Recent developments on chromatic quasisymmetric functions

Michelle Wachs
University of Miami

Chromatic symmetric functions

Let $C(G)$ be set of proper colorings of graph $G=([n], E)$, where a proper coloring is a map $c:[n] \rightarrow \mathbb{P}$ such that $c(i) \neq c(j)$ if $\{i, j\} \in E$.
Chromatic symmetric function (Stanley, 1995)

$$
X_{G}(\mathbf{x}):=\sum_{c \in C(G)} x_{c(1)} x_{c(2)} \ldots x_{c(n)}
$$

Chromatic symmetric functions

Let $C(G)$ be set of proper colorings of graph $G=([n], E)$, where a proper coloring is a map $c:[n] \rightarrow \mathbb{P}$ such that $c(i) \neq c(j)$ if $\{i, j\} \in E$.
Chromatic symmetric function (Stanley, 1995)

$$
X_{G}(\mathbf{x}):=\sum_{c \in C(G)} x_{c(1)} x_{c(2)} \ldots x_{c(n)}
$$

$$
X_{G}(\underbrace{1,1, \ldots, 1}_{m}, 0,0, \ldots)=\chi_{G}(m)
$$

Chromatic symmetric functions

Let Π_{G} be the bond lattice of G. Whitney (1932):

$$
\chi_{G}(m)=\sum_{\pi \in \Pi_{G}} \mu(\hat{0}, \pi) m^{|\pi|}
$$

Chromatic symmetric functions

Let Π_{G} be the bond lattice of G. Whitney (1932):

$$
\chi_{G}(m)=\sum_{\pi \in \Pi_{G}} \mu(\hat{0}, \pi) m^{|\pi|}
$$

Stanley (1995): Let p_{λ} denote the power-sum symmetric function associated with $\lambda \vdash n$. Then

$$
X_{G}(\mathbf{x})=\sum_{\pi \in \Pi_{G}} \mu(\hat{0}, \pi) p_{\operatorname{type}(\pi)}(\mathbf{x})
$$

Equivalently

$$
\omega X_{G}(\mathbf{x})=\sum_{\pi \in \boldsymbol{\Pi}_{G}}|\mu(\hat{0}, \pi)| p_{\mathrm{type}(\pi)}(\mathbf{x})
$$

which implies that $\omega X_{G}(\mathbf{x})$ is p-positive.

b-Positivity

Important bases for the vector space Λ_{n} of homogeneous symmetric functions of degree n :

- complete homogeneous symmetric functions: $\left\{h_{\lambda}: \lambda \vdash n\right\}$
- elementary symmetric functions: $\left\{e_{\lambda}: \lambda \vdash n\right\}$
- power-sum symmetric functions: $\left\{p_{\lambda}: \lambda \vdash n\right\}$
- Schur functions: $\left\{s_{\lambda}: \lambda \vdash n\right\}$

Involution $\omega: \Lambda_{n} \rightarrow \Lambda_{n}$ defined by $\omega\left(h_{\lambda}\right)=e_{\lambda}$.
Let $b=\left\{b_{\lambda}: \lambda \vdash n\right\}$ be a basis for Λ_{n}. A symmetric function $f \in \Lambda_{n}$ is said to be b-positive if $f=\sum_{\lambda \vdash n} c_{\lambda} b_{\lambda}$, where $c_{\lambda} \geq 0$.
h-positive $\Longrightarrow \mathrm{p}$-positive and Schur-positive.
f is e-positive $\Longleftrightarrow \omega f$ is h-positive.

e-positivity

$$
X_{K_{3,1}}=4 e_{4}+5 e_{3,1}-2 e_{2,2}+e_{2,1,1}
$$

e-positivity

$$
X_{K_{3,1}}=4 e_{4}+5 e_{3,1}-2 e_{2,2}+e_{2,1,1}
$$

- The incomparability graph $\operatorname{inc}(P)$ of a finite poset P on $[n]$ is the graph whose edges are pairs of incomparable elements of P.
- A poset P is said to be $(a+b)$-free if P contains no induced subposet isomorphic to the disjoint union of an a element chain and a b element chain.

e-positivity

$$
X_{K_{3,1}}=4 e_{4}+5 e_{3,1}-2 e_{2,2}+e_{2,1,1}
$$

- The incomparability graph $\operatorname{inc}(P)$ of a finite poset P on $[n]$ is the graph whose edges are pairs of incomparable elements of P.
- A poset P is said to be $(a+b)$-free if P contains no induced subposet isomorphic to the disjoint union of an a element chain and a b element chain.

Conjecture (Stanley-Stembridge (1993))
If P is $(3+1)$-free then $X_{\mathrm{inc}(P)}$ is e-positive.

Stanley-Stembridge e-positivity conjecture

Conjecture (Stanley-Stembridge (1993))
 If P is $(3+1)$-free then $X_{\operatorname{inc}(P)}$ is e-positive.

- Gasharov (1994): expansion in the Schur basis $\left\{s_{\lambda}\right\}$
- Chow (1996): expansion in the fundamental quasisymmetric function basis $\left\{F_{\mu}\right\}$
- Guay-Paquet (2013): If true for unit interval orders (posets that are both $(3+1)$-free and $(2+2)$-free) then true in general i.e. for posets that are $(3+1)$-free.

Quasisymmetric refinement

Chromatic quasisymmetric function (Shareshian and MW)

$$
X_{G}(\mathbf{x}, t):=\sum_{c \in C(G)} t^{\operatorname{des}(c)} x_{c(1)} x_{c(2)} \ldots x_{c(n)}
$$

where

$$
\operatorname{des}(c):=\mid\{\{i, j\} \in E(G): i<j \text { and } c(i)>c(j)\} \mid .
$$

Quasisymmetric refinement

$$
\begin{aligned}
& G=(3) \\
& \quad X_{G}(\mathbf{x}, t)=e_{3}+\left(e_{3}+e_{2,1}\right) t+e_{3} t^{2} \\
& \quad X_{G}(\mathbf{x}, t)=\left(e_{3}+F_{1,2}\right)+2 e_{3} t+\left(e_{3}+F_{2,1}\right) t^{2}
\end{aligned}
$$

where $F_{\mu}\left(x_{1}, x_{2}, \ldots\right):=$ fundamental quasisymmetric function indexed by composition μ

Chromatic quasisymmetric functions that are symmetric

A natural unit interval order is a unit interval order with a certain natural canonical labeling.
Example: The poset $P_{n, r}$ on [n] with order relation given by $i<_{p} j$ if $j-i \geq r$. Let

$$
G_{n, r}:=\operatorname{inc}\left(P_{n, r}\right)=([n],\{\{i, j\}: 0<j-i<r\})
$$

When $r=2, G_{n, r}$ is the path

$$
1-2-\cdots-n
$$

and

$$
X_{G_{n, r}}=\sum_{w \in W_{n}} t^{\operatorname{des}(w)} x_{w}
$$

where $W_{n}=\left\{w \in \mathbb{P}^{n}:\right.$ adjacent letters of w are distinct $\}$.

Chromatic quasisymmetric functions that are symmetric

Theorem (Shareshian and MW)

If G is the incomparability graph of a natural unit interval order then the coefficients of powers of t in $X_{G}(\mathbf{x}, t)$ are symmetric functions and form a palindromic sequence.

$$
\begin{aligned}
& X_{G_{3,2}}=e_{3}+\left(e_{3}+e_{2,1}\right) t+e_{3} t^{2} \\
& X_{G_{4,2}}=e_{4}+\left(e_{4}+e_{3,1}+e_{2,2}\right) t+\left(e_{4}+e_{3,1}+e_{2,2}\right) t^{2}+e_{4} t^{3}
\end{aligned}
$$

Chromatic quasisymmetric functions that are symmetric

Theorem (Shareshian and MW)

If G is the incomparability graph of a natural unit interval order then the coefficients of powers of t in $X_{G}(\mathbf{x}, t)$ are symmetric functions and form a palindromic sequence.

$$
\begin{aligned}
& X_{G_{3,2}}=e_{3}+\left(e_{3}+e_{2,1}\right) t+e_{3} t^{2} \\
& X_{G_{4,2}}=e_{4}+\left(e_{4}+e_{3,1}+e_{2,2}\right) t+\left(e_{4}+e_{3,1}+e_{2,2}\right) t^{2}+e_{4} t^{3}
\end{aligned}
$$

Conjecture (Shareshian and MW - refinement of Stan-Stem)

 If G is the incomparability graph of a natural unit interval order then the coefficients of powers of t in $X_{G}(\mathbf{x}, t)$ are e-positive and form an e-unimodal sequence.True for
$r=1, n$ (easy)
$r=2, n-1, n-2$ (work of Shareshian and MW)
$1<r<n \leq 9$ (computer)

Our approach - a bridge to Hessenberg varieties

Let G be a natural unit interval graph (i.e., the incomparability graph of a natural unit interval order).
Let \mathcal{H}_{G} be the regular semisimple Hessenberg variety associated with G. Tymoczko uses GKM theory to define a representation of \mathfrak{S}_{n} on each cohomology $H^{2 j}\left(\mathcal{H}_{G}\right)$.

Conjecture (Shareshian and MW (2012))

Let $\operatorname{ch} H^{2 j}\left(\mathcal{H}_{G}\right)$ be the Frobenius characteristic of Tymoczko's representation of \mathfrak{S}_{n} on $H^{2 j}\left(\mathcal{H}_{G}\right)$. Then

$$
\omega X_{G}(\mathbf{x}, t)=\sum_{j \geq 0} \operatorname{ch} H^{2 j}\left(\mathcal{H}_{G}\right) t^{j}
$$

Our approach - a bridge to Hessenberg varieties

Let G be a natural unit interval graph (i.e., the incomparability graph of a natural unit interval order).
Let \mathcal{H}_{G} be the regular semisimple Hessenberg variety associated with G. Tymoczko uses GKM theory to define a representation of \mathfrak{S}_{n} on each cohomology $H^{2 j}\left(\mathcal{H}_{G}\right)$.

Conjecture (Shareshian and MW (2012))

Let $\operatorname{ch} H^{2 j}\left(\mathcal{H}_{G}\right)$ be the Frobenius characteristic of Tymoczko's representation of \mathfrak{S}_{n} on $H^{2 j}\left(\mathcal{H}_{G}\right)$. Then

$$
\omega X_{G}(\mathbf{x}, t)=\sum_{j \geq 0} \operatorname{ch} H^{2 j}\left(\mathcal{H}_{G}\right) t^{j}
$$

If this conjecture is true then our refinement of the Stanley-Stembridge e-positivity conjecture is equivalent to

Conjecture

Tymoczko's representation of \mathfrak{S}_{n} on $H^{2 j}\left(\mathcal{H}_{G}\right)$ is a permutation representation for which each point stabilizer is a Young subgroup.

The bridge conjecture is true!

Let G be a natural unit interval graph.

Theorem (Brosnan and Chow (2015), Guay-Paquet (2016))

Let $\operatorname{ch} H^{2 j}\left(\mathcal{H}_{G}\right)$ be the Frobenius characteristic of Tymoczko's representation of \mathfrak{S}_{n} on $H^{2 j}\left(\mathcal{H}_{G}\right)$. Then

$$
\omega X_{G}(\mathbf{x}, t)=\sum_{j \geq 0} \operatorname{ch} H^{2 j}\left(\mathcal{H}_{G}\right) t^{j}
$$

Combinatorial consequences:

- $X_{G}(\mathbf{x}, t)$ is Schur-positive and Schur-unimodal.
- Generalized q-Eulerian polynomials are q-unimodal.

Algebro-geometric consequences:

- Multiplicity of irreducibles in Tymoczko's representation can be obtained from the expansion of $X_{G}(\mathbf{x}, t)$ in Schur basis.
- Character of Tymoczko's representation can be obtained from expansion of $X_{G}(\mathbf{x}, t)$ in power-sum basis.

Schur and power-sum expansions

Let $G=([n], E)$ be a natural unit interval graph, and let P be such that $G=\operatorname{inc}(P)$.

For $\sigma \in \mathfrak{S}_{n}$, a G-inversion of σ is an inversion $(\sigma(i), \sigma(j))$ of σ such that $\{\sigma(i), \sigma(j)\} \in E$. Let $\operatorname{inv}_{G}(\sigma)$ be the number of G-inversions of σ.
Theorem (Shareshian and MW, $\mathrm{t}=1$ Gasharov)

$$
X_{G}(\mathbf{x}, t)=\sum_{\lambda \vdash n} \sum_{T \in \mathcal{T}_{P, \lambda}} t^{\operatorname{inv} G(w(T))} s_{\lambda} .
$$

Consequently $X_{G}(\mathbf{x}, t)$ is Schur-positive.
Theorem (Athanasiadis, conjectured by Shareshian and MW)

$$
\omega X_{G}(\mathbf{x}, t)=\sum_{\lambda \vdash n} \sum_{T \in \mathcal{R}_{P, \lambda}} t^{\operatorname{inv} v_{G}(w(T))} z_{\lambda}^{-1} p_{\lambda}
$$

Consequently $\omega X_{G}(\mathbf{x}, t)$ is p-positive.

Hessenberg varieties (De Mari-Shayman (1988), De Mari-Procesi-Shayman (1992))

A weakly increasing sequence $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right)$ of integers satisfying $1 \leq i \leq m_{i} \leq n$, will be called a Hessenberg sequence. Let \mathcal{F}_{n} be the set of all flags of subspaces of \mathbb{C}^{n}

$$
F: F_{1} \subset F_{2} \subset \cdots \subset F_{n}=\mathbb{C}^{n}
$$

where $\operatorname{dim} F_{i}=i$.
Fix an $n \times n$ diagonal matrix D with distinct diagonal entries and let $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right)$ be a Hessenberg sequence.

The type A regular semisimple Hessenberg variety associated with m is

$$
\mathcal{H}(\mathbf{m}):=\left\{F \in \mathcal{F}_{n} \mid D F_{i} \subseteq F_{m_{i}} \forall i \in[n]\right\}
$$

A weakly increasing sequence $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right)$ of integers satisfying $1 \leq i \leq m_{i} \leq n$, will be called a Hessenberg sequence. Let \mathcal{F}_{n} be the set of all flags of subspaces of \mathbb{C}^{n}

$$
F: F_{1} \subset F_{2} \subset \cdots \subset F_{n}=\mathbb{C}^{n}
$$

where $\operatorname{dim} F_{i}=i$.
Fix an $n \times n$ diagonal matrix D with distinct diagonal entries and let $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right)$ be a Hessenberg sequence.

The type A regular semisimple Hessenberg variety associated with m is

$$
\mathcal{H}(\mathbf{m}):=\left\{F \in \mathcal{F}_{n} \mid D F_{i} \subseteq F_{m_{i}} \forall i \in[n]\right\}
$$

Every natural unit interval graph G can be associated with a Hessenberg sequence $\mathbf{m}(G)$. Let

$$
\mathcal{H}_{G}:=\mathcal{H}(\mathbf{m}(G))
$$

GKM theory and moment graphs

Goresky, Kottwitz, MacPherson (1998): Construction of equivariant cohomology ring of smooth complex projective varieties with a torus action. From this one gets ordinary cohomology ring.

The group T of nonsingular $n \times n$ diagonal matrices acts on

$$
\mathcal{H}_{G}:=\left\{F \in \mathcal{F}_{n} \mid D F_{i} \subseteq F_{m_{i}(G)} \forall i \in[n]\right\}
$$

by left multiplication.
Moment graph: graph whose vertices are T-fixed points and edges are one-dimensional orbits.

Fixed points of the torus action:

$$
F_{\sigma}:\left\langle e_{\sigma(1)}\right\rangle \subset\left\langle e_{\sigma(1)}, e_{\sigma(2)}\right\rangle \subset \cdots \subset\left\langle e_{\sigma(1)}, \ldots, e_{\sigma(n)}\right\rangle
$$

where σ is a permutation.
So the vertices of the moment graph can be represented by permutations.

Combinatorial description of the moment graph

For any natural unit interval graph $G=([n], E)$, let $\Gamma(G)$ be the graph with vertex set \mathfrak{S}_{n} and edge set

$$
\left\{\{\sigma, \sigma(i, j)\}: \sigma \in \mathfrak{S}_{n} \text { and }\{i, j\} \in E\right\} .
$$

The edges of $\Gamma(G)$ are labeled as follows: edge $\{\sigma,(a, b) \sigma\}$ is labeled with (a, b), where $a<b$.
$\Gamma(G)$ is the moment graph for the Hessenberg variety \mathcal{H}_{G}.

Combinatorial description of the moment graph

For any natural unit interval graph $G=([n], E)$, let $\Gamma(G)$ be the graph with vertex set \mathfrak{S}_{n} and edge set

$$
\left\{\{\sigma, \sigma(i, j)\}: \sigma \in \mathfrak{S}_{n} \text { and }\{i, j\} \in E\right\} .
$$

The edges of $\Gamma(G)$ are labeled as follows: edge $\{\sigma,(a, b) \sigma\}$ is labeled with (a, b), where $a<b$.
$\Gamma(G)$ is the moment graph for the Hessenberg variety \mathcal{H}_{G}.
Example: $n=3$.
Color coded edge labels: $(1,2)(2,3)(1,3)$

	321	
231		312
213		132
	123	

(1)
(2) (3)
(1)-(2) (3)

The equivariant cohomology ring $H_{T}^{*}\left(\mathcal{H}_{G}\right)$

$H_{T}^{*}\left(\mathcal{H}_{G}\right)$ is isomorphic to a subring of $R_{n}:=\prod_{\sigma \in \mathfrak{S}_{n}} \mathbb{C}\left[t_{1}, \ldots, t_{n}\right]$.
For $p \in R_{n}$, let $p_{\sigma}\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{C}\left[t_{1}, \ldots, t_{n}\right]$ denote the σ-component of p, where $\sigma \in \mathfrak{S}_{n}$.
$p \in R_{n}$ satisfies the edge condition for the moment graph Γ_{G} if for all edges $\{\sigma, \tau\}$ of $\Gamma(G)$ with label (i, j), the polynomial $p_{\sigma}\left(t_{1}, \ldots, t_{n}\right)-p_{\tau}\left(t_{1}, \ldots, t_{n}\right)$ is divisible by $t_{i}-t_{j}$. Color coded edge labels: $(1,2)(2,3)(1,3)$

$H_{T}^{*}\left(\mathcal{H}_{G}\right)$ is isomorphic to the subring of R_{n} whose elements satisfy the edge condition for Γ_{G}.

Tymoczko's representation

\mathfrak{S}_{n} acts on $p \in H_{T}^{*}\left(\mathcal{H}_{G}\right)$ by

$$
(\sigma p)_{\tau}\left(t_{1}, \ldots, t_{n}\right)=p_{\sigma^{-1} \tau}\left(t_{\sigma(1)}, \ldots, t_{\sigma(n)}\right)
$$

Color coded edge labels: $(\mathbf{1 , 2})(2,3)(1,3)$

Tymoczko's representation

\mathfrak{S}_{n} acts on $p \in H_{T}^{*}\left(\mathcal{H}_{G}\right)$ by

$$
(\sigma p)_{\tau}\left(t_{1}, \ldots, t_{n}\right)=p_{\sigma^{-1} \tau}\left(t_{\sigma(1)}, \ldots, t_{\sigma(n)}\right)
$$

Color coded edge labels: $(\mathbf{1 , 2)}(2,3)(1,3)$

Tymoczko's representation

\mathfrak{S}_{n} acts on $p \in H_{T}^{*}\left(\mathcal{H}_{G}\right)$ by

$$
(\sigma p)_{\tau}\left(t_{1}, \ldots, t_{n}\right)=p_{\sigma^{-1} \tau}\left(t_{\sigma(1)}, \ldots, t_{\sigma(n)}\right)
$$

Color coded edge labels: $(\mathbf{1 , 2})(2,3)(1,3)$

Tymoczko's representation

\mathfrak{S}_{n} acts on $p \in H_{T}^{*}\left(\mathcal{H}_{G}\right)$ by

$$
(\sigma p)_{\tau}\left(t_{1}, \ldots, t_{n}\right)=p_{\sigma^{-1} \tau}\left(t_{\sigma(1)}, \ldots, t_{\sigma(n)}\right)
$$

Color coded edge labels: $(1,2)(2,3)(1,3)$

$$
H^{*}\left(\mathcal{H}_{G}\right) \cong H_{T}^{*}\left(\mathcal{H}_{G}\right) /\left(\left\langle t_{1}, \ldots, t_{n}\right\rangle H_{T}^{*}\left(\mathcal{H}_{G}\right)\right)
$$

Since $\left\langle t_{1}, \ldots, t_{n}\right\rangle H_{T}^{*}\left(\mathcal{H}_{G}\right)$ is invariant under the action of \mathfrak{S}_{n}, the representation of \mathfrak{S}_{n} on $H_{T}^{*}\left(\mathcal{H}_{G}\right)$ induces a representation on the graded ring $H^{*}\left(\mathcal{H}_{G}\right)$.

The proofs of $\omega X_{G}(\mathbf{x}, t)=\sum_{j \geq 0} \operatorname{ch} H^{2 j}\left(\mathcal{H}_{G}\right) t^{j}$

- Brosnan and Chow reduce the problem of computing Tymacczko's representation of \mathfrak{S}_{n} on regular semisimple Hessenberg varieties to that of computing the Betti numbers of regular (but not nec. semisimple) Hessenberg varieties. To do this they use resutls from the theory of local systems and perverse sheaves. In particular they use the local invariant cycle theorem of Beilinson-Bernstein-Deligne
- Guay-Paquet introduces a new Hopf algebra on labeled graphs to recursivley decompose the regular semisimple Hessenberg varieties.

Other recently discovered connections with $X_{G}(\mathbf{x}, t)$

- Hecke algebra characters evaluated at Kazhdan-Lusztig basis elements: Clearman, Hyatt, Shelton and Skandera (2015). This is a t-analog of work of Haiman (1993).
- LLT polynomials and Macdonald polynomials: Haglund and Wilson (2016).

Chromatic quasisymmetric function of the cycle graph

Not a unit interval graph

Chromatic quasisymmetric function of the cycle graph

Not a unit interval graph

Theorem (Stanley (1995))

$$
\sum_{n \geq 2} X_{C_{n}}(\mathbf{x}) z^{n}=\frac{\sum_{k \geq 2} k(k-1) e_{k} z^{k}}{1-\sum_{k \geq 2}(k-1) e_{k} z^{k}}
$$

Consequently $X_{C_{n}}(\mathbf{x})$ is e-positive.

Chromatic quasisymmetric function of the cycle graph

Not a unit interval graph

Theorem (Stanley (1995))

$$
\sum_{n \geq 2} X_{C_{n}}(\mathbf{x}) z^{n}=\frac{\sum_{k \geq 2} k(k-1) e_{k} z^{k}}{1-\sum_{k \geq 2}(k-1) e_{k} z^{k}}
$$

Consequently $X_{C_{n}}(\mathbf{x})$ is e-positive.
Theorem (Ellzey and MW)

$$
\sum_{n \geq 2} X_{C_{n}}(\mathbf{x}, t) z^{n}=\frac{\sum_{k \geq 2}\left([2]_{t}[k]_{t}+k t^{2}[k-3]_{t}\right) e_{k} z^{k}}{1-t \sum_{k \geq 2}[k-1]_{t} e_{k} z^{k}}
$$

Consequently $X_{C_{n}}(\mathbf{x}, t)$ is e-positive.
t-analog: $[n]_{t}:=1+t+\cdots+t^{n-1}$.

New improved version

Chromatic quasisymmetric function for labeled graphs

$$
X_{G}(\mathbf{x}, t):=\sum_{c \in C(G)} t^{\operatorname{des}(c)} x_{C(1)} x_{c(2)} \ldots x_{c(n)}
$$

where

$$
\operatorname{des}(c):=\mid\{\{i, j\} \in E(G): i<j \text { and } c(i)>c(j)\} \mid .
$$

green < yellow < blue

$$
\operatorname{des}(c)=2
$$

New improved version - digraphs

Chromatic quasisymmetric function for labeled graphs

$$
X_{G}(\mathbf{x}, t):=\sum_{c \in C(G)} t^{\operatorname{des}(c)} x_{c(1)} x_{c(2)} \ldots x_{c(n)}
$$

where

$$
\operatorname{des}(c):=\mid\{\{i, j\} \in E(G): i<j \text { and } c(i)>c(j)\} \mid .
$$

green < yellow < blue

For a digraph \vec{G}

$$
\operatorname{des}(c):|\{(i, j) \in E(\vec{G}): c(i)>c(j)\}|
$$

labeled graphs \equiv acyclic digraphs

$$
\operatorname{des}(c)=2
$$

The directed cycle

Theorem (Ellzey and MW (2017))

$$
\sum_{n \geq 2} X_{C_{n}}(\mathbf{x}, t) z^{n}=\frac{\sum_{k \geq 2}\left([2]_{t}[k]_{t}+k t^{2}[k-3]_{t}\right) e_{k} z^{k}}{1-t \sum_{k \geq 2}[k-1]_{t} e_{k} z^{k}}
$$

Consequently $X_{C_{n}}(\mathbf{x}, t)$ is e-positive.

Theorem (Ellzey (2016))

$$
\sum_{n \geq 2} X_{\vec{C}_{n}}(\mathbf{x}, t) z^{n}=\frac{t \sum_{k \geq 2} k[k-1]_{t} e_{k} z^{k}}{1-t \sum_{k \geq 2}[k-1]_{t} e_{k} z^{k}}
$$

Consequently $X_{\overrightarrow{C_{n}}}(\mathbf{x}, t)$ is e-positive.

The directed cycle

Theorem (Ellzey and MW (2017))

$$
\sum_{n \geq 2} X_{C_{n}}(\mathbf{x}, t) z^{n}=\frac{\sum_{k \geq 2}\left([2]_{t}[k]_{t}+k t^{2}[k-3]_{t}\right) e_{k} z^{k}}{1-t \sum_{k \geq 2}[k-1]_{t} e_{k} z^{k}}
$$

Consequently $X_{C_{n}}(\mathbf{x}, t)$ is e-positive.

Theorem (Ellzey (2016))

$$
\sum_{n \geq 2} X_{\overrightarrow{c_{n}}}(\mathbf{x}, t) z^{n}=\frac{t \sum_{k \geq 2} k[k-1]_{t} e_{k} z^{k}}{1-t \sum_{k \geq 2}[k-1]_{t} e_{k} z^{k}}
$$

Consequently $X_{\overrightarrow{C_{n}}}(\mathbf{x}, t)$ is e-positive.
The second theorem was used to prove a result on Smirnov words, which implies both theorems.

p-positivity

Theorem (Athanasiadis, conjectured by Shareshian and MW)
Let G be the incomparibility graph of a natural unit interval order P. Then

$$
\omega X_{G}(\mathbf{x}, t)=\sum_{\lambda \vdash n} \sum_{T \in \mathcal{R}_{P, \lambda}} t^{\operatorname{inv}_{G}(w(T))} z_{\lambda}^{-1} p_{\lambda}
$$

Consequently $\omega X_{G}(\mathbf{x}, t)$ is p-positive.

Theorem (Ellzey (2016))

Let \vec{G} be a digraph for which $X_{\vec{G}}(\mathbf{x}, t)$ is symmetric. Then

$$
\omega X_{\vec{G}}(\mathbf{x}, t)=\sum_{\lambda \vdash n} \sum_{T \in \mathcal{R}_{\vec{G}, \lambda}} t^{\operatorname{inv}_{G}(w(T))} z_{\lambda}^{-1} p_{\lambda}
$$

Consequently $\omega X_{\vec{G}}(\mathbf{x}, t)$ is p-positive.

Cyclic version of unit interval digraph

Cyclic version of unit interval digraph

Cyclic version of unit interval digraph

circular indifference digraph

Cyclic version of unit interval digraph

circular indifference digraph

Theorem (Ellzey (2016))
If \vec{G} is a circular indifference digraph then $X_{\vec{G}}(\mathbf{x}, t)$ is symmetric.

Conjecture

If \vec{G} is a circular indifference digraph then $X_{\vec{G}}(\mathbf{x}, t)$ is e-positive and e-unimodal.

Other work on the digraph version of chromatic quasisymmetric funtions

- Awan and Bernardi (2016): Tuttle quasisymmetric functions for directed graphs.
- Alexadersson and Panova (2016): connection to LLT polynomials.

