-free then \(X_{\text{inc}(P)} \) is e-positive.
Stanley-Stembridge e-positivity conjecture

Conjecture (Stanley-Stembridge (1993))

If P *is* $(3 + 1)$-free *then* $X_{\text{inc}}(P)$ *is e-positive.*

- **Gasharov (1994):** expansion in the Schur basis $\{s_\lambda\}$
- **Chow (1996):** expansion in the fundamental quasisymmetric function basis $\{F_\mu\}$
- **Guay-Paquet (2013):** If true for unit interval orders (posets that are both $(3+1)$-free and $(2+2)$-free) then true in general i.e. for posets that are $(3+1)$-free.
Chromatic quasisymmetric function (Shareshian and MW)

\[X_G(x, t) := \sum_{c \in C(G)} t^{\text{des}(c)} x_{c(1)} x_{c(2)} \cdots x_{c(n)} \]

where

\[\text{des}(c) := |\{\{i, j\} \in E(G) : i < j \text{ and } c(i) > c(j)\}|. \]
Quasisymmetric refinement

\[G = \begin{array}{c}
\circ \\
1 \\
\circ \\
2 \\
\circ \\
3
\end{array} \]

\[X_G(x, t) = e_3 + (e_3 + e_{2,1})t + e_3 t^2 \]

\[G = \begin{array}{c}
\circ \\
1 \\
\circ \\
3 \\
\circ \\
2
\end{array} \]

\[X_G(x, t) = (e_3 + F_{1,2}) + 2e_3 t + (e_3 + F_{2,1})t^2 \]

where \(F_\mu(x_1, x_2, \ldots) \) := fundamental quasisymmetric function indexed by composition \(\mu \)
Chromatic quasisymmetric functions that are symmetric

A natural unit interval order is a unit interval order with a certain natural canonical labeling.

Example: The poset $P_{n,r}$ on $[n]$ with order relation given by $i \prec_P j$ if $j - i \geq r$. Let

$$G_{n,r} := \text{inc}(P_{n,r}) = ([n], \{\{i,j\} : 0 < j - i < r\})$$

When $r = 2$, $G_{n,r}$ is the path

$$1 - 2 - \cdots - n$$

and

$$X_{G_{n,r}} = \sum_{w \in W_n} t^{\text{des}(w)} x_w,$$

where $W_n = \{w \in \mathcal{P}^n : \text{adjacent letters of } w \text{ are distinct}\}$.
Chromatic quasisymmetric functions that are symmetric

Theorem (Shareshian and MW)

If G is the incomparability graph of a natural unit interval order then the coefficients of powers of t in $X_G(x, t)$ are symmetric functions and form a palindromic sequence.

\[
X_{G_{3,2}} = e_3 + (e_3 + e_{2,1})t + e_3 t^2 \\
X_{G_{4,2}} = e_4 + (e_4 + e_{3,1} + e_{2,2})t + (e_4 + e_{3,1} + e_{2,2})t^2 + e_4 t^3
\]
Theorem (Shareshian and MW)
If \(G \) is the incomparability graph of a natural unit interval order then the coefficients of powers of \(t \) in \(X_G(x, t) \) are symmetric functions and form a palindromic sequence.

\[
\begin{align*}
X_{G_{3,2}} &= e_3 + (e_3 + e_{2,1}) t + e_3 t^2 \\
X_{G_{4,2}} &= e_4 + (e_4 + e_{3,1} + e_{2,2}) t + (e_4 + e_{3,1} + e_{2,2}) t^2 + e_4 t^3
\end{align*}
\]

Conjecture (Shareshian and MW - refinement of Stan-Stem)
If \(G \) is the incomparability graph of a natural unit interval order then the coefficients of powers of \(t \) in \(X_G(x, t) \) are e-positive and form an e-unimodal sequence.

True for
\(r = 1, n \) (easy)
\(r = 2, n - 1, n - 2 \) (work of Shareshian and MW)
\(1 < r < n \leq 9 \) (computer)
Our approach - a bridge to Hessenberg varieties

Let G be a natural unit interval graph (i.e., the incomparability graph of a natural unit interval order).
Let \mathcal{H}_G be the regular semisimple Hessenberg variety associated with G.
Tymoczko uses GKM theory to define a representation of \mathfrak{S}_n on each cohomology $H^{2j}(\mathcal{H}_G)$.

Conjecture (Shareshian and MW (2012))

Let $\text{ch}H^{2j}(\mathcal{H}_G)$ be the Frobenius characteristic of Tymoczko's representation of \mathfrak{S}_n on $H^{2j}(\mathcal{H}_G)$. Then

$$\omega X_G(x, t) = \sum_{j \geq 0} \text{ch}H^{2j}(\mathcal{H}_G)t^j.$$
Our approach - a bridge to Hessenberg varieties

Let G be a natural unit interval graph (i.e., the incomparability graph of a natural unit interval order). Let \mathcal{H}_G be the regular semisimple Hessenberg variety associated with G. Tymoczko uses GKM theory to define a representation of \mathfrak{S}_n on each cohomology $H^{2j}(\mathcal{H}_G)$.

Conjecture (Shareshian and MW (2012))

Let $\text{ch}H^{2j}(\mathcal{H}_G)$ be the Frobenius characteristic of Tymoczko's representation of \mathfrak{S}_n on $H^{2j}(\mathcal{H}_G)$. Then

$$\omega X_G(x, t) = \sum_{j \geq 0} \text{ch}H^{2j}(\mathcal{H}_G)t^j.$$

If this conjecture is true then our refinement of the Stanley-Stembridge e-positivity conjecture is equivalent to

Conjecture

Tymoczko's representation of \mathfrak{S}_n on $H^{2j}(\mathcal{H}_G)$ is a permutation representation for which each point stabilizer is a Young subgroup.
The bridge conjecture is true!

Let G be a natural unit interval graph.

Theorem (Brosnan and Chow (2015), Guay-Paquet (2016))

Let $\chi_{H^2_j(\mathcal{H}_G)}$ be the Frobenius characteristic of Tymoczko’s representation of S_n on $H^2_j(\mathcal{H}_G)$. Then

$$\omega X_G(x, t) = \sum_{j \geq 0} \chi_{H^2_j(\mathcal{H}_G)} t^j.$$

Combinatorial consequences:

- $X_G(x, t)$ is Schur-positive and **Schur-unimodal**.
- Generalized q-Eulerian polynomials are q-unimodal.

Algebro-geometric consequences:

- Multiplicity of irreducibles in Tymoczko’s representation can be obtained from the expansion of $X_G(x, t)$ in Schur basis.
- Character of Tymoczko’s representation can be obtained from expansion of $X_G(x, t)$ in power-sum basis.
Schur and power-sum expansions

Let \(G = ([n], E) \) be a natural unit interval graph, and let \(P \) be such that \(G = \text{inc}(P) \).

For \(\sigma \in \mathfrak{S}_n \), a \(G \)-inversion of \(\sigma \) is an inversion \((\sigma(i), \sigma(j)) \) of \(\sigma \) such that \(\{\sigma(i), \sigma(j)\} \in E \). Let \(\text{inv}_G(\sigma) \) be the number of \(G \)-inversions of \(\sigma \).

Theorem (Shareshian and MW, \(t=1 \) Gasharov)

\[
X_G(x, t) = \sum_{\lambda \vdash n} \sum_{T \in \mathcal{T}_{P, \lambda}} t^{\text{inv}_G(w(T))} s_\lambda.
\]

Consequently \(X_G(x, t) \) is Schur-positive.

Theorem (Athanasiadis, conjectured by Shareshian and MW)

\[
\omega X_G(x, t) = \sum_{\lambda \vdash n} \sum_{T \in \mathcal{R}_{P, \lambda}} t^{\text{inv}_G(w(T))} z^{-1}_\lambda p_\lambda
\]

Consequently \(\omega X_G(x, t) \) is \(p \)-positive.
A weakly increasing sequence \(\mathbf{m} = (m_1, \ldots, m_n) \) of integers satisfying \(1 \leq i \leq m_i \leq n \), will be called a Hessenberg sequence.

Let \(\mathcal{F}_n \) be the set of all flags of subspaces of \(\mathbb{C}^n \)

\[
F : F_1 \subset F_2 \subset \cdots \subset F_n = \mathbb{C}^n
\]

where \(\dim F_i = i \).

Fix an \(n \times n \) diagonal matrix \(D \) with distinct diagonal entries and let \(\mathbf{m} = (m_1, \ldots, m_n) \) be a Hessenberg sequence.

The type A regular semisimple Hessenberg variety associated with \(\mathbf{m} \) is

\[
\mathcal{H}(\mathbf{m}) := \{ F \in \mathcal{F}_n \mid DF_i \subseteq F_{m_i} \ \forall i \in [n] \}.
\]
A weakly increasing sequence $m = (m_1, \ldots, m_n)$ of integers satisfying $1 \leq i \leq m_i \leq n$, will be called a Hessenberg sequence.

Let \mathcal{F}_n be the set of all flags of subspaces of \mathbb{C}^n

$$F : F_1 \subset F_2 \subset \cdots \subset F_n = \mathbb{C}^n$$

where $\dim F_i = i$.

Fix an $n \times n$ diagonal matrix D with distinct diagonal entries and let $m = (m_1, \ldots, m_n)$ be a Hessenberg sequence.

The type A regular semisimple Hessenberg variety associated with m is

$$\mathcal{H}(m) := \{ F \in \mathcal{F}_n \mid DF_i \subseteq F_{m_i} \ \forall i \in [n] \}.$$

Every natural unit interval graph G can be associated with a Hessenberg sequence $m(G)$. Let

$$\mathcal{H}_G := \mathcal{H}(m(G)).$$
The group T of nonsingular $n \times n$ diagonal matrices acts on

$$\mathcal{H}_G := \{ F \in \mathcal{F}_n \mid DF_i \subseteq F_{m_{i}(G)} \ \forall i \in [n] \}.$$

by left multiplication.

Moment graph: graph whose vertices are T-fixed points and edges are one-dimensional orbits.

Fixed points of the torus action:

$$F_\sigma : \langle e_{\sigma(1)} \rangle \subset \langle e_{\sigma(1)}, e_{\sigma(2)} \rangle \subset \cdots \subset \langle e_{\sigma(1)}, \ldots, e_{\sigma(n)} \rangle$$

where σ is a permutation.

So the vertices of the moment graph can be represented by permutations.
Combinatorial description of the moment graph

For any natural unit interval graph \(G = ([n], E) \), let \(\Gamma(G) \) be the graph with vertex set \(\mathcal{S}_n \) and edge set

\[
\{\{\sigma, \sigma(i,j)\} : \sigma \in \mathcal{S}_n \text{ and } \{i,j\} \in E\}.
\]

The edges of \(\Gamma(G) \) are labeled as follows: edge \(\{\sigma, (a,b)\sigma\} \) is labeled with \((a,b) \), where \(a < b \).

\(\Gamma(G) \) is the moment graph for the Hessenberg variety \(\mathcal{H}_G \).
Combinatorial description of the moment graph

For any natural unit interval graph $G = ([n], E)$, let $\Gamma(G)$ be the graph with vertex set \mathcal{S}_n and edge set

$$\{\{\sigma, \sigma(i,j)\} : \sigma \in \mathcal{S}_n \text{ and } \{i,j\} \in E\}.$$

The edges of $\Gamma(G)$ are labeled as follows: edge $\{\sigma, (a, b)\sigma\}$ is labeled with (a, b), where $a < b$.

$\Gamma(G)$ is the moment graph for the Hessenberg variety \mathcal{H}_G.

Example: $n = 3$.

Color coded edge labels: $(1,2)$ $(2,3)$ $(1,3)$
The equivariant cohomology ring $H^*_T(\mathcal{H}_G)$

$H^*_T(\mathcal{H}_G)$ is isomorphic to a subring of $R_n := \prod_{\sigma \in S_n} \mathbb{C}[t_1, \ldots, t_n]$. For $p \in R_n$, let $p_\sigma(t_1, \ldots, t_n) \in \mathbb{C}[t_1, \ldots, t_n]$ denote the σ-component of p, where $\sigma \in S_n$.

$p \in R_n$ satisfies the edge condition for the moment graph Γ_G if for all edges $\{\sigma, \tau\}$ of $\Gamma(G)$ with label (i, j), the polynomial $p_\sigma(t_1, \ldots, t_n) - p_\tau(t_1, \ldots, t_n)$ is divisible by $t_i - t_j$.

Color coded edge labels: $(1,2)$ $(2,3)$ $(1,3)$

$H^*_T(\mathcal{H}_G)$ is isomorphic to the subring of R_n whose elements satisfy the edge condition for Γ_G.
\(\mathfrak{S}_n \) acts on \(p \in H_T^*(\mathcal{H}_G) \) by

\[
(\sigma p)_\tau(t_1, \ldots, t_n) = p_{\sigma^{-1}\tau}(t_{\sigma(1)}, \ldots, t_{\sigma(n)})
\]

Color coded edge labels: \((1,2)\) \((2,3)\) \((1,3)\)
\(\mathfrak{S}_n \) acts on \(p \in H^*_T(\mathcal{H}_G) \) by

\[
(\sigma p)_{\tau}(t_1, \ldots, t_n) = p_{\sigma^{-1} \tau}(t_{\sigma(1)}, \ldots, t_{\sigma(n)})
\]

Color coded edge labels: \((1,2)\) \((2,3)\) \((1,3)\)
\mathfrak{S}_n acts on $p \in H^*_T(\mathcal{H}_G)$ by

$$(\sigma p)_\tau(t_1, \ldots, t_n) = p_{\sigma^{-1}}(t_{\sigma(1)}, \ldots, t_{\sigma(n)})$$

Color coded edge labels: (1,2) (2,3) (1,3)
Tymoczko’s representation

\mathfrak{S}_n acts on $p \in H_T^*(\mathcal{H}_G)$ by

$$(\sigma p)_\tau(t_1, \ldots, t_n) = p_{\sigma^{-1}}(t_{\sigma(1)}, \ldots, t_{\sigma(n)})$$

Color coded edge labels: (1,2) (2,3) (1,3)

Since $\langle t_1, \ldots, t_n \rangle H_T^*(\mathcal{H}_G)$ is invariant under the action of \mathfrak{S}_n, the representation of \mathfrak{S}_n on $H_T^*(\mathcal{H}_G)$ induces a representation on the graded ring $H^*(\mathcal{H}_G)$.

$$H^*(\mathcal{H}_G) \cong H_T^*(\mathcal{H}_G)/\langle \langle t_1, \ldots, t_n \rangle H_T^*(\mathcal{H}_G) \rangle$$
The proofs of $\omega X_G(x, t) = \sum_{j \geq 0} \text{ch} H^{2j}(\mathcal{H}_G) t^j$

- **Brosnan and Chow** reduce the problem of computing Tymacczko’s representation of S_n on regular semisimple Hessenberg varieties to that of computing the Betti numbers of regular (but not nec. semisimple) Hessenberg varieties. To do this they use results from the theory of local systems and perverse sheaves. In particular they use the local invariant cycle theorem of Beilinson-Bernstein-Deligne

- **Guay-Paquet** introduces a new Hopf algebra on labeled graphs to recursively decompose the regular semisimple Hessenberg varieties.
Other recently discovered connections with $X_G(x, t)$

Chromatic quasisymmetric function of the cycle graph

\[C_8 = \]

Not a unit interval graph

Theorem (Stanley (1995))

\[\sum_{n \geq 2} X_{C_n}(x) z^n = \sum_{k \geq 2} (k-1) e_k z_k \]

Consequently, \(X_{C_n}(x) \) is e-positive.

Theorem (Ellzey and MW)

\[\sum_{n \geq 2} X_{C_n}(x, t) z^n = \sum_{k \geq 2} (\binom{k}{2} + k t + k t^2 \left(\frac{1}{2} \right) \left(k - 3 \right) t) e_k z_k \]

Consequently, \(X_{C_n}(x, t) \) is e-positive.

t-analog:

\[t^n := 1 + t + \cdots + t^{n-1} \]
Chromatic quasisymmetric function of the cycle graph

$C_8 = \begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}$

Not a unit interval graph

Theorem (Stanley (1995))

$$\sum_{n \geq 2} X_{C_n}(x) z^n = \frac{\sum_{k \geq 2} k(k - 1)e_k z^k}{1 - \sum_{k \geq 2} (k - 1)e_k z^k}.$$

Consequently $X_{C_n}(x)$ is e-positive.
Chromatic quasisymmetric function of the cycle graph

\[C_8 = \begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
\end{array} \]

Not a unit interval graph

Theorem (Stanley (1995))

\[
\sum_{n \geq 2} X_{C_n}(x)z^n = \frac{\sum_{k \geq 2} k(k - 1)e_k z^k}{1 - \sum_{k \geq 2} (k - 1)e_k z^k}.
\]

Consequently \(X_{C_n}(x) \) is e-positive.

Theorem (Ellzey and MW)

\[
\sum_{n \geq 2} X_{C_n}(x, t)z^n = \frac{\sum_{k \geq 2} ([2]_t[k]_t + k t^2[k - 3]_t)e_k z^k}{1 - t \sum_{k \geq 2} [k - 1]_t e_k z^k}.
\]

Consequently \(X_{C_n}(x, t) \) is e-positive.

t-analog: \([n]_t := 1 + t + \cdots + t^{n-1}\).
Chromatic quasi symmetric function for labeled graphs

\[X_G(x, t) := \sum_{c \in C(G)} t^{\text{des}(c)} x_{c(1)} x_{c(2)} \cdots x_{c(n)} \]

where

\[\text{des}(c) := \left| \{ \{ i, j \} \in E(G) : i < j \text{ and } c(i) > c(j) \} \right| \].

green < yellow < blue

des(c) = 2
New improved version - digraphs

Chromatic quasi-symmetric function for labeled graphs

\[X_G(x, t) := \sum_{c \in C(G)} t^{\text{des}(c)} x_{c(1)} x_{c(2)} \cdots x_{c(n)} \]

where

\[\text{des}(c) := |\{(i, j) \in E(G) : i < j \text{ and } c(i) > c(j)\}|. \]

green < yellow < blue

For a digraph \(\overrightarrow{G} \)

\[\text{des}(c) : |\{(i, j) \in E(\overrightarrow{G}) : c(i) > c(j)\}| \]

labeled graphs \(\equiv \) acyclic digraphs
The directed cycle

Theorem (Ellzey and MW (2017))

\[
\sum_{n \geq 2} X_{C_n}(x, t) z^n = \frac{\sum_{k \geq 2} ([2]_t[k]_t + k t^2[k - 3]_t) e_k z^k}{1 - t \sum_{k \geq 2} [k - 1]_t e_k z^k}
\]

Consequently \(X_{C_n}(x, t) \) is e-positive.

Theorem (Ellzey (2016))

\[
\sum_{n \geq 2} X_{\vec{C}_n}(x, t) z^n = \frac{t \sum_{k \geq 2} k[k - 1]_t e_k z^k}{1 - t \sum_{k \geq 2} [k - 1]_t e_k z^k}.
\]

Consequently \(X_{\vec{C}_n}(x, t) \) is e-positive.
The directed cycle

Theorem (Ellzey and MW (2017))

\[
\sum_{n \geq 2} X_{C_n}(x, t) z^n = \frac{\sum_{k \geq 2}([2]_t[k]_t + k t^2[k - 3]_t)e_kz^k}{1 - t \sum_{k \geq 2} [k - 1]_t e_k z^k}
\]

Consequently \(X_{C_n}(x, t) \) is e-positive.

Theorem (Ellzey (2016))

\[
\sum_{n \geq 2} X_{\nabla C_n}(x, t) z^n = \frac{t \sum_{k \geq 2} k[k - 1]_t e_k z^k}{1 - t \sum_{k \geq 2} [k - 1]_t e_k z^k}.
\]

Consequently \(X_{\nabla C_n}(x, t) \) is e-positive.

The second theorem was used to prove a result on Smirnov words, which implies both theorems.
p-positivity

Theorem (Athanasiadis, conjectured by Shareshian and MW)

Let G be the incomparibility graph of a natural unit interval order P. Then

$$\omega X_G(x, t) = \sum_{\lambda \vdash n} \sum_{T \in \mathcal{R}_{P, \lambda}} t^{\text{inv}_G(w(T))} z_{\lambda}^{-1} p_{\lambda}$$

Consequently $\omega X_G(x, t)$ is p-positive.

Theorem (Ellzey (2016))

Let \vec{G} be a digraph for which $X_{\vec{G}}(x, t)$ is symmetric. Then

$$\omega X_{\vec{G}}(x, t) = \sum_{\lambda \vdash n} \sum_{T \in \mathcal{R}_{\vec{G}, \lambda}} t^{\text{inv}_{\vec{G}}(w(T))} z_{\lambda}^{-1} p_{\lambda}$$

Consequently $\omega X_{\vec{G}}(x, t)$ is p-positive.
Cyclic version of unit interval digraph

1 2 3 \ldots n-1
Cyclic version of unit interval digraph
Cyclic version of unit interval digraph

circular indifference digraph
Cyclic version of unit interval digraph

Theorem (Ellzey (2016))
If \overrightarrow{G} is a circular indifference digraph then $X_{\overrightarrow{G}}(x, t)$ is symmetric.

Conjecture
If \overrightarrow{G} is a circular indifference digraph then $X_{\overrightarrow{G}}(x, t)$ is e-positive and e-unimodal.
Other work on the digraph version of chromatic quasisymmetric functions

- **Awan and Bernardi (2016)**: Tuttle quasisymmetric functions for directed graphs.
- **Alexandersson and Panova (2016)**: connection to LLT polynomials.