
Chapter 1

Discrete Probability
Distributions

1.1 Simulation of Discrete Probabilities

1. As n increases, the proportion of heads gets closer to 1/2, but the difference
between the number of heads and half the number of flips tends to increase
(although it will occasionally be 0).

2. n must be approximately 100.

3. (b) If one simulates a sufficiently large number of rolls, one should be able
to conclude that the gamblers were correct.

4. Player one has a probability of about .83 of winning.

5. The smallest n should be about 150.

7. The graph of winnings for betting on a color is much smoother (i.e. has
smaller fluctuations) than the graph for betting on a number.

8. For two tosses both probabilities are 1/2. For four tosses they are both
6/16. They are, in fact, the same for any even number of tosses. (This
is not at all obvious; see Chapter 12 for a discussion of this and related
topics.)

9. Each time you win, you either win an amount that you have already lost or
one of the original numbers 1, 2, 3, 4, and hence your net winning is just
the sum of these four numbers. This is not a foolproof system, since you
may reach a point where you have to bet more money than you have. If
you and the bank had unlimited resources it would be foolproof.
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2 CHAPTER 1. DISCRETE PROBABILITY DISTRIBUTIONS

10. You are very likely to win 5 dollars, but we shall see that this is still an
unfair game, so we might say that Thackeray was right.

11. For two tosses, the probabilities that Peter wins 0 and 2 are 1/2 and 1/4,
respectively. For four tosses, the probabilities that Peter wins 0, 2, and 4
are 3/8, 1/4, and 1/16, respectively.

13. Your simulation should result in about 25 days in a year having more than
60 percent boys in the large hospital and about 55 days in a year having
more than 60 percent boys in the small hospital.

14. About 1/2 the time you win 2, 1/4 of the time you win 4, 1/8 of the time
you win 8, etc. If you add up all of these potential winnings, weighted by
their probabilities, you get∞, so it would seem that you should be willing
to pay quite a lot to play this game. Few are willing to pay more than
$10.

15. In about 25 percent of the games the player will have a streak of five.

16. In the case of having children until they have a boy, they should have
about 200,000 children. In the case that they have children until they
have both a boy and a girl, they should have about 300,000 children, or
about 100,000 more.

1.2 Discrete Probability Distributions

1. P ({a, b, c}) = 1 P ({a}) = 1/2

P ({a, b}) = 5/6 P ({b}) = 1/3

P ({b, c}) = 1/2 P ({c}) = 1/6

P ({a, c}) = 2/3 P (φ) = 0

2. (a) Ω = {A elected, B elected}.

(b) Ω = {Head,Tail}.

(c) Ω = {(Jan., Mon.), (Jan., Tue.),. . . ,(Jan., Sun.),. . . ,(Dec., Sun.)}.

(d) Ω = {Student 1,. . . ,Student 10}.

(e) Ω = {A,B,C,D, F}.

3. (b), (d)

4. (a) In three tosses of a coin the first outcome is a head.
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(b) In three tosses of a coin the same side turns up on each toss.

(c) In three tosses of a coin exactly one tail turns up.

(d) In three tosses of a coin at least one tail turns up.

5. (a) 1/2

(b) 1/4

(c) 3/8

(d) 7/8

6. 4
7 .

7. 11/12

8. Art 1
4 , Psychology 1

2 , Geology 1
4 .

9. 3/4, 1

10. 1
2 .

11. 1 : 12, 1 : 3, 1 : 35

12. 3
4 .

13. 11:4

14. (a) mY (2) = 1/5, mY (3) = 1/5, mY (4) = 2/5, mY (5) = 1/5

(b) mZ(0) = 1/5, mZ(1) = 3/5, mZ(4) = 1/5

15. Let the sample space be:

ω1 = {A,A} ω4 = {B,A} ω7 = {C,A}

ω2 = {A,B} ω5 = {B,B} ω8 = {C,B}

ω3 = {A,C} ω6 = {B,C} ω9 = {C,C}

where the first grade is John’s and the second is Mary’s. You are given that

P (ω4) + P (ω5) + P (ω6) = .3,

P (ω2) + P (ω5) + P (ω8) = .4,

P (ω5) + P (ω6) + P (ω8) = .1.
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Adding the first two equations and subtracting the third, we obtain the desired
probability as

P (ω2) + P (ω4) + P (ω5) = .6.

16. 10 per cent. An example: 10 lost eye, ear, hand, and leg; 15 eye, ear, and
hand; 20 eye, ear, and leg; 25 eye, hand, and leg; 30 ear, hand, and leg.

17. The sample space for a sequence of m experiments is the set of m-tuples of
S’s and F ’s, where S represents a success and F a failure. The probability
assigned to a sample point with k successes and m− k failures is( 1

n

)k(n− 1

n

)m−k
.

(a) Let k = 0 in the above expression.

(b) If m = n log 2, then

lim
n→∞

(
1− 1

n

)m
= lim

n→∞

((
1− 1

n

)n)log 2

=

(
lim
n→∞

(
(

1− 1

n

)n)log 2

=
(
e−1
)log 2

=
1

2
.

(c) Peter Doyle provided the following answer. To achieve more accuracy than
what was obtained in part b), we can use power series in the following
way. We begin with the equation(

1− 1

n

)m
=

1

2
,

and as before, we solve for m. We obtain

m = − log 2

log(1− 1/n)
.

Thus, for example, if n = 36, then m = 24.6051. DeMoivre would proba-
bly have said that this means 24 rolls is insufficient to make it a favorable
bet that at least one success will occur. In fact, the probability of at least
one success in 24 rolls is about 0.4914, while the corresponding probability
for 25 rolls is about 0.5055, so DeMoivre would have gotten it right.
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We can get a more accurate approximation for m in terms of n by ex-
panding the function 1/ log(1 − 1/n) in a power series. We obtain the
formula

m = (log 2)

(
n− 1

2
− 1

12n
− 1

24n2
− 19

720n3
+ . . .

)
.

Note that if we let n = 6 and use just the first summand in the above
series, we obtain the approximation 4.159. So if DeMoivre had claimed
that this shows that 4 rolls is not enough to make a favorable bet, he
would have been incorrect.

It can easily be shown that if one uses the formula

m = d(log 2)ne ,

then this formula will be wrong for about 34.7% of the values of n. How-
ever, if one uses the formula

m =

⌈
(log 2)

(
n− 1

2

)⌉
,

then the first failure of this formula occurs at the value

n = 1121626023352384 .

The above formula gives the value

m = 777451915729369 ,

but if we use one less than this value, we obtain a probability that is still
greater than 1/2:

0.5000000000000000000000000000000163773529998 .

There is a heuristic argument which suggests if we use the approximation

m =

⌈
(log 2)

(
n− 1

2
− 1

12n

)⌉
,

then this formula will be incorrect for only finitely many (and perhaps no)
values of n.

18. (a) The right-hand side is the sum of the probabilities of all outcomes
occurring in the left-hand side plus some more because of duplication.

(b)

1 ≥ P (A ∪B) = P (A) + P (B)− P (A ∩B).
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19. The left-side is the sum of the probabilities of all elements in one of the three
sets. For the right side, if an outcome is in all three sets its probability
is added three times, then subtracted three times, then added once, so in
the final sum it is counted just once. An element that is in exactly two
sets is added twice, then subtracted once, and so it is counted correctly.
Finally, an element in exactly one set is counted only once by the right
side.

20. We would have to have the same probability assigned to all outcomes.
If this probability is 0, the sum of the probabilities would be 0 so that
P (Ω) = 0 instead of 1 as it should be. If this common probability is
a > 0, then the sum of all the probabilities of the first n outcomes would
be na and for large enough n this would be greater than 1, contradicting
the requirement that the sum of the probabilities for all possible outcomes
should be 1.

21. 7/212

22. Ω = {1, 2, 3, . . .} and the distribution is m(n) = (5/6)n−1(1/6). Now if
0 < x < 1, then

∞∑
n=0

xj =
1

1− x
.

Hence

(1/6)

∞∑
n=1

(5/6)n−1 = (1/6) · 1

1− 5/6
= 1.

23. We have
∞∑
n=0

m(ωn) =

∞∑
n=0

r(1− r)n =
r

1− (1− r)
= 1 .

24. He just meant that if you pick a month at random within a complete
400-year cycle of the calendar the thirteenth of the month is more likely
to fall on Friday than on any other day.

25. They call it a fallacy because if the subjects are thinking about probabilities
they should realize that

P (Linda is bank teller and in feminist movement) ≤ P (Linda is bank teller).

One explanation is that the subjects are not thinking about probability
as a measure of likelihood. For another explanation see Exercise 53 of
Section 4.1.

26. The probability that the two cards are of the same rank is 52·3
52·51 = 1

17 .
Thus 2x+ 1

17 = 1 giving x = 8
17 .
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27.

Px = P (male lives to age x) =
number of male survivors at age x

100, 000
.

Qx = P (female lives to age x) =
number of female survivors at age x

100, 000
.

28. (a) 1
3

(b) P3(N) =
[N3 ]

N , where [N3 ] is the greatest integer in N
3 . Note that

N

3
− 1 ≤

[
N

3

]
≤ N

3
.

From this we see that

P3 = lim
N→∞

P3(N) =
1

3
.

(c) If A is a finite set with K elements then

A(N)

N
≤ K

N
,

so

lim
N→∞

A(N)

N
= 0 .

On the other hand, if A is the set of all positive integers, then

lim
N→∞

A(N)

N
= lim
N→∞

N

N
= 1 .

(d) Let Nk = 10k−1. Then the integers between Nk−1 +1 and Nk have exactly
k digits. Thus, if k is odd, then

A(Nk) = (Nk −Nk−1) + (Nk−2 −Nk−3) + . . . ,

while if k is even, then

A(Nk) = (Nk−1 −Nk−2) + (Nk−3 −Nk−4) + . . . .

Thus, if k is odd, then

A(Nk) ≥ (Nk −Nk−1) = 9 · 10k−1 ,

while if k is even, then

A(Nk) ≤ Nk−1 < 10k−1 .
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So, if k is odd, then

A(Nk)

Nk
≥ 9 · 10k−1

10k − 1
>

9

10
,

while if k is even, then

A(Nk)

Nk
<

10k−1

10k − 1
<

2

10
.

Therefore,

lim
N→∞

A(N)

N

does not exist.

29. (Solution by Richard Beigel)

(a) In order to emerge from the interchange going west, the car must go straight
at the first point of decision, then make 4n+ 1 right turns, and finally go
straight a second time. The probability P (r) of this occurring is

P (r) =

∞∑
n=0

(1− r)2r4n+1 =
r(1− r)2

1− r4
=

1

1 + r2
− 1

1 + r
,

if 0 ≤ r < 1, but P (1) = 0. So P (1/2) = 2/15.

(b) Using standard methods from calculus, one can show that P (r) attains a
maximum at the value

r =
1 +
√

5

2
−

√
1 +
√

5

2
≈ .346 .

At this value of r, P (r) ≈ .15.

30. In order to depart to the east, one must make 4n + 3 right-hand turns in
succession, and then go straight. The probability is

P (r) =

∞∑
n=0

(1− r)r4n+3 =
r3

(1 + r)(1 + r2)
,

if 0 ≤ r < 1. This function increases on the interval [0, 1), so the maximum
value of P (r), if a maximum exists, must occur at r = 1. Unfortunately,
if r = 1, then the car never leaves the interchange, so no maximum exists.

31. (a) Assuming that the students did not actually have a flat tire and that
each student gives any given tire as an answer with probability 1/4, then
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probability that they both give the same answer is 1/4. If the students
actually had a flat tire, then the probability is 1 that they both give the
same answer. So, if the probability that they actually had a flat tire is p,
then the probability that they both give the same answer is

1

4
(1− p) + p =

1

4
+

3

4
p .

(b) In this case, they will both answer ‘right front’ with probability (.58)2, etc.
Thus, the probability that they both give the same answer is 39.8%.
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Chapter 2

Continuous Probability
Distributions

2.1 Simulation of Continuous Probabilities

The problems in this section are all computer programs.

2.2 Continuous Density Functions

1. (a) f(ω) = 1/8 on [2, 10]

(b) P ([a, b]) = b−a
8 .

2. (a) c = 1/48.

(b) P (E) = 1
96 (b2 − a2).

(c) P (X > 5) = 75
96 , P (x < 7) = 45

96 .

(d)

P (x2 − 12x+ 35 > 0) = P (x− 5 > 0, x− 7 > 0) + P (x− 5 < 0, x− 7 < 0)

= P (x > 7) + P (x < 5) =
3

4
.

3. (a) C = 1
log 5 ≈ .621

11
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(b) P ([a, b]) = (.621) log(b/a)

(c)

P (x > 5) =
log 2

log 5
≈ .431

P (x < 7) =
log(7/2)

log 5
≈ .778

P (x2 − 12x+ 35 > 0) =
log(25/7)

log 5
≈ .791 .

4. (a) .04, (b) .36, (c) .25, (d) .09.

5. (a) 1− 1
e1 ≈ .632

(b) 1− 1
e3 ≈ .950

(c) 1− 1
e1 ≈ .632

(d) 1

6. (a) e−.01T , (b) T = 100log(2) = 69.3.

7. (a) 1/3, (b) 1/2, (c) 1/2, (d) 1/3

8. (a) 1/8, (b) 1
2 (1 + log(2)), (c) .75, (d) .25,

(e) 3/4, (f) 1/4, (g) 1/8, (h) π/8, (i) π/4.

12. 1/4.

13. 2 log 2− 1.

14. (a) 13/24, (b) 1/48.

15. Yes.

16. Consider the circumference to be the interval [0, 1], as in the hint. Let
A = 0. There are two cases to consider; 0 < B < 1/2, and 1/2 < B < 1.
In the first case, C must lie between 1/2 and B+ 1/2, for otherwise there
would be a gap of length greater than 1/2, corresponding to a semicircle
containing none of the points. Similarly, if 1/2 < B < 1, it can be seen
that C must lie between B− 1/2 and 1/2. The probability of one of these
two cases occurring is 1/4.



Chapter 3

Combinatorics

3.1 Permutations

1. 24

2. 1/12

3. 232

4. At this writing, 37 Presidents have died. The probability that no two
people from a group of 37 (all of whom are dead) died on the same day is
about .15. Thus, the probability that at least two died on the same day
is .85. Yes; Jefferson, Adams, and Monroe (all signers of the Declaration
of Independence) died on July 4.

5. 9, 6.

6. Since we do not get a different situation if we rotate the table we can
consider one person’s position as fixed, and then there are (n−1)! possible
arrangements for the other n− 1 people.

7.
5!

55
.

8. Each subset S corresponds to a unique r-tuple of 0’s and 1’s, where a 1 in
the i’th location means that i is an element of S. Since each location has
two possibilities, there are 2r r-tuples, and hence there are 2r subsets.

10. 1/13

11.
3n− 2

n3
,

7

27
,

28

1000
.

13
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12. (a) 30 · 15 · 9 = 4050

(b) 4050 · (3 · 2 · 1) = 24300

(c) 148824

13. (a) 263 × 103

(b)
(

6
3

)
× 263 × 103

14. (a) 5 · 4 · 3 · 2 · 1 = 120

(b) 60

15.

(
3
1

)
× (2n − 2)

3n
.

16. Note that we have changed the city from Atlanta to Philadelphia. The
number of possible sets of initials is

264 + 263 + 262 + 26 = 475254 ,

but there are more than this number of people in Philadelphia.

17. 1− 12 · 11 · . . . · (12− n+ 1)

12n
, if n ≤ 12, and 1, if n > 12.

18. 36

20. Think of the person on your right at lunch and at dinner as determining
a permutation. Do the same for the person on your left at lunch and
at dinner. We have two examples of the problem of a random permuta-
tion having no fixed point. The probability of no match for large n for
each random permutation would be approximately e−1 and if they were
independent the probability of no match in either would be e−2. They
are not quite independent but for large n they are close enough to being
independent to make this a good estimate.

21. They are the same.

22. The sample space is the set of all permutations of size 16 from the set
{1, 2, . . . , N}, where N is the number of counterfeits. If x1, x2, . . . , x15, x16

are the numbers observed with a maximum of 56, then there are 16! sample
points that would give rise to this observation. So

P (x1, x2, . . . , x15, x16) =
16!

(N)16

for any N ≥ 56 and 0 for any N < 56. Thus, this probability is greatest
when N = 56. Your program should verify that Watson’s guess is much
better.
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23. (a)
1

n
,

1

n

(b) She will get the best candidate if the second best candidate is in the first
half and the best candidate is in the secon half. The probability that this
happens is greater than 1/4.

3.2 Combinatorics

1. (a) 20

(b) .0064

(c) 21

(d) 1

(e) .0256

(f) 15

(g) 10

(h) 0.04668

2.

(
10

5

)
= 252

3.

(
9

7

)
= 36

5. .998, .965, .729

6. If Charles has the ability, the probability that he wins is

b(10, .75, 7) + b(10, .75, 8) + b(10, .75, 9) + b(10, .75, 10) = .776.

If Charles is guessing, the probability that Ruth wins is

1− b(10, .5, 7)− b(10, .5, 8)− b(10, .5, 9)− b(10, .5, 10) = .828.

7.

b(n, p, j)

b(n, p, j − 1)
=

(
n

j

)
pjqn−j(

n

j − 1

)
pj−1qn−j+1

=
n!

j!(n− j)!
(n− j + 1)!(j − 1)!

n!

p

q
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=
(n− j + 1)

j

p

q

But
(n− j + 1)

j

p

q
≥ 1 if and only if j ≤ p(n + 1), and so j = [p(n + 1)] gives

b(n, p, j) its largest value. If p(n + 1) is an integer there will be two
possible values of j, namely j = p(n+ 1) and j = p(n+ 1)− 1.

8. b(30,
1

6
, 5) =

(
30

5

)(1

6

)5(5

6

)25

= .1921. The most probable number of times

is 5.

9. n = 15, r = 7

10.
11

64
≈ .172

11. Eight pieces of each kind of pie.

12. (a) 4/
(

52
5

)
≈ .0000015

(b) 36/
(

52
5

)
≈ .000014

(c) 624/
(

52
5

)
≈ .00024

(d) 3744/
(

52
5

)
≈ .0014

(e) 5108/
(

52
5

)
≈ .0020

(f) 10200/
(

52
5

)
≈ .0039

13. The number of subsets of 2n objects of size j is

(
2n

j

)
.

(
2n

i

)
(

2n

i− 1

) =
2n− i+ 1

i
≥ 1⇒ i ≤ n+

1

2
.

Thus i = n makes

(
2n

i

)
maximum.

14. By Stirling’s formula, n! ∼
√

2πn(nn)e−n. Thus,

b(2n,
1

2
, n) =

(
20

n

)
1

22n

=
2n!

(n!)2
· 1

22n
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∼ 1

22n

√
2π2n(2n)2ne−2n

2πn(n2n)e−2n =
1√
πn

.

15. .343, .441, .189, .027.

16. There are
(

8
3

)
ways of winning three games. After winning, there are

(
5
3

)
ways of losing three games. After losing, there is only one way of tying
two games. Thus the the total number of ways to win three games, lose
three games, and tie two is

(
8
3

)(
5
3

)
= 560.

17. There are
(
n
a

)
ways of putting a different objects into the 1st box, and then(

n−a
b

)
ways of putting b different objects into the 2nd and then one way

to put the remaining objects into the 3rd box. Thus the total number of
ways is (

n

a

)(
n− a
b

)
=

n!

a!b!(n− a− b)!
.

18. P (no student gets 2 or fewer correct) = b(340, 7/128, 0) ≈ 4.96 ·10−9; P (no
student gets 0 correct) = b(340, 1/1024, 0) ≈ .717. So Prosser is right to
expect at least one student with 2 or fewer correct, but Crowell is wrong
to expect at least one student with none correct.

19. (a)

(
4

1

)(
13

10

)
(

52

10

) = 7.23× 10−8.

(b)

(
4

1

)(
3

2

)(
13

4

)(
13

3

)(
13

3

)
(

52

10

) = .044.

(c)

4!

(
13

4

)(
13

3

)(
13

2

)(
13

1

)
(

52

10

) = .315.

20. (a)

(
13

6

)
/

(
52

6

)
≈ .000084

(b)

(
4

3

)(
4

2

)(
4

1

)
/

(
52

6

)
≈ .0000047

(c)

(
4

2

)(
13

3

)(
13

3

)
/

(
52

6

)
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21. 3(25) − 3 = 93 (we subtract 3 because the three pure colors are each
counted twice).

22.

(
8

2

)
= 28

23. To make the boxes, you need n + 1 bars, 2 on the ends and n − 1 for the
divisions. The n− 1 bars and the r objects occupy n− 1 + r places. You
can choose any n − 1 of these n − 1 + r places for the bars and use the
remaining r places for the objects. Thus the number of ways this can be
done is (

n− 1 + r

n− 1

)
=

(
n− 1 + r

r

)
.

24.

(
19

10

)
/

(
29

20

)
≈ .009

25. (a) 6!

(
10

6

)
/106 ≈ .1512

(b)

(
10

6

)
/

(
15

6

)
≈ .042

26. (a) pq, qp, p2, q2

27. Ask John to make 42 trials and if he gets 27 or more correct accept his
claim. Then the probability of a type I error is∑

k≥27

b(42, .5, k) = .044,

and the probability of a type II error is

1−
∑
k≥27

b(42, .75, k) = .042.

28. n = 114, m = 81

29. b(n, p,m) =

(
n

m

)
pm(1− p)n−m. Taking the derivative with respect to p

and setting this equal to 0 we obtain m(1−p) = p(n−m) and so p = m/n.

30. (a) p(.5) = .5, p(.6) = .71, p(.7) = .87

(b) Mets have a 95.2% chance of winning in a 7-game series.

31. .999996.
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32. If u = 1, you only need to be sure to send at least one to each side. If
u = 0, it doesn’t matter what you do. Let v = 1 − u and q = 1 − p. If
0 < v < 1, let x be the nearest integer to

n

2
− 1

2

log(p/q)

log v
.

33. By Stirling’s formula,

(
2n

n

)2

(
4n

2n

) =
(2n!)

2
(2n!)

2

n!4(4n)!
∼ (

√
4πn(2n)2ne−2n)4

(
√

2πn(nn)e−n)4
√

2π(4n)(4n)4ne−4n
=

√
2

πn
.

34. Let Ei be the event that you do not get the ith player’s picture. Then for
any k of these events

P (Ei1 ∩ Ei2 ∩ . . . ∩ Eik) =
(n− k

n

)m
.

You have

(
n

k

)
ways of choosing k different Ei’s. Thus the result follows

from Theorem 9.

35. Consider an urn with n red balls and n blue balls inside. The left side of
the identity (

2n

n

)
=

n∑
j=0

(
n

j

)2

=

n∑
j=0

(
n

j

)(
n

n− j

)

counts the number of ways to choose n balls out of the 2n balls in the urn.
The right hand counts the same thing but breaks the counting into the
sum of the cases where there are exactly j red balls and n− j blue balls.

36. (a)

(
n

j

)

(b) 1−
(
n− j
j

)
/

(
n

j

)
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38. Consider the Pascal triangle (mod 3) for example.

0 1

1 1 1

2 1 2 1

3 1 0 0 1

4 1 1 0 1 1

5 1 2 1 1 2 1

6 1 0 0 2 0 0 1

7 1 1 0 2 2 0 1 1

8 1 2 1 2 1 2 1 2 1

9 1 0 0 0 0 0 0 0 0 1

10 1 1 0 0 0 0 0 0 0 1 1

11 1 2 1 0 0 0 0 0 0 1 2 1

12 1 0 0 1 0 0 0 0 0 1 0 0 1

13 1 1 0 1 1 0 0 0 0 1 1 0 1 1

14 1 2 1 1 2 1 0 0 0 1 2 1 1 2 1

15 1 0 0 2 0 0 1 0 0 1 0 0 2 0 0 1

16 1 1 0 2 2 0 1 1 0 1 1 0 2 2 0 1 1

17 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1

18 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1

Note first that the entries in the third row are 0 for 0 < j < 3. Lucas
notes that this will be true for any p. To see this assume that 0 < j < p.
Note that (

p

j

)
=
p(p− 1) · · · p− j + 1

j(j − 1) · · · 1
is an integer. Since p is prime and 0 < j < p, p is not divisible by any of
the terms of j!, and so (p− 1)! must be divisible by j!. Thus for 0 < j < p

we have

(
p

j

)
= 0 mod p. Let us call the triangle of the first three rows a

basic triangle. The fact that the third row is

1 0 0 1

produces two more basic triangles in the next three rows and an inverted
triangle of 0’s between these two basic triangles. This leads to the 6’th
row
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1 0 0 2 0 0 1 .

This produces a basic triangle, a basic triangle multiplied by 2 (mod 3),
and then another basic triangle in the next three rows. Again these tri-
angles are separated by inverted 0 triangles. We can continue this way
to construct the entire Pascal triangle as a bunch of multiples of basic
triangles separated by inverted 0 triangles. We need only know what the
mutiples are. The multiples in row np occur at positions 0, p, 2p, ..., np.
Looking at the triangle we see that the multiple at position (mp, jp) is
the sum of the multiples at positions (j − 1)p and jp in the (m − 1)p’th
row. Thus these multiples satisfy the same recursion relation(

n

j

)
=

(
n− 1

j − 1

)
+

(
n− 1

j

)
that determined the Pascal triangle. Therefore the multiple at position

(mp, jp) in the triangle is

(
m

j

)
. Suppose we want to determine the value

in the Pascal triangle mod p at the position (n, j). Let n = sp + s0 and
j = rp+ r0, where s0 and r0 are < p. Then the point (n, j) is at position

(s0, r0) in a basic triangle multiplied by

(
s

r

)
. Thus

(
n

j

)
=

(
s

r

)(
s0

r0

)
.

But now we can repeat this process with the pair (s, r) and continue until
s < p. This gives us the result:(

n

j

)
=

k∏
i=0

(
si
rj

)
(mod p) ,

where

s = s0 + s1p
1 + s2p

2 + · · ·+ skp
k ,

j = r0 + r1p
1 + r2p

2 + · · ·+ rkp
k .

If rj > sj for some j then the result is 0 since, in this case, the pair (sj , rj)
lies in one of the inverted 0 triangles. If we consider the row pk − 1 then
for all k, sk = p−1 and rk ≤ p−1 so the product will be positive resulting
in no zeros in the rows pk − 1. In particular for p = 2 the rows pk − 1 will
consist of all 1’s.

39.

b(2n,
1

2
, n) = 2−2n 2n!

n!n!
=

2n(2n− 1) · · · 2 · 1
2n · 2(n− 1) · · · 2 · 2n · 2(n− 1) · · · 2
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=
(2n− 1)(2n− 3) · · · 1

2n(2n− 2) · · · 2
.

3.3 Card Shuffling

3. (a) 96.99%

(b) 55.16%



Chapter 4

Conditional Probability

4.1 Discrete Conditional Probability

2. (a) 1/2

(b) 1/4

(c) 1/2

(d) 0

(e) 1/2

3. (a) 1/2

(b) 2/3

(c) 0

(d) 1/4

4. (a) 1/2

(b) 4/13

(c) 1/13

5. (a) (1) and (2)

(b) (1)

6. 3/10

23
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7. (a) We have

P (A ∩B) = P (A ∩ C) = P (B ∩ C) =
1

4
,

P (A)P (B) = P (A)P (C) = P (B)P (C) =
1

4
,

P (A ∩B ∩ C) =
1

4
6= P (A)P (B)P (C) =

1

8
.

(b) We have

P (A ∩ C) = P (A)P (C) =
1

4
,

so C and A are independent,

P (C ∩B) = P (B)P (C) =
1

4
,

so C and B are independent,

P (C ∩ (A ∩B)) =
1

4
6= P (C)P (A ∩B) =

1

8
,

so C and A ∩B are not independent.

8. We have

P (A ∩B ∩ C) = P ({a}) =
1

8
,

and

P (A) = P (B) = P (C) =
1

2
.

Thus while

P (A ∩B ∩ C) = P (A)P (B)P (C) =
1

8
,

we have

P (A ∩B) = P (A ∩ C) = P (B ∩ C) =
5

16
,

and

P (A)P (B) = P (A)P (C) = P (B)P (C) =
1

4
.

Therefore no two of these events are independent.

9. (a) 1/3

(b) 1/2

10. It is probably a reasonable estimate. One might refer to earlier life tables to
see how much this number has changed over the last four or five censuses.

12. .0481
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13. 1/2

14. 1/8

15. (a)

(
48

11

)(
4

2

)
(

52

13

)
−
(

48

13

)≈ .307 .

(b)

(
48

11

)(
3

1

)
(

51

12

) ≈ .427 .

16.

P (A)P (B|A)P (C|A ∩B) = P (A) · P (A ∩B)

P (A)
· P (A ∩B ∩ C)

P (A ∩B)
= P (A ∩B ∩ C) .

17.

(a)

P (A ∩ B̃) = P (A)− P (A ∩B)
= P (A)− P (A)P (B)
= P (A)(1− P (B))
= P (A)P (B̃) .

(b) Use (a), replacing A by B̃ and B by A.

18.

P (D1|+) = 4/9
P (D2|+) = 1/3
P (D3|+) = 2/9 .

19. .273.

20. It can be shown that after n draws, P (k white balls, n+ 1− k black balls
in the urn) = 1/(n+ 1) for any 0 ≤ k ≤ n. Thus you are equally likely
to have any proportion of white balls after n draws. In fact, the fraction
of white balls will tend to a limit but this limit is a random number.
This rather suprising fact is a consequence of the fact that the Polya Urn
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model is mathematicallly exactly the same as the following apparently
very different model. You have a coin where the probability of heads p is
chosen by rnd. Once this random p is chosen, the coin is tosses n times.
If a head turns up you say you have a white ball, and if a tail turns up
you have a black ball. Then the probability for any particular sequence of
colors for the balls is exactly the same as the probability of this sequence
occurring in the Polya urn model. In the coin model it is obvious that the
proportion of heads will tend to a limit which is again a random number
since it just depends upon what kind of a coin was chosen by rnd. This
random coin model will be discussed more in the next section.

21. No.

22. 1/2

23. Put one white ball in one urn and all the rest in the other urn. This gives
a probability of nearly 3/4, in particular greater than 1/2, for obtaining
a white ball which is what you would have with an equal number of balls
in each urn. Thus the best choice must have more white balls in one urn
than the other. In the urn with more white balls, the best we can do is
to have probability 1 of getting a white ball if this urn is chosen. In the
urn with less white balls than black, the best we can do is to have one less
white ball than black and then to have as many white balls as possible.
Our solution is thus best for the urn with more white balls than black and
also for the urn with more black balls than white. Therefore our solution
is the best we can do.

24. P (A head on the jth trial and a total of k heads in n trials) =
(1

2

)n(n− 1

k − 1

)
.

P (Exactly k heads in n trials)=
(1

2

)n(n
k

)
.

Thus

P (Head on j’th trial | k heads in n trials) =

(
n− 1

k − 1

)
(
n

k

) =
k

n
.

25. We must have

p

(
n

j

)
pkqn−k = p

(
n− 1

k − 1

)
pk−1qn−k .

This will be true if and only if np = k. Thus p must equal k/n.

26. P (A|B) = P (B|A) implies that P (A) = P (B) .
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Thus, since since P (A ∩B) > 0,

1 = P (A ∪B) = P (A) + P (B)− P (A ∩B) < 2P (A) ,

and P (A) > 1
2 .

27.

(a) P (Pickwick has no umbrella, given that it rains)=
2

9
.

(b) P (Pickwick brings his umbrella, given that it doesn’t rain)=
5

9
.

Note that the statement in part (b) of this problem was changed in the
errata list for the book.

28. The most obvious objection is the assumption that all of the events in
question are independent. A more subtle objection is that, since Los
Angeles is so large, it is reasonable to ask for the probability that there
is a second couple with the same discription, given that there is one such
couple. This probability is not so small. (See Exercise 23 of Section 9.3.)

29.

P (Accepted by Dartmouth | Accepted by Harvard) =
2

3
.

The events ‘Accepted by Dartmouth’ and ‘Accepted by Harvard’ are not
independent.

30. Neither has a convincing argument based upon comparing grouped data
only. You need more information. For example, suppose that each defec-
tive bulb cost $10 whether a regular or a softglow bulb. Then in making
3000 bulbs the loss to A is $130 and to B is $110 so B has a smaller
loss than A. But suppose that a defective regular bulb results in a loss
of $20 and a defective softglow bulb in a loss of $10. Now making 3000
bulbs A has a loss of 2 × $20 + $11 × $10 = $150 while B has a loss of
5 × $20 + 6 × $10 = $160. Thus A has a smaller loss than B. Paradoxes
caused by comparing percentages when data are grouped are called Simp-
son paradoxes. An interesting real life example can be found in Parsani,
and Purvis, W.W. Norton l978. In a study of the admission to graduate
school at the University of California, Berkeley in 1973 it was found that
about 44% of the men who applied were admitted, but 35% of the women
who applied were admitted. Suspecting sex bias, an attempt was made to
locate where it occurred by examining the individual departments. But
within individual departments there did not seem to be any bias. Indeed
the only department with a significant difference was one that favored
women. Again more information is needed. In this case the explantion lay
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in the fact that the women applied to majors that were difficult to get into
(lower acceptance rate) and men applied generally to the majors that were
easy to get in (high acceptance rate). In each of these examples you are
interested in comparing one trait in the presence of a second confounding
trait. In the first example it was good or bad bulb confounded by the type
of bulb and in the second example it was sex confounded by the major.
Freedman et al. discuss how to control the confounding trait to make a
more valid comparison.

31. The probability of a 60 year old male living to 80 is .41, and for a female
it is .62.

32. (a) pq

(b) 1− (1− p)(1− q)

(c) .958

33. You have to make a lot of calculations, all of which are like this:

P (Ã1 ∩A2 ∩A3) = P (A2)P (A3)− P (A1)P (A2)P (A3)
= P (A2)P (A3)(1− P (A1))
= P (Ã1)P (A2)P (A3).

34. PXj =

(
1 0
1
4

3
4

)
.

They are not independent. For example, if we know that
X1 = 1, X2 = 1, and X3 = 1, then it must be the case that X4 = 1.

35. The random variables X1 and X2 have the same distributions, and in each
case the range values are the integers between 1 and 10. The probability
for each value is 1/10. They are independent. If the first number is not
replaced, the two distributions are the same as before but the two random
variables are not independent.

36. p =

(
1 2 3 4 5 6
11
36

9
36

7
36

5
36

3
36

1
36

)
.

37.

P (max(X,Y ) = a) = P (X = a, Y ≤ a) + P (X ≤ a, Y = a)− P (X = a, Y = a).
P (min(X,Y ) = a) = P (X = a, Y > a) + P (X > a, Y = a) + P (X = a, Y = a).

Thus P (max(X,Y ) = a) + P (min(X,Y ) = a) = P (X = a) + P (Y = a)

and so u = t+ s− r.



4.1. DISCRETE CONDITIONAL PROBABILITY 29

38. (a) p
X

=

(
0 1 2
1
4

1
2

1
4

)
, p

Y
=

(
0 1
1
2

1
2

)
.

(b) p
Z

=

(
0 1 2 3
1
8

3
8

3
8

1
8

)
.

(c) p
W

=

(
−1 0 1 2
1
8

3
8

3
8

1
8

)
.

39. (a) 1/9

(b) 1/4

(c) No

(d) p
Z

=

(
−2 −1 0 1 2 4
1
6

1
6

1
6

1
6

1
6

1
6

)

40. p = 1/2 pX =

(
0 1

1/2 1/2

)
pY =

(
3 4 5

1/4 3/8 3/8

)
Independent

p = 2/3 pX =

(
0 1

17/81 64/81

)
pY =

(
3 4 5

1/3 10/27 8/27

)
Not inde-

pendent

42. Let u = N − r and v = N − s be the number of games that A and B,
respectively, must win to win the series. Then the series will surely be over
in u+v−1 games, so Fermat extended the game to assure this many plays.
The player with the most points in the extended game wins. Therefore,

P (r, s) = P (u, v) =

u+v−1∑
j=u

(
u+ v − 1

j

)
pjqu+v−1−j .

An alternative formula can be derived without extending the game. To
win the series in u + j games, A must win u − 1 games among the first
u+ j − 1 games and then win the (u+ j)th game with j ≤ v − 1. Thus,

P (r, s) = P (u, v) =

v−1∑
j=0

(
u+ j − 1

j

)
puqj .

43. .710.

44. (a) First convention. If you serve N + 1 times, then your opponent
must serve N times. The total number of points played is 2N + 1, so one
of you must have won at least N + 1 points. That is a contradition, since
the game is over when a player has won N points.
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Second convention. If you serve N + 1 times, then except for the first
time, before each time you serve, you have won a point. Thus at the
(N + 1)st time you serve you have already won N points. The game
should have already ended. Therefore, you serve at most N times. Before
each serve of your apponent he won the previous point. Thus, as he serves
for the Nth time he has already won N points. Therefore, your opponent
serves at most N − 1 times.

(b) Since the total number of points for the two players is 2N − 1, and one
player has already got N points before the game is extended, the other
can get at most N − 1 points in the extended game and hence not change
the winner.

(c) For the extended game, probabilistically, the two methods are the same:
in one, we have N Bernoulli trials with probability p for success and in
the other we have N −1 trials with probability p̄ for success, and in either
method you win if you win the most points.

45.

(a) The probability that the first player wins under either service convention
is equal to the probability that if a coin has probability p of coming up
heads, and the coin is tossed 2N + 1 times, then it comes up heads more
often than tails. This probability is clearly greater than .5 if and only if
p > .5.

(b) If the first team is serving on a given play, it will win the next point if and
only if one of the following sequences of plays occurs (where ‘W’ means
that the team that is serving wins the play, and ‘L’ means that the team
that is serving loses the play):

W, LLW, LLLLW, . . . .

The probability that this happens is equal to

p+ q2p+ q4p+ . . . ,

which equals
p

1− q2
=

1

1 + q
.

Now, consider the game where a ‘new play’ is defined to be a sequence of
plays that ends with a point being scored. Then the service convention
is that at the beginning of a new play, the team that won the last new
play serves. This is the same convention as the second convention in the
preceding problem.

From part a), we know that the first team to serve under the second service
convention will win the game more than half the time if and only if p > .5.
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In the present case, we use the new value of p, which is 1/(1 + q). This is
easily seen to be greater than .5 as long as q < 1. Thus, as long as p > 0,
the first team to serve will win the game more than half the time.

46. P (X = i) = P (Y = i) =

(
4

i

)(
5− i
48

)
(

52

5

) ,

P (X = i, Y = j) =

(
4

i

)(
4

j

)(
44

5− i− j

)
(

52

5

) , if i ≤ 4, j ≤ 4, and i+ j ≤ 5,

P (X = i, Y = j) = 0, otherwise.

47. (a)

P (Y1 = r, Y2 = s) = P (Φ1(X1) = r,Φ2(X2) = s)

=
∑

Φ1(a)=r

Φ2(b)=s

P (X1 = a,X2 = b) .

(b) If X1, X2 are independent, then

P (Y1 = r, Y2 = s) =
∑

Φ1(a)=r

Φ2(b)=s

P (X1 = a,X2 = b)

=
∑

Φ1(a)=r

Φ2(b)=s

P (X1 = a)P (X2 = b)

=
( ∑

Φ1(a)=r

P (X1 = a)
)( ∑

Φ2(b)=s

P (X2 = b)
)

= P (Φ1(X1) = r)P (Φ2(X2) = s)
= P (Y1 = r)P (Y2 = s) ,

so Y1 and Y2 are independent.

48. ∑
ω∈Ω

m
E

(ω) =
1

P (E)

∑
ω∈Ω

P (ω ∩ E)

=
1

P (E)
P (E) = 1 .

49. P (both coins turn up using (a)) = 1
2p

2
1 + 1

2p
2
2.

P (both coins turn up heads using (b)) = p1p2.
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Since (p1 − p2)2 = p2
1 − 2p1p2 + p2

2 > 0, we see that p1p2 <
1
2p

2
1 + 1

2p
2
2, and so

(a) is better.

50. For any sequence B1, . . . , Bn with Bk = Ak or Ãk

P (B1 ∩ · · · ∩Bn) = P (B1)P (B2) · · ·P (Bn) > 0 .

Thus there is at least one sample point ω in each of the sets

B1 ∩B2 ∩ · · · ∩Bn .

Since there are 2n such subsets, there must be at least this many sample
points.

51.

P (A) = P (A|C)P (C) + P (A|C̃)P (C̃)
≥ P (B|C)P (C) + P (B|C̃)P (C̃) = P (B) .

52.

P (coin not found in the i′th box) = P (coin not in i′th box)+
P (coin in i′th box but not found)

= 1− pi + (1− ai)pi
= 1− aipi .

Thus

P (coin is in j′th box | not found in i′th box) = pj/(1− aipi) if j 6= i.

P(coin is in the i′th box | not found in the i′th box)

= 1−
∑
j 6=i

P(coin is in j′th box | not found in i′th box)

= 1− 1− pi
(1− aipi)

=
(1− ai)pi.
1− aipi

.

53. We assume that John and Mary sign up for two courses. Their cards are
dropped, one of the cards gets stepped on, and only one course can be read
on this card. Call card I the card that was not stepped on and on which
the registrar can read government 35 and mathematics 23; call card II the
card that was stepped on and on which he can just read mathematics 23.
There are four possibilities for these two cards. They are:
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Card I Card II Prob. Cond. Prob.
Mary(gov,math) John(gov, math) .0015 .224
Mary(gov,math) John(other,math) .0025 .373
John(gov,math) Mary(gov,math) .0015 .224
John(gov,math) Mary(other,math) .0012 .179

In the third column we have written the probability that each case will
occur. For example, for the first one we compute the probability that the
students will take the appropriate courses: .5 × .1 × .3 × .2 = .0030 and
then we multiply by 1/2, the probability that it was John’s card that was
stepped on. Now to get the conditional probabilities we must renormalize
these probabilities so that they add up to one. In this way we obtain the
results in the last column. From this we see that the probability that card
I is Mary’s is .597 and that card I is John’s is .403, so it is more likely that
that the card on which the registrar sees Mathematics 23 and Government
35 is Mary’s.

54.

(a) Let

A = {(a, •) :a ∈ a subset A of {♣,♦,♥,♠}, • ∈ {2, 3, . . . , J,Q,K,A}}

be a suit event and

B = {(•, b):b ∈ a subset B of {2, 3, . . . , J,Q,K,A}, • ∈ {♣,♦,♥,♠}}

be a rank event. Then

P (A) =
size of A

4

P (B) =
size of B

13

P (A ∩B) = P{(a, b):a ∈ A, b ∈ B} =
(size of A)(size of B)

52
= P (A)P (B) .

(b) The possible sizes of a rank event are (4i + 3j), where i = 0,. . . ,12 and
j= 0 or 1, and the possible sizes of a suit event are (13m+ 12n), where
m = 0,1,2,3, and n = 0,1. By the hint we must have

(4i+ 3j)(13m+ 12n)

51
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an integer. This means that either 4i+ 3 or m+ 12n must be divisible
by 17. We show that this is not possible. Assume for example that
4i+ 3j = 17k where k is 1 or 2. Since 17k = 16k + k, when 17k is divided
by 4 we would get a remainder of k, that is, 1 or 2. But when 4i+ 3j is
divided by 4 we get a remainder of 3j, which is 0 or 3 depending on the
value of j. Therefore we cannot have 4i+ 3j = 17k, for k= 1 or 2 and j
= 0 or 1. Similarly, assume that 13m+ 12n = 17k with k = 1 or 2. Since
17k = 13k + 4k, when 17k is divided by 13 we get a remainder of 4 or 8
depending on the value of k, but when 13m + 12n is divided by 13 we get
a remainder of 0 or 12 depending on the value of n. Thus we cannot have
17k = 13m+ 12n for k = 1 or 2 and n = 0 or 1.

(c)

A = {(♠, 2), (♠, 3), (♠, 4)}
B = {(♠, 4), . . . , (♠, 7), (♥, 1), . . . , (♥,K)}.

(d) Let a be the size of A, b the size of B, and c the size of A∩B. Then A and
B independent implies that

c

53
=

a

53
· b

53
.

Thus ab = 53c. But, since 53 is prime, this means that either a or b must
be 53, which means that either A or B must be trivial.

55.

P (R1) =
4(
52

5

) = 1.54× 10−6.

P (R2 ∩R1) =
4 · 3(

52

5

)(
47

5

) .

Thus

P (R2 | R1) =
3(
47

5

) = 1.96× 10−6.

Since P (R2|R1) > P (R1), a royal flush is attractive.

P (player 2 has a full house) =

13 · 12

(
4

3

)(
4

2

)
(

52

5

) .
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P (player 1 has a flush and player 2 has a full house) =

4 · 8 · 7
(

4

3

)(
4

2

)
+ 4 · 8 · 5

(
4

3

)
·
(

3

2

)
+ 4 · 5 · 8 ·

(
3

3

)(
4

2

)
+ 4 · 5 · 4

(
3

3

)(
3

2

)
(

52

5

)(
47

5

) .

Taking the ratio of these last two quantities gives:

P(player 1 has a royal flush | player 2 has a full house) = 1.479× 10−6.

Since this probability is less than the probability that player 1 has a royal flush
(1.54× 10−6), a full house repels a royal flush.

56.

P (B|A) > P (B) ⇔ P (B ∩A) > P (A)P (B)

⇔ P (A|B) = P (A∩B)
P (B) > P (A) .

57.

P (B|A) ≤ P (B) and P (B|A) ≥ P (A)
⇔ P (B ∩A) ≤ P (A)P (B) and P (B ∩A) ≥ P (A)P (B)

⇔ P (A ∩B) = P (A)P (B) .

58.

P (A|B) > P (A) ⇔ P (A ∩B) > P (A)P (B)
⇔ P (A ∩B)− P (A)P (A ∩B) > P (A)P (B)− P (A)P (B ∩A)

⇔ P (A ∩B)P (Ã) > P (A)P (B∩Ã)

⇔ P (A∩B)
P (A) > P (B∩Ã)

P (Ã)

⇔ P (B|A) > P (B|Ã) .

59. Since A attracts B, P (B|A) > P (A) and

P (B ∩A) > P (A)P (B) ,

and so
P (A)− P (B ∩A) < P (A)− P (A)P (B) .

Therefore,
P (B̃ ∩A) < P (A)P (B̃) ,

P (B̃|A) < P (B̃) ,

and A repels B̃.
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60. If A attracts B and C, and A repels B ∩ C then we have

P (A ∩B) > P (A)P (B) ,

P (A ∩ C) > P (A)P (C) ,

P (B ∩ C ∩A) < P (B ∩ C)P (A) .

Thus

P (A ∩ (B ∪ C)) = P ((A ∩B) ∪ (A ∩ C))
= P (A ∩B) + P (A ∩ C)− P (A ∩B ∩ C)

> P (A)P (B) + P (A)P (C)− P (B ∩ C)P (A)
= P (A)(P (B) + P (C)− P (B ∩ C))

= P (A)P (B ∪ C) .

Therefore
P (B ∪ C|A) > P (B ∪ C) .

Here is an example in which A attracts B and C and repels B ∪ C. Let

Ω = {a, b, c, d} ,

p(a) = .2, p(b) = .25, p(c) = .25, p(d) = .3 .

Let
A = {a, d}, B = {b, d}, C = {c, d} .

Then
P (B|A) = .6 > P (B) = .55 ,

P (C|A) = .6 > P (C) = .55 ,

and
P (B ∪ C|A) = .6 < P (B ∪ C) = .8 .

61. Assume that A attracts B1, but A does not repel any of the Bj ’s. Then

P (A ∩B1) > P (A)P (B1),

and
P (A ∩Bj) ≥ P (A)P (Bj), 1 ≤ j ≤ n.

Then

P (A) = P (A ∩ Ω)
= P (A ∩ (B1 ∪ . . . ∪Bn))
= P (A ∩B1) + · · ·+ P (A ∩Bn)
> P (A)P (B1) + · · ·+ P (A)P (Bn)

= P (A)
(
P (B1) + · · ·+ P (Bn)

)
= P (A) ,

which is a contradiction.
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4.2 Continuous Conditional Probability

1. (a) 2/3

(b) 1/3

(c) 1/2

(d) 1/2

2. (a) 1− e−.9 = .593

(b) 1− e−.5 = .393

(c) 1

(d) (1− e−1)/(1− e−2) = .731

3. (a) .01

(b) e−.01T where T is the time after 20 hours.

(c) e−.2 ≈ .819

(d) 1− e−.01 ≈ .010

4. (a) 1/2

(b) 1/4

(c) 3/4

(d) 1/2

5. (a) 1

(b) 1

(c) 1/2

(d) π/8

(e) 1/2

6. (a) f(x) =

{
4/3, if 1/4 < x < 1,
0, otherwise.

(b) f(t) =

{
e−t/(e−1 − e−10), if 1 < t < 10,
0, otherwise.

(c) f(x, y) =

{
π/50, if (x, y) is in upper half of the target,
0, otherwise.
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(d) f(x, y) =

{
2, if x > y,
0, otherwise.

7. P (X >
1

3
, Y >

2

3
) =

∫ 1

1
3

∫ 1

2
3

dydx =
2

9
.

But P (X >
1

3
)P (Y >

2

3
) =

2

3
· 1

3
, so X and Y are independent.

8. a and b; c and d.

10. (b) Let Z be a number chosen with uniform density on the interval [0, a].
We find the density for max(Z, a − Z). This density is nonzero only on
the interval [a/2,a]. For x in this interval:

P (max(Z, a− Z)) ≤ x) = P (a− Z ≥ Z, a− Z ≤ x)+
P (Z > a− Z,Z ≤ x)

= P (Z ≥ a− x, Z ≤ a

2
) + P (Z >

a

2
, Z ≤ x)

=
2x− a
a

.

Taking a = 1, we see that the density for the length of the largest stick
from the first cut is uniform on the interval [ 1

2 , 1]. Assume that the length
of this longest piece is X. Let Y be position on the interval [0, X] of the
second cut. Then we obtain a triangle if max(Y,X − Y ) ≤ 1

2 . But by our
first computation with a = X and x = 1

2 , we see that

P (max(Y,X − Y )) ≤ 1

2
=
(1−X

X

)
.

Thus

P (triangle) = 2

∫ 1

1
2

(1− x
x

)
dx = 2 log 2− 1 .

11. If you have drawn n times (total number of balls in the urn is now n +
2) and gotten j black balls, (total number of black balls is now j + 1),
then the probability of getting a black ball next time is (j + 1)/(n+ 2).
Thus at each time the conditional probability for the next outcome is the
same in the two models. This means that the models are determined by
the same probability distribution, so either model can be used in making
predictions. Now in the coin model, it is clear that the proportion of
heads will tend to the unknown bias p in the long run. Since the value
of p was assumed to be unformly distributed, this limiting value has a
random value between 0 and 1. Since this is true in the coin model, it
is also true in the Polya Urn model for the proportion of black balls.(See
Exercise 20 of Section 4.1.)
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12. A new beta density with α = 6 and β = 9. It will be successful next time
with probability .4.

4.3 Paradoxes

1. 2/3

2. Let M be the event that the hand has an ace. Let N be the event that the
hand has at least two aces. Then

P (N |M) =
P (N ∩M)

P (M)
=
P (N)

P (M)
=

(
4

2

)(
48

11

)
+

(
4

3

)(
48

10

)
+

(
4

4

)(
48

9

)
(

52

13

)
−
(

48

13

)
≈ .3696 .

Let S be the event that the hand has the ace of hearts. Then

P (N |S) =
P (S ∩ T )

P (S)
=

(
3

1

)(
48

11

)
+

(
3

2

)(
48

10

)
+

(
3

3

)(
48

9

)
(

52

13

)
−
(

51

13

)
≈ .5612 .

3. (a) Consider a tree where the first branching corresponds to the number of
aces held by the player, and the second branching corresponds to whether
the player answers ‘ace of hearts’ or anything else, when asked to name
an ace in his hand. Then there are four branches, corresponding to the
numbers 1, 2, 3, and 4, and each of these except the first splits into
two branches. Thus, there are seven paths in this tree, four of which
correspond to the answer ‘ace of hearts.’ The conditional probability that
he has a second ace, given that he has answered ‘ace of hearts,’ is therefore(((

48

12

)
+

1

2

(
3

1

)(
48

11

)
+

1

3

(
3

2

)(
48

10

)
+

1

4

(
3

3

)(
48

9

))/(52

13

))
((

51

12

)/(52

13

)) ≈ .6962 .

(b) This answer is the same as the second answer in Exercise 2, namely .5612.
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5. Let x = 2k. It is easy to check that if k ≥ 1, then

px/2

px/2 + px
=

3

4
.

If x = 1, then
px/2

px/2 + px
= 0 .

Thus, you should switch if and only if your envelope contains 1.

6. The sample space consists of all hands of size 13 (for the left-hand oppo-
nent) that can be drawn from the 26 hands not held by the declarer or
the dummy (our two hands). If Ak denotes the event that our left-hand
opponent (LHO) has exactly k cards in the suit in question (say the suit
is hearts), then

P (Ak) =

(
4
k

)(
22

13−k
)(

26
13

) .

At the point in the problem where we need to make a decision, we know
that LHO either has only the queen or the queen and jack. The proba-
bilities of these two events are 143/2300 and 156/2300. Thus, it is more
likely that LHO has the jack, so we should play the king.

As an interesting follow-up to this question, suppose we have played with
LHO for many years, and from experience, we know that in this situation,
he plays the queen on the first trick half the time and the jack on the first
trick half the time. Now, one can compute, using a decision tree, that if
he plays the queen on the first trick, the probability that he has the jack
is 143/455. So, in this case, we should finesse on the second trick (i.e.
assume that he doesn’t have the jack).

More generally, if we know that in this situation he plays the queen with
probability p and the jack with probability 1− p, then the probability he
has the jack, assuming he plays the queen on the first trick, is

p(143/299)

p(143/299) + (156/299)
.



Chapter 5

Important Distributions
and Densities

5.1 Important Distributions

1. (a), (c), (d)

2. Yes.

3. Assume that X is uniformly distributed, and let the countable set of values
be {ω1, ω2, . . .}. Let p be the probability assigned to each outcome by the
distribution function f of X. If p > 0, then

∞∑
i=1

f(ωi) =

∞∑
i=1

p ,

and this last sum does not converge. If p = 0, then

∞∑
i=1

f(ωi) = 0 .

So, in both cases, we arrive at a contradiction, since for a distribution
function, we must have

∞∑
i=1

f(ωi) = 1 .

4. One way to help decide whether the given experiment will result in a
random subset is to ask whether one might reasonably expect any of the
possible subsets to occur if the experiment is performed. Since some close
friends almost always eat lunch together, the first experiment will almost
never give a subset which has as a member exactly one of a pair of close

41
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friends. The second experiment will always give the same subset when
performed on the same student body. In addition, Social Security numbers
are assigned based upon geography, among other things. Thus, depending
upon the use we are going to make of this subset, this experiment may
or may not give an adequate subset. Finally, the third experiment will
probably return each subset with approximately the same probability. (A
tenth-floor window would be much better.)

5. (b) Ask the Registrar to sort by using the sixth, seventh, and ninth digits
in the Social Security numbers.

(c) Shuffle the cards 20 times and then take the top 100 cards. (Can you think
of a method of shuffling 3000 cards?

6. The distribution function of Y is given by

f(x) =
(k − x+ 1)n − (k − x)n

kn
,

for 1 ≤ x ≤ k. The numerator counts the number of n-tuples, all of whose
entries are at least x, and subtracts the number of n-tuples, all of whose
entries are at least x+ 1.

7. (a) p(n) =
1

6

(5

6

)n−1

(b) P (T > 3) = (
5

6
)3 =

125

216
.

(c) P (T > 6 | T > 3) = (
5

6
)3 =

125

216
.

8.
1

8
.

9. (a) 1000

(b)

(
100
10

)(
N−100

90

)(
N

100

)
(c) N = 999 or N = 1000

10. (a)

(
N
k

)(
N−k
n1−k

)(
N−n1

n2−k
)(

N
n1

)(
N
n2

)
(b) Let pN denote the probability that X = n12, given that the population

size is N . Then pN equals the expression in the answer to part (a), with
k replaced by n12. After some gruesome algebra, one obtains

pN+1

pN
=

N2 − (n1 + n2 − 2)N + (n1 − 1)(n2 − 1)

N2 − (n1 + n2 − n12 − 2)N + (n12 + 1− n1 − n2
.
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Let aN and bN denote the numerator and denominator of this expression.
We want the smallest value of N for which the expression is less than or
equal to 1, or equivalently, we want the smallest value of N for which
aN ≤ bN . If we solve this inequality for N , we obtain

N =
⌈n1n2

n12

⌉
− 1 .

13. .7408, .2222, .0370

14. (a) e−10 ≈ 4.54× 10−5

(b) We need e−n/1000 = 1/2, or n = 1000 · log2 ≈ 694.

16. P (miss 0 calls) + P (miss 1 call) = .0498+.1494 = .1992.

17. 649741

18. (a) m = 600× 1

500
so P (no raisins) = e−m = .301.

(b) m = 400× 1

500
, so P (exactly two chocolate chips) =

m2e−m

2!
= .144.

(c) m = 1000× 1

500
, so

P (at least two bits) = 1−P (0 bits)−P (1 bit) = 1− .1353− .2707 = .594.

19. The probability of at least one call in a given day with n hands of bridge
can be estimated by 1−e−n·(6.3×10−12). To have an average of one per year
we would want this to be equal to 1

365 . This would require that n be about
400,000,000 and that the players play on the average 8,700 hands a day.
Very unlikely! It’s much more likely that someone is playing a practical
joke.

20. e−5 ≈ .00674

21. (a) b(32, j, 1/80) =

(
32

j

)( 1

80

)j(79

80

)32−j

(b) Use λ = 32/80 = 2/5. The approximate probability that a given student
is called on j times is e−2/5(2/5)j/j! . Thus, the approximate probability
that a given student is called on more than twice is

1− e−2/5

(
(2/5)0

0!
+

(2/5)1

1!
+

(2/5)2

2!

)
≈ .0079 .

22. .0077
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23.

P (outcome is j + 1)/P(outcome is j) =
mj+1e−m

(j + 1)!

/mje−m

j!
=

m

j + 1
.

Thus when j + 1 ≤ m, the probability is increasing, and when j + 1 ≥ m
it is decreasing. Therefore, j = m is a maximum value. If m is an integer,
then the ratio will be one for j = m−1, and so both j = m−1 and j = m
will be maximum values. (cf. Exercise 7 of Chapter 3, Section 2)

24. The probability that Kemeny receives no mail on a given weekday can be
estimated by e−10 = 4.54× 10−5. Thus in ten years, the probability that
at least one day brings no mail can be estimated by 1− e−3000·4.54×10−5

=
.127. Thus he finds that the probability is .127, which is inconclusive.

25. Using the Poisson approximation, we find that without paying the meter
Prosser pays

2
52e−5

2!
+ (2 + 5)

53e−5

3!
+ · · ·+ (2 + 5 ∗ 98)

5100e−5

100!
= $17.155.

If one computes the exact value, using the binomial distribution, one finds
the sum to be finds the answer to be

2

(
100

2

)
(.05)2(.95)98+7

(
100

3

)
(.05)3(.95)97+. . .+(2+5∗98)

(
100

100

)
(.05)100(.95)0 = $17.141 .

He is better off putting a dime in the meter each time for a total cost of
$10.

26.

number observed expected

0 229 227
1 211 211
2 93 99
3 35 31
4 7 9
5 1 1

27. m = 100× (.001) = .1. Thus P (at least one accident) = 1− e−.1 = .0952.

28. .9084

29. Here m = 500× (1/500) = 1, and so P (at least one fake) = 1−e−1 = .632.

If the king tests two coins from each of 250 boxes, then m =250× 2

500
= 1,

and so the answer is again .632.



5.1. IMPORTANT DISTRIBUTIONS 45

30. P (win ≥ 3 times) ≈ .5071, expected winnings ≈ −2.703

31.The expected number of deaths per corps per year is

1 · 91

280
+ 2 · 32

280
+ 3 · 11

280
+ 4 · 2

280
= .70.

The expected number of corps with x deaths would then be 280· (.70)xe−(.70)

x!
.

From this we obtain the following comparison:

Number of deaths Corps with x deaths Expected number of corps

0 144 139.0
1 91 97.3

The fit is quite good.

32.

P (X + Y = j) =

j∑
k=0

P (X = k)P (Y = j − k) =

j∑
k=0

mke−m

k!
· m̄

j−ke−m̄

(j − k)!

= e−(m+m̄)
( j∑
k=0

j!mkm̄j−k

k!(j − k)!

) 1

j!

= e−(m+m̄) 1

j!

( j∑
k=0

(
j

k

)
mkm̄j−k

)
=

(m+ m̄)j

j!
e−(m+m̄).

Thus, X + Y has a Poisson density with mean m+ m̄.

33. Poisson with mean 3.

34. .168

35.

(a) In order to have d defective items in s items, you must choose d items out
of D defective ones and the rest from S−D good ones. The total number
of sample points is the number of ways to choose s out of S.

(b) Since
min(D,s)∑

j=0

P (X = j) = 1,

we get
min(D,s)∑

j=0

(
D

j

)(
s−D
s− j

)
=

(
S

s

)
.
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36. D = 20. This illustrates the general fact that the maximum probability is
achieved when

d

D
=
s

S
.

37. The maximum likelihood principle gives an estimate of 1250 moose.

38. With replacement: P (X = 1) ≈ .396

Without replacement: P (X = 1) ≈ .440

40. (a)

4!

2

(
13

4

)(
13

4

)(
13

3

)(
13

2

)
(

52

13

) = .2155.

(b)

4!

2

(
13

5

)(
13

3

)(
13

3

)(
13

2

)
(

52

13

) = .1552.

42. p
X1

=

(
0 4
1
3

2
3

)
, p

X2
=

(
3
1

)
, p

X3
=

(
2 6
2
3

1
3

)
, p

X4
=

(
1 5
1
2

1
2

)
.

If your friend chooses die 1, choose die 4; if she chooses die 2, choose die 1;
if she chooses die 3, choose die 2; if she chooses die 4, choose die 3. Then

P (X1 < X4) = P (X2 < X1) = P (X3 < X2) = P (X4 < X3) =
2

3
.

Thus you are assured of winning with probability 2/3.

43. If the traits were independent, then the probability that we would obtain
a data set that differs from the expected data set by as much as the
actual data set differs is approximately .00151. Thus, we should reject the
hypothesis that the two traits are independent.

44. The value of χ2 corresponding to the data is v = 9931.6, which is much
greater than v0, so the hypothesis that the chosen numbers are uniformly
distributed should be rejected.

5.2 Important Densities

1. (a) f(x) = 1 on [2, 3];F (x) = x− 2 on [2, 3].
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(b) f(x) =
1

3
x−2/3 on [0, 1]; F (x) = x1/3 on [0, 1].

2. (a) F (x) = 2− 1

x
, f(x) =

1

x2
on [

1

2
, 1] .

(b) F (x) = ex − 1 , f(x) = ex on [0, log 2] .

5. (a) F (x) = 2x , f(x) = 2 on [0, 1] .

(b) F (x) = 2
√
x , f(x) =

1√
x

on [0,
1

2
] .

7. Using Corollary 5.2, we see that the expression
√
rnd will simulate the given

random variable.

9. (a) F (y) =

{
y2

2 , 0 ≤ y ≤ 1;

1− (2−y)2

2 , 1 ≤ y ≤ 2,
f(y) =

{
y, 0 ≤ y ≤ 1;
2− y 1 ≤ y ≤ 2.

(b) F (y) = 2y − y2, f(y) = 2− 2y, 0 ≤ y ≤ 1.

10. (a) F (x) = x2 and f(x) = 2x on [0, 1].

(b) F (x) = 2x− x2 and f(x) = 2− 2x on [0, 1].

12. (a) 1/2

(b) 1

(c) .2

13. (a) F (r) =
√
r , f(r) =

1

2
√
r
, on [0, 1] .

(b) F (s) = 1−
√

1− 4s , f(s) =
2√

1− 4x
, on [0, 1/4] .

(c) F (t) =
t

1 + t
, f(t) =

1

(1 + t)2
, on [0,∞) .

14. (a) 3/4

(b) π/16

15. F (d) = 1− (1− 2d)2, f(d) = 4(1− 2d) on [0, 1
2 ].

16. (a) c = 6

(b) F (x) = 3x2 − 2x3

(c) .156
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17. (a) f(x) =

{
π
2 sin(πx), 0 ≤ x ≤ 1;
0, otherwise.

(b) sin2(π8 ) = .146.

18. F
W

(w) =

a > 0 : F
X

(w−ba ); a = 0 :

{
1, w ≥ b;
0, otherwise;

a < 0 : 1− F
X

(w−ba ).

19. a 6= 0 : f
W

(w) = 1
|a|fX (w−ba ), a = 0: f

W
(w) = 0 if w 6= 0.

20. a =
1

d− c
and b =

c

c− d

21. P (Y ≤ y) = P (F (X) ≤ y) = P (X ≤ F−1(y)) = F (F−1(y)) = y on [0, 1].

22. (a)
a+ b

2

(b) µ

(c)
1

λ
log 2

23. The mean of the uniform density is (a+ b)/2. The mean of the normal
density is µ. The mean of the exponential density is 1/λ.

24. The mode of the uniform density is any number in [0, 1]. The mode of the
normal is µ. The mode of the exponential is 0.

25. (a) .9773, (b) .159, (c) .0228, (d) .6827.

26. 13.4% are likely to be rejected. For 1% rejection rate, let σ = .0012.

27. A: 15.9%, B: 34.13%, C: 34.13%, D: 13.59%, F: 2.28%.

28. 2.4%

29. e−2, e−2.

30. The car will last for 4 years with probability 1/e ≈ .368.

31. 1
2 .

34.

P (X < Y ) =

∫ ∞
x=0

∫ ∞
y=x

f(x)g(y)dxdy =

∫ ∞
x=0

f(x)(1−G(x))dx.
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Thus

P (X < Y ) =

∫ ∞
0

λe−λx · e−µxdx =
λ

λ+ µ
.

Therefore, the probability that a 100 watt bulb will outlast a 60 watt bulb is
(1/200)

1/200+1/100 = 1/3.

35. P (size increases) = P (Xj < Yj) = λ/(λ+ µ).

P (size decreases) = 1− P (size increases) = µ/(λ+ µ).

36. Exponential with parameter λ/r.

37. FY (y) =
1√
2πy

e−
log2(y)

2 , for y > 0.

38.

P (Y1 ≤ y1, Y2 ≤ y2) = P (X1 ≤ Φ−1
1 (y1), X2 ≤ Φ−1

2 (y2))
= P (X1 ≤ Φ−1

1 (y1))P (X2 ≤ Φ−1
2 (y2))

= P (Y1 ≤ y1)P (Y2 ≤ y2),

so Y1 and Y2 are independent.
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Chapter 6

Expected Value and
Variance

6.1 Expected Value of Discrete Random Vari-
ables

1. -1/9

2. -1/2

3. 5′ 10.1”

4. -1/19

5. -1/19

6. Let U and V be independent identically distributed random variables with
the density:

p
U

=

(
1 2 3 4 5 6
1
6

1
6

1
6

1
6

1
6

1
6

)
.

Then
XY = (U + V )(U − V ) = U2 − V 2,

so
E(XY ) = E(U2)− E(V 2) = 0.

Since
E(Y ) = E(U)− E(V ) = 0,

we have
E(XY ) = E(X)E(Y ) = 0.

But X and Y are not independent. For example, if we know that X = 12,
then we know that Y = 0.

51
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7. Since X and Y each take on only two values, we may choose a, b, c, d so that

U =
X + a

b
, V =

Y + c

d

take only values 0 and 1. If E(XY ) = E(X)E(Y ) then E(UV ) =
E(U)E(V ). If U and V are independent, so are X and Y . Thus it is
sufficient to prove independence for U and V taking on values 0 and 1
with E(UV ) = E(U)E(V ). Now

E(UV ) = P (U = 1, V = 1) = E(U)E(V ) = P (U = 1)P (V = 1),

and

P (U = 1, V = 0) = P (U = 1)− P (U = 1, V = 1)
= P (U = 1)(1− P (V = 1)) = P (U = 1)P (V = 0).

Similarly,

P (U = 0, V = 1) = P (U = 0)P (V = 1)
P (U = 0, V = 0) = P (U = 0)P (V = 0).

Thus U and V are independent, and hence X and Y are also.

8. The expected number of boys and the expected number of girls are both 7
8 .

9. The second bet is a fair bet so has expected winning 0. Thus your ex-
pected winning for the two bets is the same as the original bet which
was −7/498 = −.0141414... . On the other hand, you bet 1 dollar with
probability 1/3 and 2 dollars with probability 2/3. Thus the expected
amount you bet is 1 2

3 dollars and your expected winning per dollar bet
is -.0141414/1.666667 = -.0085 which makes this option a better bet in
terms of the amount won per dollar bet. However, the amount of time to
make the second bet is negligible, so in terms of the expected winning per
time to make one play the answer would still be -.0141414.

11. The roller has expected winning -.0141; the pass bettor has expected
winning -.0136.

12. 0

13. 45

14. E(Xj) =
1

N
. For j 6= k, E(XjEk) =

1

N(N − 1)
. Thus Xj and Xk are

not independent.

15. E(X) = 1
5 , so this is a favorable game.
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16. (a)

E(X) =
(1 + 2 + 3 + 4 + 5 + 6)

6
= 3

1

2
.

(b) The large sums are much less likely to occur than small sums. For example

P (total = 21) = (1/6)6 = 2.14× 10−5

and

P (total = 0) = (5/6)6 = .335.

17. pk = p(

k−1 times︷ ︸︸ ︷
S · · ·S F ) = pk−1(1− p) = pk−1q, k = 1, 2, 3, . . . .

∞∑
k=1

pk = q

∞∑
k=0

pk = q
1

1− p
= 1 .

E(X) = q

∞∑
k=1

kpk−1 =
q

(1− p)2
=

1

q
. (See Example 6.4.)

18. 7/2

19.

E(X) =

(
4
4

)(
4
4

) (3− 3) +

(
3
2

)(
4
3

) (3− 2) +

(
3
3

)(
4
3

) (0− 3) +

(
3
1

)(
4
2

) (3− 1)

+

(
3
2

)(
4
2

) (0− 2) +

(
3
0

)(
4
1

) (3− 0) +

(
3
1

)(
4
1

) (0− 1) = 0 .

20. (a)

E(X) =
1

2
· 2 +

(1

2

)2

· 22+
(1

2

)3

·23 · · · = 1 + 1 + 1 + · · · =∞ ,

and so E(X) does not exist. This means that if we could play the game,
it would be favorable now matter how much we pay to play it. However,
we cannot realize this game, since it requires arbitrarly large amounts of
money.

(b)

E(X) =
1

2
· 2 +

(1

2

)2

· 22 + · · ·+
(1

2

)10

· 210 + 210
( 1

211
+

1

212
+ · · ·

)
= 10 +

1

2
+

1

22
+ · · · = 11 .
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(d) If the utility of n dollars is
√
n, then the expected utility of the payment

is given by
∞∑
i=1

1

2i

√
2i =

1√
2− 1

.

If the utility of n dollars is log n, then the expected utility of the payment
is given by

∞∑
i=1

1

2i
log(2i) = 2 log 2 .

22. The expected number of days in a year with more than 60 percent boys
for the large hospital is

365 ·
k=45∑
k=28

b(45, .5, k) = 24.67 .

For the small hospital it is

365 ·
k=15∑
k=10

b(15, .5, k) = 55.1 .

23. 10

25.

(b) Let S be the number of stars and C the number of circles left in the deck.
Guess star if S > C and guess circle if S < C. If S = C toss a coin.

(d) Consider the recursion relation:

h(S,C) =
max(S,C)

S + C
+

S

S + C
h(S − 1, C) +

C

S + C
h(S,C − 1)

and h(0, 0) = h(−1, 0) = h(0,−1) = 0. In this equation the first term
represents your expected winning on the current guess and the next two
terms represent your expected total winning on the remaining guesses.
The value of h(10, 10) is 12.34.

26. (a) Let L be the horizontal line passing through S − C. If the random
walk is below L, then there are more stars than circles in the remaining
deck, and so, using the optimal strategy, you guess star. If you are right,
the graph goes up. If the walk is above L, then there are more circles than
stars, and you guess circle. If you are right, the graph goes down. Since
S ≥ C, the graph ends at (S + C, S − C). Let a be the number of times
the graph goes up under L, b the number of times it goes down under L, c
the number of times it goes down above L, and d the number of times it
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goes up above L. Then a + b + c + d = S + C, a − b = S − C, c − d = 0.
Thus 2a− S + C + 2c = S + C, and this implies a + c = S, i.e., we have
S correct guesses.

(b) We arrive at (x, x) if S − x stars turn up and C − x circles turn up in
S + C − 2x guesses. The probability of this happening is(

S
S−x

)(
C

C−x
)(

S+C
S+C−2x

) =

(
S
x

)(
C
x

)(
S+C

2x

) .

(c) The number of correct guesses equals the number of correct guesses when
the graph is under or above L plus the number of correct guesses when
the graph hits L. Thus the expected number of correct guesses is:

S +

C∑
x=1

(
S
x

)(
C
x

)(
S+C

2x

) · 1

2
.

27. (a) 4

(b) 4 +

4∑
x=1

(
4
x

)(
4
x

)(
8
x

) = 5.79 .

28. (a) Assume that n = 2k − 1. Choose the middle number of the numbers
from 1 to 2k − 1, and then continue to choose the middle number until
you guess the number correctly. If you have not yet succeeded after k− 1
guesses you will be down to a single number and will be sure to get it on
the kth question. This strategy obviously works just as well if n < 2k−1.

(b) Whenever you make a guess and are wrong the search is narrowed to a
new and smaller interval [a, b]. The probability that you guess correctly
on a question when the interval is [a, b] is

P (correct) =
(b− a)

n
· 1

(b− a)
=

1

n
.

Thus the probabililty that you guess the number on the kth question
is a(k)/n where a(k) is the number of possible subintervals for the kth
question. The probability of guessing the number correctly for a strategy
with at most k guesses is ∑

k a(k)

n
.

Thus any strategy that makes this sum as large as possible is optimal.
We can at most double the number of intervals on each question.Thus any
strategy that achieves this is optimal.The resulting probability of guessing
the number in k questions is∑k−1

j=0 2k

n
=

2k − 1

n
.
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If n ≥ 2k − 1 we can achieve this optimal strategy by continuing to bisect
the numbers between 1 and 2k − 1.

29. If you have no ten-cards and the dealer has an ace, then in the remaining 49
cards there are 16 ten cards. Thus the expected payoff of your insurance
bet is:

2 · 16

49
− 1 · 33

49
= − 1

49
.

If you are playing two hands and do not have any ten-cards then there
are 16 ten-cards in the remaining 47 cards and your expected payoff on
an insurance bet is:

2 · 16

47
− 1 · 31

47
=

1

47
.

Thus in the first case the insurance bet is unfavorable and in the second
it is favorable.

30.

(a) P (Xk = j)= P (j − 1 boxes have old pictures and the jth box has a new
picture)

=
(k − 1

n

)j(n− k + 1

n

)
,

and so Xk has a geometric distribution with p = (n− k + 1)/n.

(c) The expected time for getting the first half of the players is

E(X1) + · · ·+ E(Xn) =
2n

2n− 1 + 1
+

2n

2n− 2 + 1
+ · · ·+ 2n

2n− n+ 1

= 2n
( 1

2n
+

1

2n− 1
+ · · · 1

n+ 1

)
.

The expected time for getting the second half of the players is:

E(Xn+1) + · · ·+ E(X2n) =
2n

2n− (n+ 1)− 1
+ · · ·+ 2n

2n− 2n+ 1

= 2n
( 1

n
+

1

n− 1
+ · · ·+ 1

1

)
.

(d)

1 +
1

2
+ · · ·+ 1

n
∼ log n+ .5772 +

1

2n
.

1 +
1

2
+ · · ·+ 1

n
+

1

n+ 1
+ · · ·+ 1

2n
∼ log 2n+ .5772 +

1

4n
.

2n
( 1

2n
+ · · ·+ 1

n+ 1

)
∼ 2n

(
log 2n+

1

4n
− log n− 1

2n

)
.

= 2n
(

log 2− 1

4n

)
= 2nlog 2− 1

2
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2n
(

1 +
1

2
+ · · ·+ 1

n

)
∼ 2n

(
log n+ .5772 +

1

2n

)
.

31. (a) 1− (1− p)k .

(b)
N

k
·
(

(k + 1)(1− (1− p)k) + (1− p)k
)
.

(c) If p is small, then (1− p)k ∼ 1− kp, so the expected number in (b) is
∼ N [kp+ 1

k ], which will be minimized when k = 1/
√
p.

32. Your estimate should be near e = 2.718...

33. We begin by noting that

P (X ≥ j + 1) = P ((t1 + t2 + · · ·+ tj) ≤ n) .

Now consider the j numbers a1, a2, · · · , aj defined by

a1 = t1
a2 = t1 + t2
a3 = t1 + t2 + t3

...
...

...
aj = t1 + t2 + · · ·+ tj .

The sequence a1, a2, · · · , aj is a monotone increasing sequence with distinct
values and with successive differences between 1 and n. There is a one-to-
one correspondence between the set of all such sequences and the set of
possible sequences t1, t2, · · · , tj . Each such possible sequence occurs with
probability 1/nj . In fact, there are n possible values for t1 and hence for
a1. For each of these there are n possible values for a2 corresponding to
the n possible values of t2. Continuing in this way we see that there are
nj possible values for the sequence a1, a2, · · · , aj . On the other hand, in
order to have t1 + t2 + · · · + tj ≤ n the values of a1, a2, · · · , aj must be
distinct numbers lying between 1 to n and arranged in order. The number
of ways that we can do this is

(
n
j

)
. Thus we have

P (t1 + t2 + · · ·+ tj ≤ n) = P (X ≥ j + 1) =

(
n

j

)
1

nj
.

E(X) = P (X = 1) + P (X = 2) + P (X = 3) · · ·
+P (X = 2) + P (X = 3) · · ·

+P (X = 3) · · · .

If we sum this by rows we see that

E(X) =

n−1∑
j=0

P (X ≥ j + 1) .
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Thus,

E(X) =

n∑
j=1

(
n

j

)( 1

n

)j
=
(

1 +
1

n

)n
.

The limit of this last expression as n→∞ is e = 2.718... .
There is an interesting connection between this problem and the expo-
nential density discussed in Section 2.2 (Example 2.17). Assume that the
experiment starts at time 1 and the time between occurrences is equally
likely to be any value between 1 and n. You start observing at time n.
Let T be the length of time that you wait. This is the amount by which
t1 + t2 + · · · + tj is greater than n. Now imagine a sequence of plays of
a game in which you pay n/2 dollars for each play and for the j’th play
you receive the reward tj . You play until the first time your total reward
is greater than n. Then X is the number of times you play and your
total reward is n+T . This is a perfectly fair game and your expected net
winning should be 0. But the expected total reward is n + E(T ). Your
expected payment for play is n

2E(X). Thus by fairness, we have

n+ E(T ) = (n/2)E(X) .

Therefore,

E(T ) =
n

2
E(X)− n .

We have seen that for large n, E(X) ∼ e. Thus for large n,

E(waiting time) = E(T ) ∼ n(
e

2
− 1) = .718n .

Since the average time between occurrences is n/2 we have another exam-
ple of the paradox where we have to wait on the average longer than 1/2
the average time time between occurrences.

34. (a) We prove first that for Bernoulli trials the probability that the kth
failure precedes the rth success is

f(k, p, r) =

(
r + k − 1

k

)
pr−1qk · p .

To prove this, we note that for the kth failure to precede the rth success
we must have r− 1 successes and k failures in the first r+ k− 1 trials and
then have a success. The probability that this happens is f(k, p, r). Now
consider a Bernoulli trials process where success is getting a match from
the right pocket. In order to have r matches in the left pocket when the
right pocket has none we must have N − r failures before the (N + 1)st
success. Thus the probability that there are r matches in the left pocket
when the right pocket has none is

f(N − r, 1

2
, N + 1) .
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The same argument applies for the probability that there are r matches
in the right pocket when the left pocket has none. Thus

pr = 2f(N − r, 1

2
, N + 1) =

(
2N − r
N

)(1

2

)2N−r
.

(c)

(N − r

2
)pr+1 = (N − r

2
)

(
2N − r − 1

N

)(1

2

)2N−r−1

= (2N − r)
(

2N − r − 1

N

)(1

2

)2N−r

= (N − r)
(

2N − r
N

)(1

2

)2N−r

= (N − r)pr .

(d)

N∑
r=0

pr = 1 .

(e)
N∑
r=0

(N − r)pr =

N∑
r=0

1

2
(2N + 1)pr+1 −

N∑
r=0

1

2
(r + 1)pr+1 .

Thus

N − E =
1

2
(2N + 1)(1− p0)− 1

2
E ,

and
E = p0(2N + 1)− 1 .

But

p0 =

(
2N

N

)(1

2

)2N

∼ 1√
πN

,

so

E ∼ 2

√
N

π
.

Using this asymptotic expression leads to an estimate of 133 for the num-
ber of matches needed in each pocket to make E = 13. It is easy to make
an exact calculation with the computer, and this gives 153 matches.

35. One can make a conditionally convergent series like the alternating har-
monic series sum to anything one pleases by properly rearranging the
series. For example, for the order given we have

E =

∞∑
n=0

(−1)n+1 2n

n
· 1

2n
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=

∞∑
n=0

(−1)n+1 1

n
= log 2 .

But we can rearrange the terms to add up to a negative value by choosing
negative terms until they add up to more than the first positive term, then
choosing this positive term, then more negative terms until they add up
to more than the second positive term, then choosing this positive term,
etc.

36. c
k

c+ d

37. (a) Under option (a), if red turns up, you win 1 franc, if black turns up,
you lose 1 franc, and if 0 turns up, you lose 1/2 franc. Thus, the expected
winnings are

1
(18

37

)
+ (−1)

(18

37

)
+
(−1

2

)( 1

37

)
≈ −.0135 .

(b) Under option (b), if red turns up, you win 1 franc, if black turns up, you
lose 1 franc, and if 0 comes up, followed by black or 0, you lose 1 franc.
Thus, the expected winnings are

1
(18

37

)
+ (−1)

(18

37

)
+ (−1)

( 1

37

)(19

37

)
≈ −.0139 .

(c)

38. (Solution by Victor Hernández) Let pij be the probability that book i is
above book j. Then the average depth of book j is

dj =
∑
i6=j

pij ,

where the top book is considered to be at depth 0. Now if book i is above
book j, then the relative order of books i and j is changed after a call if
and only if book j is consulted. Hence,

pij = pij(1− pj) + pjipi
= pij(1− pj) + (1− pij)pi
= pi + pij(1− pi − pj) .

Thus, we have

pij =
pi

pi + pj
,

and
dj =

∑
k 6=j

pk
pk + pj

.
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If pi ≥ pj , then
pk

pk + pi
≤ pk
pk + pj

for k 6= i, j, and
pj

pi + pj
≤ pi
pi + pj

.

Since each term in the sum for di is less than or equal to the corresponding
term in the sum for dj , we have di ≤ dj .

39. (Solution by Peter Montgomery) The probability that book 1 is in the
right place is the probability that the last phone call referenced book 1,
namely p1. The probability that book 2 is in the right place, given that
book 1 is in the right place, is

p2 + p2p1 + p2p
2
1 + . . . =

p2

(1− p1)
.

Continuing, we find that

P = p1
p2

(1− p1)

p3

(1− p1 − p2)
· · · pn

(1− p1 − p2 − . . .− pn−1
.

Now let q be a real number between 0 and 1, let

p1 = 1− q ,

p2 = q − q2 ,

and so on, and finally let
pn = qn−1 .

Then
P = (1− q)n−1 ,

so P can be made arbitrarily close to 1.

40. If a1, a2, . . . is the sequence, then the event {a1 < a2 < . . . < ak}
occurs with probability 1/k!, since there are k! different orderings of k real
numbers, and all of them are equally likely to occur in this experiment.
Therefore,

P (X > k) =
1

k!
.

Now let
pk = P (X = k) .

Then

E(X) = p1 + 2p2 + 3p3 + . . .
= (p1 + p2 + . . .) + (p2 + p3 + . . .) + . . .
= P (X > 0) + P (X > 1) + . . .

= 1 +
1

1!
+

1

2!
+ . . .

= e .
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6.2 Variance of Discrete Random Variables

1. E(X) = 0, V (X) =
2

3
, σ = D(X) =

√
2

3
.

2. E(X) =
4

3
, V (X) =

17

9
, σ = D(X) =

√
17

3
.

3. E(X) =
−1

19
, E(Y ) =

−1

19
, V (X) = 33.21, V (Y ) = .99 .

4. (a) 10015, (b) 310, (c) −100, (d) 15, (e)
√

15.

5. (a) E(F ) = 62, V (F ) = 1.2 .

(b) E(T ) = 0, V (T ) = 1.2 .

(c) E(C) =
50

3
, V (C) =

10

27
.

7. V (X) =
3

4
, D(X) =

√
3

2
.

8. E(S2400) = 960, V (S2400) = 576, σ = D(S2400) = 24.

9. V (X) =
20

9
, D(X) =

2
√

5

3
.

10. (a) V (X + c) = V (X), so D(X + c) = D(X).

(b) V (cX) = c2V (X), so D(cX) = |c|X.

11. E(X) = (1 + 2 + · · ·+ n)/n = (n+ 1)/2.

V (X) = (12 + 22 + · · ·+ n2)/n− (E(X))2

= (n+ 1)(2n+ 1)/6− (n+ 1)2/4 = (n+ 1)(n− 1)/12.

12. E
(
X − µ/σ

)
= (1/σ)(E(X)− µ) = 0,

V
(
X − µ/σ

)2

= (1/σ2)E(X − µ)2 = σ2/σ2 = 1.

13. Let X1, . . . , Xn be identically distributed random variables such that

P (Xi = 1) = P (Xi = −1) =
1

2
.

Then E(Xi) = 0, and V (Xi) = 1. Thus Wn =
∑n
j=1Xi. Therefore

E(Wn) =
∑n
i=1E(Xi) = 0, and V (Wn) =

∑n
i=1 V (Xi) = n.
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14. Let X be the number of boys and Y be the number of girls. Then

E(X) = E(Y ) =
7

8
,

and

V (X) =
7

64
, V (Y ) =

71

64
.

15. (a) PXi =

(
0 1
n−1
n

1
n

)
. Therefore, E(Xi)

2 = 1/n for i 6= j.

(b) PXiXj =

(
0 1

1− 1
n(n−1)

1
n(n−1)

)
for i 6= j .

Therefore, E(XiXj) =
1

n(n− 1)
.

(c)

E(Sn)2 =
∑
i

E(Xi)
2 +

∑
i

∑
j 6=i

E(XiXj)

= n · 1

n
+ n(n− 1) · 1

n(n− 1)
= 2 .

(d)

V (Sn) = E(Sn)2 − E(Sn)2

= 2− (n · (1/n))2 = 1 .

16. (a) For p = .5:

k
1 2 3

10 .656 .979 .998
N 30 .638 .957 .999

50 .678 .967 .997

For p = .2:

k
1 2 3

10 .772 .967 .994
N 30 .749 .964 .997

50 .629 .951 .997

(b) Use Exercise 12 and the fact that E(Sn) = np and V (Sn) = npq. The two
examples in (a) suggests that the probability that the outcome is within
k standard deviations is approximately the same for different values of p.
We shall see in Chapter 9 that the Central Limit Theorem explains why
this is true.
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18. (a) E(x̄) =
1

n

n∑
i=1

E(xi) =
1

n
· nµ = µ .

(b) We have

E
(

(x̄− µ)2
)

= V (x̄) ,

which was shown to equal σ2/n in Theorem 6.9.

(c) We have from the hint:

n∑
i=1

(xi − x̄)2 =

n∑
i=1

(xi − µ)2 − n(x̄− µ)2 .

Thus,

E(s2) =
1

n
E

(
n∑
i=1

(xi − x̄)2

)

=
1

n

(
E

(
n∑
i=1

(xi − µ)2

)
− nE(x̄− µ)2

)
=

1

n
(nσ2 − nσ

2

n
) =

n− 1

n
σ2 ,

where we have used the definition of the variance and part (b) to obtain
the penultimate expression.

(d) Since the expectation operator is linear, and the ‘new’ s2 is n/(n − 1)
times the ‘old’ s2, the new s2 has expectation

n

n− 1

n− 1

n
σ2 = σ2 .

19. Let X1, X2 be independent random variables with

pX1
= pX2

=

(
−1 1
1
2

1
2

)
.

Then

pX1+X2
=

(
−2 0 2
1
4

1
2

1
4

)
.

Then
σ̄X1

= σ̄X2
= 1, σ̄X1+X2

= 1 .

Therefore
V (X1 +X2) = 1 6= V (X1) + V (X2) = 2 ,

and
σ̄X1+X2

= 1 6= σ̄X1
+ σ̄X2

= 2 .
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20. (a) E(µ̄) = µ

(b) w =
V (X2)

V (X1) + V (X2)

21.

f ′(x) = −
∑
ω

2(X(ω)− x)p(ω)

= −2
∑
ω

X(ω)p(ω) + 2x
∑
ω

p(ω)

= −2µ+ 2x .

Thus x = µ is a critical point. Since f ′′(x) ≡ 2, we see that x = µ is the
minimum point.

22. X,Y,X+Y , and X−Y have the same distribution, so they have the same
mean and variance. Thus E(X) = E(Y ) = E(X) + E(Y ). This implies
that

E(X) = E(Y ) = 0 .

It also implies that

E(X + Y )2 = E(X − Y )2 = E(X2) = E(Y 2) .

Thus E(XY ) = 0 and E(Y 2) = E(X2) = 0. Therefore, P (X = Y = 0) =
1.

23. If X and Y are independent, then

Cov(X,Y ) = E(X − E(X)) · E(Y − E(Y )) = 0 .

Let U have distribution

p
U

=

(
0 π/2 π 3π/2

1/4 1/4 1/4 1/4

)
.

Then let X = cos(U) and Y = sin(U). X and Y have distributions

p
X

=

(
1 0 −1 0

1/4 1/4 1/4 1/4

)
,

p
Y

=

(
0 1 0 −1

1/4 1/4 1/4 1/4

)
.

Thus E(X) = E(Y ) = 0 and E(XY ) = 0, so Cov(X,Y ) = 0. However,
since

sin2(x) + cos2(x) = 1 ,

X and Y are dependent.
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24. Consider the variance of Sn:

V (Sn) =

n∑
i=1

pi(1− pi) =

n∑
i=1

pi −
n∑
i=1

p2
i ,

with the constraint
n∑
i=1

pi = np .

Assume that we have values of pi that satisfy the constraint and that m
of the values of pi are equal to x and one is equal to y with x > y. By
rearranging the terms if necessary we can assume that the first m are equal
to x and the (m+ 1)st is equal to y. We shall show that we can increase
the variance by making these m+ 1 values equal. To do this we define

p̄i = pi −
ε

m
, for i = 1 to m

and
p̄m+1 = pm+1 + ε ,

where
ε =

m

m+ 1
(x− y) .

Then the new p̄is satisfy the constraint, and the difference between the
new variance V̄ and the old variance V is

V̄ − V = m(x− ε

m
)2 + (y + ε)2 −mx2 − y2 .

After simplifying and substituting the value for ε this becomes

V̄ − V =
m

m+ 1
(x− y)2 .

Since this value is positive we have increased the variance by making the
first m + 1 values equal. The same argument applies in case y > x.
By induction we see that the variance is maximized by making all the
values equal. (Note: Students who know about the technique of Lagrange
multipliers will find this easier to prove using that method.)

25. (a) The expected value of X is

µ = E(X) =

5000∑
i=1

iP (X = i) .

The probability that a white ball is drawn is

P (white ball is drawn) =

n∑
i=1

P (X = i)
i

5000
.

Thus
P (white ball is drawn) =

µ

5000
.
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(b) To have P (white,white) = P (white)2 we must have

5000∑
i=1

(
i

5000
)2P (X = i) = (

n∑
i=1

i

5000
P (X = i))2 .

But this would mean that E(X2) = E(X)2, or V (X) = 0. Thus we will
have independence only if X takes on a specific value with probability 1.

(c) From (b) we see that

P (white,white) =
1

50002E(X2) .

Thus

V (X) =
(σ2 + µ2)

50002
.

26. (a) P (X = k) = pqk−1, k = 1, 2, . . . Thus by Example 3 we have

E(Xj) =
1

p
, V (Xj) =

q

p2
.

(b) E(Tn) = n/p, V (Tn) = nq/p2.

(c) E(Tn) = 2n, V (Tn) = 2n.

27. The number of boxes needed to get the j’th picture has a geometric
distribution with

p =
(2n− k + 1)

2n
.

Thus

V (Xj) =
2n(k − 1)

(2n− k + 1)2
.

Therefore, for a team of 26 players the variance for the number of boxes
needed to get the first half of the pictures would be

13∑
k=1

26(k − 1)

(26− k + 1)2
= 7.01 ,

and to get the second half would be

26∑
k=14

26(k − 1)

(26− k + 1)2
= 979.23 .

Note that the variance for the second half is much larger than that for the
first half.
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6.3 Continuous Random Variables

1. (a) µ = 0, σ2 = 1/3

(b) µ = 0, σ2 = 1/2

(c) µ = 0, σ2 = 3/5

(d) µ = 0, σ2 = 3/5

2. (a) µ = 0, σ2 = 1/5

(b) µ = 0, σ2 =
π2 − 8

π2

(c) µ = 1/3, σ2 = 2/9

(d) µ = 1/2, σ2 = 3/20

3. µ = 40, σ2 = 800

4. (a)
∫ 1

−1
(ax+ b)dx = 2b = 1, so b = 1

2 .

(b) ax + 1
2 ≥ 0, so when x = 1, a ≥ − 1

2 , and when x = −1, a ≤ 1
2 . Thus

− 1
2 ≤ a ≤

1
2 .

(c) µ =
∫ 1

−1
(ax2 + bx)dx = 2

3a.

(d) E(X2) =
∫ 1

−1
(ax3 + bx2)dx = 2b

3 = 1/3− (4/9)a2. Thus σ2(X) = 2
3b−

4
9a

2.

5. (d) a = −3/2, b = 0, c = 1

(e) a =
45

48
, b = 0, c =

3

16

6. (a) µ
T

=
1

3
, σ2

T =
1

9
.

(b) µ
T

=
1

3
, σ2

T =
2

9
.

(c) µ
T

=
1

2
, σ2

T =
3

4
.

7. f(a) = E(X − a)2 =

∫
(x− a)2f(x)dx . Thus

f ′(a) = −
∫

2(x− a)f(x)dx

= −2

∫
xf(x)dx+ 2a

∫
f(x)dx
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= −2µ(X) + 2a .

Since f ′′(a) = 2, f(a) achieves its minimum when a = µ(X).

8. a(σ2 + µ2) + bµ+ c .

9. (a) 3µ, 3σ2

(b) E(A) = µ, V (A) =
σ2

3

(c) E(S2) = 3σ2 + 9µ2, E(A2) =
σ2

3
+ µ2

10. (a)
1

3

(b)
2

3

(c)
1

3

(d)
2

3

(e)
7

6

11. In the case that X is uniformly distributed on [0, 100], one finds that

E(|X − b|) =
1

200

(
b2 + (100− b)2

)
,

which is minimized when b = 50.

When fX(x) = 2x/10,000, one finds that

E(|X − b|) =
200

3
− b+

b3

15000
,

which is minimized when b = 50
√

2.

12.

∫ 1

0

∫ 1

0

xydxdy = log(2) ≈ .693 .

13. Integrating by parts, we have

E(X) =

∫ ∞
0

xdF (x)

= −x(1− F (x))
∣∣∞
0

+

∫ ∞
0

(1− F (x))dx
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=

∫ ∞
0

(1− F (x))dx .

To justify this argment we have to show that a(1−F (a)) approaches 0 as
a tends to infinity. To see this, we note that∫ ∞

0

xf(x)dx =

∫ a

0

xf(x)dx+

∫ ∞
a

xf(x)dx

≥
∫ a

0

xf(x)dx+

∫ a

0

af(x)dx

=

∫ a

0

xf(x)dx+ a(1− F (a)) .

Letting a tend to infinity, we have that

E(X) ≥ E(X) + lim
a→∞

a(1− F (a)) .

Since both terms are non-negative, the only way this can happen is for
the inequality to be an equality and the limit to be 0.

To illustrate this with the exponential density, we have∫ ∞
0

(1− F (x))dx =

∫ ∞
0

e−λxdx =
1

λ
= E(X) .

15. E(Y ) = 9.5, E(Z) = 10, E(|X − Y |) = 1/2, E(|X − Z|) = 1/4 .

Z is better, since the expected value of the error committed by rounding using
this method is one-half of that using the other method.

17. (a)

Cov(X,Y ) = E(XY )− µ(X)E(Y )− E(X)µ(Y ) + µ(X)µ(Y )
= E(XY )− µ(X)µ(Y ) = E(XY )− E(X)E(Y ) .

(b) If X and Y are independent, then E(XY ) = E(X)E(Y ), and so Cov(X,Y )
= 0.

(c)

V (X + Y ) = E(X + Y )2 − (E(X + Y ))2

= E(X2) + 2E(XY ) + E(Y 2)
−E(X)2 − 2E(X)E(Y )− E(Y )2

= V (X) + V (Y ) + 2Cov(X,Y ) .
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18. (a)

0 ≤ V
( X

σ(X)
+

Y

σ(Y )

)
= V

( X

σ(X)

)
+ V

( Y

σ(Y )

)
+ 2Cov

( X

σ(X))
,
Y

σ(Y )

)
= 1 + 1 + 2

cov(X,Y )√
V (X)V (Y )

= 2(1 + ρ(X,Y )) .

(b)

0 ≤ V
( X

σ(X)
− Y

σ(Y )

)
= V

( X

σ(X)
) + V (

Y

σ(Y )

)
− 2Cov

( X

σ(X))
,− Y

σ(Y )

)
= 1 + 1− 2

Cov(X,Y )

σ(X)σ(Y )
= 2(1− ρ(X,Y )) .

(c) From (a),
1 + ρ(X,Y ) ≥ 0 ,

so
ρ(X,Y ) ≥ −1 .

From (b),
1− ρ(X,Y ) ≥ 0 ,

so
ρ(X,Y ) ≤ 1 .

Thus
−1 ≤ ρ(X,Y ) ≤ 1 .

19. (a) 0

(b)
1√
2

(c) − 1√
2

(d) 0

20. (a)

fX(x) =
1

2π
√

1− ρ2

∫ ∞
−∞

exp
(−(x2 − 2ρxy + y2)

2(1− ρ2)

)
dy

=
1

2π
√

1− ρ2

∫ ∞
−∞

exp(−(y − ρx)2) · exp(−1

2
x2)dy
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=
1√
2π
· exp(−1

2
x2) .

Thus X has a standard normal density. By symmetry, Y also has a stan-
dard normal density.

(b)

E(XY ) =
1

2π
√

1− ρ2

∫ ∞
−∞

∫ ∞
−∞

xy · exp
(−(x2 − 2ρxy + y2)

2(1− ρ2)

)
dxdy

=
1

2π
√

1− ρ2

∫ ∞
−∞

(∫ ∞
−∞

y · exp
(−(y − ρx)2

(2(1− ρ2)

)
dy
)
x · exp(−1

2
x2)dx

=
1√
2π

∫ ∞
−∞

ρx2· exp(−1

2
x2) = ρ .

Now

Cov(X,Y ) =
E(XY )− E(X)E(Y )√

V (X)V (Y )
.

Since E(X) = E(Y ) = 0 and V (X) = V (Y ) = 1,

Cov(X,Y ) = E(XY ) = ρ .

21. We have

f
XY (x,y)

f
Y

(y)
=

1

2π
√

1−ρ2
· exp

(
−(x2−2ρxy+y2)

2(1−ρ2)

)
√

2π · exp(−y2

2 )

=
1√

2π(1− ρ2)
· exp

(
−(x− ρy)2

2(1− ρ2)

)

which is a normal density with mean ρy and variance 1− ρ2. Thus,

E(X|Y = y) =

∫ ∞
−∞

x
1√

2π(1− ρ2)
· exp

(−(x− ρy)2

2(1− ρ2)

)
dx

= ρy

∫ ∞
−∞

1√
2π(1− ρ2)

· exp(−(x− ρy)2)

=

{
ρy < y, if 0 < ρ < 1;
y, if ρ = 1.

22. We have

f
X

(x) =

∫ 1

0

f
X,Y

(x, y)dy

=

∫ 1

0

f
X|Y (x|y)f

Y
(y)dy
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=

∫ 1

x

1

y
dy

= − log x ,

if 0 < x ≤ 1.

24. (a) Since the father’s height is 72 inches, Y = (72 − 68)/2.7 = 1.48.
Therefore the density for X given Y is normal with mean .5 · 1.48 = .74
and variance 1 − .52 = .75. Thus the density for the son’s height, given
that the father’s height is 72, is normal with mean 2.7 · .74 + 68 = 70
and variance (2.7)2 · .75 = 5.47.

26. (a) Let θ denote the angle that our path makes with the river bank, and
assume without loss of generality that 0 ≤ θ ≤ π/2. Let X denote the
distance from P to the river. Then X = sin(θ). Thus, the cumulative
distribution function of X is given by

FX(x) = P (X ≤ x)
= P

(
sin(θ) ≤ x

)
= P (θ ≤ arcsinx)

=
2

π
arcsinx .

So,

fX(x) =
2

π

1√
1− x2

.

Therefore,

E(X) =

∫ 1

0

2

π

x√
1− x2

dx

=
2

π

[
(1− x2)1/2

]1
0

=
2

π
.

(b) For a fixed θ between 0 and π/2, let Aθ denote the set of angles α that
you can choose at P and get back to the river by walking at most 1 mile
in the direction α. If α = 0 corresponds to the direction directly towards
the river from P , then

Aθ =
[
θ − π

2
,
π

2
− θ
]
.

So the probability that you choose a good angle α, given that you are at
P , is

|Aθ|
2π

=
π − 2θ

2π
.
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This must be averaged over all θ ∈ [0, π/2] to obtain the final answer:

2

π

∫ π/2

0

1

2
− 1

π
θ dθ =

2

π

[θ
2
− 1

2π
θ2
]π/2

0

=
1

4
.

27. Let Z represent the payment. Then

P (Z = k|X = x) = P (Y1 ≤ x, Y2 ≤ x, . . . , Yk ≤ x, Yk+1 > x)
= xk(1− x) .

Therefore,

P (Z = k) =

∫ 1

0

xk(1− x) dx

=

[
1

k + 1
xk+1 − 1

k + 2
xk+2

]1

0

=
1

k + 1
− 1

k + 2

=
1

(k + 1)(k + 2)
.

Thus,

E(Z) =

∞∑
k=0

k

(
1

(k + 1)(k + 2)

)
,

which diverges. Thus, you should be willing to pay any amount to play
this game.



Chapter 7

Sums of Independent
Random Variables

7.1 Sums of Discrete Random Variables

1. (a) .625

(b) .5

2.

(
−2 −1 0 1 2 3 4
1
16

1
4

5
16

3
16

9
64

1
32

1
64

)
.

3.

(
0 1 2 3 4
1
64

3
32

17
64

3
8

1
4

)

5. (a)

(
3 4 5 6
1
12

4
12

4
12

3
12

)

(b)

(
1 2 3 4
1
12

4
12

4
12

3
12

)

6. (a) P (Tr = k) =

(
r + k − 1

k

)
prqk .

(b) P (Cr = k) = b(r, p, k) =

(
r

k

)
pkqr−k .

(c) E(Cr) = rp, V (Cr) = rpq .

7. (a) P (Y3 ≤ j) = P (X1 ≤ j,X2 ≤ j,X3 ≤ j) = P (X1 ≤ j)3.
Thus

p
Y3

=

(
1 2 3 4 5 6
1

216
7

216
19
216

37
216

61
216

91
216

)
.

75



76 CHAPTER 7. SUMS OF INDEPENDENT RANDOM VARIABLES

This distribution is not bell-shaped.

(b) In general,

P (Yn ≤ j) = P (X1 ≤ j)3 =

(
j

6

)n
.

Therefore,

P (Yn = j) =

(
j

6

)n
−
(
j − 1

6

)n
.

This distribution is not bell-shaped for large n.

8. (b) .304

(c) .325

9. Let p1, . . . , p6 be the probabilities for one die and q1, . . . , q6 be the proba-
bilities for the other die. Assume first that all probabilities are positive.
Then p1q1 > p1q6, since there is only one way to get a 2 and several ways
to get a 7. Thus q1 > q6. In the same way q6q6 > q1p6 and so q6 > q1.
This is a contradiction. If any of the sides has probability 0, then we can
renumber them so that it is side 1. But then the probability of a 2 is 0
and so all sums would have to have probability 0, which is impossible.

Here’s a fancy way to prove it. Define the polynomials

p(x) =

5∑
k=0

p(k+1)x
k

and

q(x) =

5∑
k=0

q(k+1)x
k .

Then we must have

p(x)q(x) =

10∑
k=0

xk

11
=

(1− x11)

(1− x)
.

The left side is the product of two fifth degree polynomials. A fifth degree
polynomial must have a real root which will not be 0 if p1 > 0. Consider the
right side as a polynomial. For x to be a non-zero root of this polynomial
it would have to be a real eleventh root of unity other than 1, and there
are no such roots. Hence again we have a contradiction.

10. Let n = rs. Then consider the following two distributions

p
X

=

(
0 1 2 . . . r − 1

1/r 1/r 1/r . . . 1/r

)
,
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p
Y

=

(
0 r 2r . . . (s− 1)r

1/s 1/s 1/s . . . 1/s

)
.

If X and Y are independent, then X+Y takes on all possible values from
0 to n− 1. Further, there is only one choice of X and Y that gives X +Y
a particular value and the probability for this choice is 1/rs. Thus X +Y
has a uniform distribution on the values from 0 to n− 1.

7.2 Sums of Continuous Random Variables

2. (a) fZ(x) =
x+ 2

4
on [−2, 0] and

2− x
4

on [0, 2].

3. (a)

f
Z

(x) =

{
x3/24, if 0 ≤ x ≤ 2;
x− x3/24− 4/3, if 2 ≤ x ≤ 4.

(b)

f
Z

(x) =

{
(x3 − 18x2 + 108x− 216)/24, if 6 ≤ x ≤ 8;
(−x3 + 18x2 − 84x+ 40)/24, if 8 ≤ x ≤ 10.

(c)

f
Z

(x) =

{
x2/8, if 0 ≤ x ≤ 2;
1/2− (x− 2)2/8, if 2 ≤ x ≤ 4.

4.

f
Z

(x) =

x2/2, if 0 ≤ x ≤ 1;
(−2x2 + 6x− 3)/2, if 1 ≤ x ≤ 2;
(x− 3)2/2, if 2 ≤ x ≤ 3.

5. (a)

f
Z

(x) =

{
λµ
µ+λe

λx, x < 0;
λµ
µ+λe

−µx, x ≥ 0.

(b)

f
Z

(x) =

{
1− e−λx, 0 < x < 1;
(eλ − 1)e−λx, x ≥ 1.

6. Z is normally distributed with mean µ = µ1+µ2 and variance σ2 = σ2
1 +σ2

2 .
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7. We first find the density for X2 when X has a general normal density

f
X

(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

dx .

Then (see Theorem 1 of Chapter 5, Section 5.2 and the discussion follow-
ing) we have

f2
X

(x) =
1

σ
√

2π

1

2
√
x

exp(−x/2σ2 − µ2/2σ2)
(

exp(
√
xµ/σ2)+exp(−

√
xµ/σ2)

)
.

Replacing the last two exponentials by their series representation, we have

f2
X

(x) = e−µ/2σ
2
∞∑
r=0

( µ

2σ2

)r 1

r!
G(1/2σ2, r + 1/2, x) ,

where

G(a, p, x) =
ap

Γ(p)
e−axxp−1

is the gamma density. We now consider the original problem withX1 andX2

two random variables with normal density with parameters µ1, σ1 and
µ2, σ2. This is too much generality for us, and we shall assume that the
variances are equal, and then for simplicity we shall assume they are 1.
Let

c =
√
µ2

1 + µ2
2 .

We introduce the new random variables

Z1 =
1

c
(µ1X1 + µ2X2) ,

Z2 =
1

c
(µ2X1 − µ1X2) .

Then Z1 is normal with mean c and variance 1 and Z2 is normal with
mean 0 and variance 1. Thus,

fZ2
1

= e−c
2/2

∞∑
r=0

(c2
2

)r 1

r!
G(1/2, r + 1/2, x) ,

and
fZ2

2
= G(1/2, 1/2, x) .

Convoluting these two densities and using the fact that the convolution of
a gamma density G(a, p, x) and G(a, q, x) is a gamma density G(a, p+q, x)
we finally obtain

fZ2
1+Z2

2
= fX2

1+X2
2

= e−c
2/2

∞∑
r=0

(c2
2

)r 1

r!
G
(

1/2, r + 1, x
)
.

(This derivation is adapted from that of C.R. Rao in his book Advanced
Statistical Methods in Biometric Research, Wiley, l952.)
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8.

fR2 =

{
π/4, if 0 ≤ x ≤ 1;

(1/2) arcsin
(

(2− x)/x
)
, if 1 ≤ x ≤ 2.

fR =

{
(π/2)x, if 0 ≤ x ≤ 1;

x arcsin
(

(2− x2)/x2
)
, if 1 ≤ x ≤

√
2.

9. P (X10 > 22) = .341 by numerical integration. This also could be estimated
by simulation.

10. P (min(X1, . . . , Xn > x) = (P (X1 > x))n = (e−x/µ)n = e−(n/µ)x. Thus

fmin(X1,...,Xn) =
n

µ
e−(n/µ)x .

This is the exponential density with mean µ/n.

11. 10 hours

12. By Exercise 10 the first claim has the mean of µ/50. If µ is about 30
years, then µ/50 is about 7 months, which is practical. Once we have
estimated µ/50, we have an estimate for µ.

13. Y1 = −log(X1) has an exponential density f
Y1

(x) = e−x. Thus Sn has
the gamma density

f
Sn

(x) =
xn−1e−x

(n− 1)!
.

Therefore

f
Zn

(x) =
1

(n− 1)!

(
log

1

x

)n−1

.

14. X3 = −X2 has density

f−X2
(x) =

{
eλx, −∞ < x ≤ 0;
0, otherwise.

Thus Z = X1 +X3 has density

f
Z

(x) =

∫ ∞
0

eλ(x−2y)dy =
1

2λ
eλx, x < 0;

=

∫ ∞
x

eλ(x−2y)dy =
1

2λ
eλx
(
e−2λx

)
=

1

2λ
e−λx, x ≥ 0.

19. The support of X + Y is [a+ c, b+ d].

20. We prove it by induction. It is true for n = 1. Suppose that f
Sk

has
support on [kc, kb]. Then f

Sk+1
= f

Sk
∗f

X
has support on [ka+a, kb+b] =

[(k + 1)a, (k + 1)b]. (See Exercise 19 above.)
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21. (a)

f
A

(x) =
1√
2πn

e−x
2/(2n) .

(b)
f
A

(x) = nnxne−nx/(n− 1)! .



Chapter 8

Law of Large Numbers

8.1 Law of Large Numbers for Discrete Random
Variables

1. 1/9

3. We shall see that Sn − n/2 tends to infinity as n tends to infinity. While
the difference will be small compared to n/2, it will not tend to 0. On the
other hand the difference Sn/n− 1/2 does tend to 0.

4. You will lose on the average 1.41 percent of the money that you bet. Thus
if you play a long time, you will lose a lot. The law of large numbers tells
you that the probability that you will be ahead in the long run tends to
0.

5. k = 10

6. V

(
Sn
n
− p
)

= V
(
Sn
n

)
=
p(1− p)

n
. Thus P

(∣∣∣∣Snn − p
∣∣∣∣ ≥ ε) ≤ p(1− p)

nε2
.

7.

p(1− p) =
1

4
−
(

1

4
− p+ p2

)
=

1

4
− (

1

2
− p)2 ≤ 1

4
.

Thus, max
0≤p≤1

p(1− p) =
1

4
. From Exercise 6 we have that

P

(
|Sn
n
− p| ≥ ε

)
≤ p(1− p)

nε2
≤ 1

4nε2
.

81
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8. No.

9.

P (Sn ≥ 11) = P (Sn − E(Sn) ≥ 11− E(Sn))
= P (Sn − E(Sn) ≥ 10)

≤ V (Sn)

102
= .01.

10.

P (X ≥ k + 1) = P (X − E(X) ≥ k + 1− E(X))
= P (X − E(X) ≥ k)

≤ V (X)
k2 =

1

k2
.

11. No, we cannot predict the proportion of heads that should turn up in
the long run, since this will depend upon which of the two coins we pick.
If you have observed a large number of trials then, by the Law of Large
Numbers, the proportion of heads should be near the probability for the
coin that you chose. Thus, in the long run, you will be able to tell which
coin you have from the proportion of heads in your observations. To be 95
percent sure, if the proportion of heads is less than .625, predict p = 1/2;
if it is greater than .625, predict p = 3/4. Then you will get the correct
coin if the proportion of heads does not deviate from the probability of
heads by more than .125. By Exercise 7, the probability of a deviation of
this much is less than or equal to 1/(4n(.125)2). This will be less than or
equal to .05 if n > 320. Thus with 321 tosses we can be 95 percent sure
which coin we have.

12.

P

(∣∣∣Sn
n
− Mn

n

∣∣∣ > ε

)
= P

(
1

n

∣∣∣ n∑
i=1

(Xi −mi)
∣∣∣> ε

)

= P

(∣∣∣ n∑
i=1

(Xi −mi)
∣∣∣ > nε

)

≤ 1

n2ε2

n∑
i=1

σ2
k <

nR

n2ε2

=
R

nε2
.

This last expression approaches 0 as n goes to ∞.

14.

E(|X − E(X)|) =
∑
ω

|X(ω)− E(X)|
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≥
∑

{ω:|X(ω)−E(X)|≥ε}

|X(ω)− E(X)|

≥ εP (|X − E(X)| ≥ ε).

15. Take as Ω the set of all sequences of 0’s and 1’s, with 1’s indicating heads
and 0’s indicating tails. We cannot determine a probability distribution by
simply assigning equal weights to all infinite sequences, since these weights
would have to be 0. Instead, we assign probabilities to finite sequences
in the usual way, and then probabilities of events that depend on infinite
sequences can be obtained as limits of these finite sequences. (See Exercise
28 of Chapter 1, Section 1.2.)

16. The exercise as stated in the text is incorrect. The following replacement
exercise, sent to us by David Maslen, is correct: In this exercise, we shall
construct an example of a sequence of random variables that satisfies the
weak law of large numbers, but not the strong law. The distribution
of Xi will have to depend on i, because otherwise both laws would be
satisfied. As a preliminary, we need to prove a lemma, which is one of the
Borel-Cantelli lemmas. Suppose we have an infinite sequence of mutually
independent events A1, A2, . . .. Let ai = Prob(Ai), and let r be a positive
integer.

(a) Find an expression of the probability that none of the Ai with i > r occur.

(b) Use the fact that x− 1 ≤ e−x to show that

Prob(No Ai with i > r occurs) ≤ e−
∑∞

i=r
ai .

(c) Prove that if
∑∞
i=1 ai diverges, then

Prob(infinitely many Ai occur) = 1 .

Now, let Xi be a sequence of mutually independent random variables such
that for each positive integer i ≥ 2,

Prob(Xi = i) =
1

2i log i
, Prob(Xi = −i) =

1

2i log i
, Prob(Xi = 0) = 1− 1

i log i
.

When i = 1 we let Xi = 0 with probability 1. As usual we let Sn =
X1 + · · ·+Xn. Note that the mean of each Xi is 0.

(d) Find the variance of Sn.

(e) Show that the sequence {Xi} satisfies the weak law of large numbers, i.e.
prove that for any ε > 0

Prob

(∣∣∣∣Snn
∣∣∣∣ ≥ ε

)
→ 0 ,
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as n tends to infinity. We now show that {Xi} does not satisfy the strong
law of large numbers. Suppose that Sn/n→ 0. Then because

Xn

n
=
Sn
n
− n− 1

n

Sn−1

n− 1
,

we know that Xn/n→ 0. From the definition of limits, we conclude that
the inequality |Xi| ≥ i/2 can only be true for finitely many i.

(f) Let Ai be the event |Xi| ≥ i/2. Find Prob(Ai). Show that

∞∑
i=1

Prob(Ai)

diverges (think Integral Test).

(g) Prove that Ai occurs for infinitely many i.

(h) Prove that

Prob

(
Sn
n
→ 0

)
= 0 ,

and hence that the Strong Law of Large Numbers fails for the sequence
{Xi}.

17. For x ∈ [0, 1], let us toss a biased coin that comes up heads with
probability x. Then

E
(f(Sn)

n

)
→ f(x).

But

E
(f(Sn)

n

)
=

n∑
k=0

f
(k
n

)(n
k

)
xk(1− x)n−k.

The right side is a polynomial, and the left side tends to f(x). Hence

n∑
k=0

f
(k
n

)(n
k

)
xk(1− x)n−k → f(x).

This shows that we can obtain obtain any continuous function f(x) on
[0,1] as a limit of polynomial functions.
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8.2 Law of Large Numbers for Continuous Ran-
dom Variables

1. (a) 1

(b) 1

(c) 100/243

(d) 1/12

2. (a) E(X) = 10, V (X) = 100/3.

(b) P (|X − 10| ≥ 2) = 4/5, P (|X − 10| ≥ 5) = 1/2.

P (|X − 10| ≥ 9) = 1/10, P (|X − 10| ≥ 20) = 0.

3.

f(x) =
{

1− x/10, if 0 ≤ x ≤ 10;
0 otherwise.

g(x) =
100

3x2
.

4. (a) E(X) = 1/λ = 10, V(X) = (1/λ)2= 100.

(b) For the first three probabilities Chebyshev’s estimate is greater than 1, and
so the best estimate is 1. For the last one Chebyshev’s estimate gives
P (|X − 10| ≥ 20) ≤ .25.

(c) Comparing these Chebyshev’s estimates with the exact values, we have:

(1, .852), (1, .617), (1, .245), (.25, .0498).

5. (a) 1, 1/4, 1/9

(b) 1 vs. .3173, .25 vs. .0455, .11 vs. .0027

6. (a) 1, (b) 1/4, (c) 1/ 9, (d) 1/ 16.

The exact values are (a) .3173, (b) .0455, (c) .0027, (d) 0.

7. (b) 1, 1, 100/243, 1/12

8. (a)

P (|X∗| ≥ a) = P
(∣∣∣X − µ

σ

∣∣∣ ≥ a)
= P (|X − µ| ≥ aσ)

≤ σ2

σ2a2 = 1
a2 .
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(b) P (|X∗| ≥ 2) = 1/4, P (|X∗| ≥ 5) = 1/25.

P (|X∗| ≥ 9) = 1/81.

9. (a) 0

(b) 7/12

(c) 11/12

10. (a)

P (65 ≤ X ≤ 75) = P (65− 70 ≤ X − 70 ≤ 75− 70)
= P (−5 ≤ X − 70 ≤ 5)

= 1− P (|X − 70| ≥ 5)
≥ 1− 25/25 = 0.

Thus Chebyshev’s estimate gives us a useless lower bound in this case.

(b) E(X̄) = 70, V (X̄) = 25/100 = .25. Thus

P (65 ≤ X̄ ≤ 75) = 1− P (|X̄ − 70| ≥ 5)

≥ 1− .25

25
= .99.

Therefore, Chebyshev’s estimate gives a lower bound of .99.

11. (a) 0

(b) 7/12

12. (a) E(Y2) = 30, V (Y2) = 1
4 . Thus P (25 ≤ Y2 ≤ 35) ≥ .99.

(b) E(Y11) = 30, V (Y11) = 10
4 . Thus P (25 ≤ Y11 ≤ 35) ≥ .9.

(c) E(Y101) = 30, V (Y101) = 100
4 . Thus P (25 ≤ Y101 ≤ 35) ≥ 0.

13. (a) 2/3

(b) 2/3

(c) 2/3

17. E(X) =
∫∞
−∞ xp(x)dx. Since X is non-negative, we have

E(X) ≥
∫
x≥a

xp(x)dx ≥ aP (X ≥ a) .
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18. Since E(X) = 20 and X is non-negative, we have:

20 =

∫ ∞
0

xp(x)dx ≥
∫ ∞
a

xp(x)dx ≥ aP (X ≥ a) .

Therefore,

P (X ≥ a) ≤ 20

a
.

This is interesting only for a ≥ 20.

(b) Now assume E(X) = 20 and V (X) = 25. Then

E(X2) = V (X) + E(X)2 = 425 .

Thus

425 =

∫ ∞
0

x2p(x)dx ≥
∫ ∞
a

x2dx ≥ a2P (X ≥ a) .

Therefore

P (X ≥ a) ≤ 425

a2
.

From part (a) we also have that P (X ≥ a) ≤ 20

a
. Thus our best upper

bounds are:

P (X ≥ a) ≤ 20

a
if 20 ≤ a ≤ 21.25 ,

and

P (X ≥ a) ≤ 425

a2
if a ≥ 21.25 .

(c) Since X is non-negative and the density is symmetric with mean 20, we
must have p(x) positive only on the interval [0,40]. Again by symmetry
we have

10 =

∫ 40

20

xp(x) dx .

Thus for a ≥ 20,

10 =

∫ 40

20

xp(x) dx ≥
∫ 40

a

xp(x) dx ≥ aP (X ≥ a) .

Therefore,

P (X ≥ a) ≤ 10

a
.

Again by symmetry we have∫ 40

20

(x− 20)2p(x)dx = 12.5 .
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Then ∫ 40

20

x2p(x)dx− 40

∫ 40

20

xp(x)dx+ 400 · 1

2
= 12.5 .

From this we obtain∫ 40

20

x2p(x)dx = 12.5 + 40 · 10− 200 = 212.5 .

Therefore, for a ≥ 20 we have

212.5 =

∫ 40

20

x2p(x)dx ≥
∫ 40

a

xp(x)dx ≥ a2P (X ≥ a) .

Thus for a ≥ 20 we have

P (X ≥ a) ≤ 212.5

a2
.

Combining our two estimates we have:

P (X ≥ a) ≤ 10

a
if 20 ≤ a ≤ 21.25 ,

and

P (X ≥ a) ≤ 212.5

a2
if 21.25 ≤ a ≤ 40 .



Chapter 9

Central Limit Theorem

9.1 Central Limit Theorem for Discrete Inde-
pendent Trials

(The answers to the problems in this chapter do not use the ‘1/2 correction’
mentioned in Section 9.1.)

1. (a) .158655

(b) .6318

(c) .0035

(d) .9032

2. (a) .0564

(b) .0208

(c) 1.033× 10−3

3. (a) P (June passes) ≈ .985

(b) P (April passes) ≈ .056

4. (a) P (499, 500 < S1,000,000 < 500, 500) ≥ 0 by Chebyschev.

(b) P (499, 500 < S1,000,000 < 500, 500) ≈ .6826 by the Central Limit Theorem.

(a) P (499, 000 < S1,000,000 < 501, 000) ≥ .75 by Chebyschev.

(b) P (499, 000 < S1,000,000 < 501, 000) ≈ .9545 by the Central Limit Theorem.

(a) P (498, 500 < S1,000,000 < 501, 500) ≥ .8889 by Chebyschev.

89
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(b) P (498, 500 < S1,000,000 < 501, 500) ≈ .9973 by the Central Limit Theorem.

5. Since his batting average was .267, he must have had 80 hits. The
probability that one would obtain 80 or fewer successes in 300 Bernoulli
trials, with individual probability of success .3, is approximately .115.
Thus, the low average is probably not due to bad luck (but a statistician
would not reject the hypothesis that the player has a probability of success
equal to .3).

6. We need to choose k so that P (S1000 ≤ k) ≥ .99. This is the same as

P

(
S∗1000 ≤

k − 500

15.81

)
≥ .99 .

Thus we want
k − 500

15.81
= 2.33 .

This will be true if k = 537.

7. .322

8. We want np+2
√
npq = 108 and np−2

√
npq = 72. Adding and subtracting

gives 2np = 180 and 4
√
npq = 36. Solving these two equations for n and

p gives
p = .1 and n = 900.

9. (a) 0

(b) 1 (Law of Large Numbers)

(c) .977 (Central Limit Theorem)

(d) 1 (Law of Large Numbers)

10. We want

P (S10,000 ≤ 931) = P (S∗10,000 ≤
931− 1000

30
) = P (S∗10,000 ≤ −2.3) ≈ .011.

12. 13

13. P (S1900 ≥ 115) = P

(
S∗1900 ≥

115− 95√
1900 · .05 · .95

)
= P (S∗1900 ≥ 2.105) =

.0176.

14. (a) 64 to 96

(b) 6400

16. n = 108, m = 77
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17. We want
2
√
pq
√
n

= .01. Replacing
√
pq by its upper bound 1

2 , we have

1√
n

= .01. Thus we would need n = 10,000. Recall that by Chebyshev’s

inequality we would need 50,000.

9.2 Central Limit Theorem for Discrete Inde-
pendent Trials

1. (a) .4762

(b) .0477

2. .3174

3. (a) .5

(b) .9987

5. (a) P (S210 < 700) ≈ .0757.

(b) P (S189 ≥ 700) ≈ .0528

(c)

P (S179 < 700, S210 ≥ 700) = P (S179 < 700)− P (S179 < 700, S210 < 700)
= P (S179 < 700)− P (S210 < 700)
≈ .9993− .0757 = .9236 .

6. (a) The expected loss is .2 cents and the variance of this loss is .36.

(b) .2024

(c) .047

(d) .9994

(e) 54

7. (a) Expected value = 200, variance = 2

(b) .9973

8. P (S30 = 0) ≈ N(0)√
30 · 1.5

= .0595.
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9. P
(∣∣∣Sn

n
− µ

∣∣∣ ≥ ε) = P
(∣∣∣Sn − nµ∣∣∣ ≥ nε)= P

(∣∣∣Sn − nµ√
nσ2

∣∣∣ ≥ nε√
nσ2

)
.

By the Central Limit Theorem, this probability is approximated by the

area under the normal curve between

√
nε

σ
and infinity, and this area

approaches 0 as n tends to infinity.

10. (a) The law of large numbers states that the average of Peter’s fortune
will be close to 0.

(b) The Central Limit Theorem states, for example, that with probability .95
Peter will not have won or lost more than $2 after the 10,000 plays.

11. Her expected loss is 60 dollars. The probability that she lost no money is
about .0013.

12. Betting 1 dollar on red gives E(X) = − 1
74 and Var(X)= .980. Betting 1

dollar on 17 gives E(X) = − 1
37 and Var(X) = 34.08. Thus, by the Central

Limit Theorem, if we bet 1 dollar on red for 100 plays,

P (S100 > 0) = P (S∗100 > 0.137) ≈ .446.

If we bet 1 dollar on 17 for 100 plays, we have

P (S100 > 0) = P (S∗100 > .046) ≈ .482.

Note that for this game, the Central Limit Theorem must give an approx-
imation that you are ahead which is less than .5, because the mean of
each play is negative. Nonetheless, the actual probability is greater than
.5. Thus, if we were to bet that we would be ahead after 100 plays, this
would be a favorable bet, although the Central Limit Theorem approxi-
mation makes it seem that the bet is unfavorable.

13. p = .0056

9.3 Central Limit Theorem for Continuous In-
dependent Trials

1.

E(X∗) =
1

σ
(E(X)− µ) =

1

σ
(µ− µ) = 0 ,

σ2(X∗) = E
(X − µ

σ

)2

=
1

σ2
σ2 = 1 .
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2. S∗n =
Sn − nµ√

nσ
=

Sn√
n

=
nAn√
n

=
√
nAn .

3. Tn = Y1 + Y2 + · · ·+ Yn =
Sn − nµ

σ
. Since each Yj has mean 0 and vari-

ance 1, E(Tn) = 0 and V (Tn) = n. Thus T ∗n =
Tn√
n

=
Sn − nµ
σ
√
n

= S∗n .

4. For one uniform random variable on [0,20] the mean is 10 and the variance
is 400/12. For the sum of 25 such random variables the mean is 250 and
the standard deviation is

√
25(400/12) = 28.87. Thus the normal density

used to approximate the sum is:

f(x) =
1

28.87

1√
2π

exp

(
−1

2

(
x− 250

28.87

)2
)
.

For the standardized sum S∗ the density for the normal approximation is
the density with mean 0 and standard deviation 1:

f(x) =
1√
2π

e−x
2/2 .

The average of 25 numbers A25 has expected value 10 and standard devia-
tion

√
(400/12)/25 = 1.155. Thus the normal density used to approximate

the average is:

f(x) =
1

1.155

1√
2π

exp

(
−1

2

(
x− 10

1.155

)2
)
.

10. By Chebyshev’s inequality we would need 10/n ≤ .05 or n ≥ 200. By the
Central Limit Theorem we would need 2

√
10/n ≈ 1, or n ≈ 40. To find

the variance necessary for 10 measurements to suffice using Chebyshev’s
inequality, we would need σ2/10 ≈ .05, or σ2 ≈ .5. Using the Central Limit
Theorem we would need 2

√
σ2/10 ≈ 1, or σ2 ≈ 2.5.(A larger variance is

easier to obtain.)

11. (a) .5

(b) .148

(c) .018

13. 7.6× 10−24

14. (b) (20.53, 25.87)
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Chapter 10

Generating Functions

10.1 Generating Functions for Discrete Distri-
butions

1. In each case, to get g(t) just replace z by et in h(z).

(a) h(z) =
1

2
(1 + z)

(b) h(z) =
1

6

6∑
j=1

zj

(c) h(z) = z3

(d) h(z) =
1

k + 1
zn

k∑
j=0

zj

(e) h(z) = zn(pz + q)k

(f) h(z) =
2

3− z

2. (a) µ1 = 1/2, µ2 = 1/2, h′(1) = 1/2 = µ1, h′′(1) = 0 =
µ2 − µ1.

(b) µ1 = 7/2, µ2 = 91/6, h′(1) = 7/2, h′′(1) = 70/6 = µ2 − µ1.

(c) µ1 = 3, µ2 = 9, h′(1) = 3, h′′(1) = 6 = µ2 − µ1.

(d) µ1 = n+ k/2, µ2 = n2 + nk + k(1 + 2k)/6,

h′(1) = n+ k/2 = µ1, h′′(1) = n2 + (k − 1)n+ k(k − 1)/3 = µ2 − µ1.

95
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3. (a) h(z) =
1

4
+

1

2
z +

1

4
z2 .

(b) g(t) = h(et) =
1

4
+

1

2
et +

1

4
e2t .

(c)

g(t) =
1

4
+

1

2

(( ∞∑
k=0

tk

k!

)
+

1

4

( ∞∑
k=0

2k

k!
tk
)

= 1 +

∞∑
k=1

( 1

2k!
+

2k−2

k!

)
tk = 1 +

∞∑
k=1

µk
k!
tk .

Thus µ0 = 1, and µk = 1
2 + 2k−2 for k ≥ 1.

(d) p0 =
1

4
, p1 =

1

2
, p2 =

1

4
.

4. h(z) =

(
1− 3

2
µ1 +

1

2
µ2

)
+ (2µ1 − µ2)z +

(µ2 − µ1)

2
z2 . Thus p0 = 1− 3

2
µ1 +

1

2
µ2, p1 = 2µ1 − µ2, p3 =

µ2 − µ1

2
.

5. (a) µ1(p) = µ1(p′) = 3, µ2(p) = µ2(p′) = 11

µ3(p) = 43, µ3(p′) = 47

µ4(p) = 171, µ4(p′) = 219

6. (a) p2 =

(
0 1 2 3 4
0 0 1/4 4/9 4/9

)
.

(b) h(z) =
z

3
(1 + 2z), h2(z) =

z2

9
(1 + 4z + 4z2) =

(
h(z)

)2
.

(c) hn(z) =
(z

3
(1 + 2z)

)n
.

(d) µ1 =
5

3
n, µ2 =

25

9
n2 +

2

9
n.

Thus the mean of pn = 5
3n, and the variance of pn = 2

9n. Since p has mean
5
3 , we see that the mean of pn is n times the mean of p.

(e) pn(j) > 0 for j = n, · · · , 2n.

7. (a) g−X(t) = g(−t)

(b) gX+1(t) = etg(t)

(c) g3X(t) = g(3t)
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(d) gaX+b = ebtg(at)

8.

(a) h(z) =
1

3
(z + 2) ,

(b) h2(z) =
(1

3
(z + 2)

)2

,

(c) hn(z) =
(1

3
(z + 2)

)n
.

Note: µ = 1/3 and σ =
√

2/3.

9. (a) h
X

(z) =

6∑
j=1

ajz
j , h

Y
(z) =

6∑
j=1

bjz
j .

(b) h
Z

(z) =
( 6∑
j=1

ajz
j
)( 6∑

j=1

bjz
j
)
.

(c) Assume that h
Z

(z) = (z2 + · · ·+ z12)/11 . Then( 6∑
j=1

ajz
j−1
)( 6∑

j=1

bjz
j−1
)

=
1 + z + · · · z10

11
=

z11 − 1

11(z − 1)
.

Either

6∑
j=1

ajz
j−1or

6∑
j=1

bjz
j−1 is a polynomial of degree 5 (i.e., either a6 6=

0 or b6 6= 0). Suppose that

6∑
j=1

ajz
j−1 is a polynomial of degree 5. Then it

must have a real root, which is a real root of (z11 − 1)/(z − 1). However
(z11 − 1)/(z − 1) has no real roots. This is because the only real root of
z11 − 1 is 1, which cannot be a real root of (z11 − 1)/(z − 1). Thus, we
have a contradiction. This means that you cannot load two dice in such
a way that the probabilities for any sum from 2 to 12 are the same. (cf.
Exercise 11 of Section 7.1).

10.

h(1) =
1−
√

1− 4pq

2q
=

1−
√

1− 4p+ 4p2

2q
=

1− |2p− 1|
2q

=

{
q/p, if p ≤ q,
1, if p ≥ q.

h′(z) =


4pqz

2qz
√

1− 4pqz2
− 1

2qz2
(1−

√
1− 4pqz) , if p > q,

− 1

z2

(
1−

√
1− z2

)
+

1√
1− z2

. if p = q.
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Therefore,

h′(1) =

{
1/(p− q), if p > q,
∞, if p = q.

14.

g
X∗ (t) = E(eX

∗t) = E(e
X−µ
σ t) = e−

µ
σ tE(e

X
σ t) = e−

µ
σ tg

X

( t
σ

)
.

10.2 Branching Processes

1. (a) d = 1

(b) d = 1

(c) d = 1

(d) d = 1

(e) d = 1/2

(f) d ≈ .203

2. (a) .618, (b) .414, (c) 0 if t = 0,
−1 +

√
5

2
=.618 if t 6= 0

3. (a) 0

(b) 276.26

4.

h(z) = E
(
ZSn

)
=

∑
k

E(ZSk |N = k)P (N = k)

=
∑
k

(
E(ZX1)

)k
P (N = k)

=
∑
k

(f(z))kP (N = k)

= g(f(z)) .

5. Let Z be the number of offspring of a single parent. Then the number of
offspring after two generations is

SN = X1 + · · ·+XN ,

where N = Z and Xi are independent with generating function f . Thus by
Exercise 4, the generating function after two generations is h(z) = f(f(z)).
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6. (a) f(z) = p+ qz, g(z) =
rz

1− (1− r)z
.

(b) Let N be the time she needs to be served. Then the number of customers
arriving during this time is X1 + · · ·+XN , where Xi are identically dis-
tributed independent of N . P (X0 = 0) = p, P (Xi = 1) = q. Thus by
Exercise 4, h(z) = g(f(z)).

(c) The server ultimately has a time when he is not busy if the branching
process dies out. For this we need m ≤ 1 or h′(1) = 1. But h(z) = g(f(z)),
so we need

h′(1) = g′(1)f ′(1) = mean arrival rate · mean service time ≤ 1 .

This means that we need q/r ≤ 1.

7. If there are k offspring in the first generation, then the expected total
number of offspring will be kN , where N is the expected total numer for
a single offspring. Thus we can compute the expected total number by
counting the first offspring and then the expected number after the first
generation. This gives the formula

N = 1 +
(∑

k

kpk

)
= 1 +mN .

From this it follows that N is finite if and only if m < 1, in which case

N = 1/(1−m).

8. You can work this by passing to the limit in the expressions given in
Example 4, but it is easier to do it directly as follows: The generating
function h1(z) = h(z) for the population after one generation is

h(z) =

∞∑
k=0

(1/2)j+1zj =
1/2

1− (1/2)z
=

1

(2− z)
.

Then we can get the generating functions for future generations by using
the relation hn+1(z) = hn(h(z)). For example,

h2(z) =
1

(2− 1
(2−z) )

=
2− x
3− 2x

.

Continuing in this way, we get

h3(z) =
3− 2x

4− 3x
.

These results suggest that the general case is

hn(z) =
n− x(n− 1)

(n+ 1)− nx
.
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It is easy to check that this satisfies the equation hn+1 = hn(h(z)), so by
induction we see that our guess for hn(z) is correct. Then

hn(z) =
n− x(n− 1)

n+ 1

( 1

1− n
n+1x

)
=

n− z(n− 1)

n+ 1

( ∞∑
j=0

( n

n+ 1

)j
zj .

The constant term is pn(0) = n/(n + 1). Collecting the coefficients of zj

and simplifying gives p(n)(j) =
1

n(n+ 1)

( n

n+ 1

)j
.

(b) The probability that the population dies out at the nth generation is equal
to the difference between the probability that it has died out by the nth
generation and the probability that it has died out by the (n − 1)st gen-
eration. This is:

pn0 − pn−1
0 =

n

n+ 1
− n− 1

n
=

1

n(n+ 1)
.

(c) The expected lifetime is

∑
n

n · P(population dies out on the nth generation) =

∞∑
n=1

n

n(n+ 1)

=

∞∑
n=1

1

n+ 1
=∞ .

10.3 Generating Functions for Continuous Den-
sities

1. (a) g(t) =
1

2t
(e2t − 1)

(b) g(t) =
e2t(2t− 1) + 1

2t2

(c) g(t) =
e2t − 2t− 1

2t2

(d) g(t) =
e2t(ty − 1) + 2et − t− 1

t2
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(e) (3/8)

(
e2t(4t2 − 4t+ 2)− 2

t3

)

2. (a) µ1 = 1 = g′(0), µ2 =
4

3
= g′′(0) .

(b) µ1 =
4

3
= g′(0), µ2 = 2 = g′′(0) .

(c) µ1 =
2

3
= g′(0), µ2 =

2

3
= g′′(0) .

(d) µ1 = 1 = g′(0), µ2 =
3

2
= g′′(0) .

(e) µ1 =
3

2
= g′(0), µ2 =

12

5
= g′′(0) .

3. (a) g(t) =
2

2− t

(b) g(t) =
4− 3t

2(1− t)(2− t)

(c) g(t) =
4

(2− t)2
(d) g(t) =

( λ

λ+ t

)
, t < λ .

4. (a) µ1 =
1

2
= g′(0), µ2 =

1

2
= g′′(0) .

(b) µ1 =
3

4
= g′(0), µ2 =

5

4
= g′′(0) .

(c) µ1 = 1 = g′(0), µ2 =
3

2
= g′′(0) .

(d) µ1 =
n

λ
= g′(0), µ2 =

n(n+ 1)

λ2
= g′′(0) .

5. (a) k(τ) =
1

2iτ
(e2iτ − 1)

(b) k(τ) =
e2iτ (2iτ − 1) + 1

−2τ2

(c) k(τ) =
e2iτ − 2iτ − 1

−2τ2

(d) k(τ) =
e2iτ (iτ − 1) + 2eiτ − iτ − 1

−τ2

(e) k(τ) = (3/8)

(
e2iτ (−4τ2 − 4iτ + 2

−iτ3

)
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6.

fX(x) =
1

2π

∫ ∞
−∞

e−iτe|τ |dτ =
1

2π

∫ ∞
0

e−iτe−τdτ +
1

2π

∫ 0

−∞
e−iτeτdτ

=
1

2π

∫ ∞
0

(
e−iτx + eiτx

)
e−τdτ =

1

π

∫ ∞
0

cos(τx)e−τdτ .

Now to calculate this last integral:

1

π

∫ ∞
0

cos(τx)e−τdτ =
1

π

[
−e−τcos(τx)

∣∣∣∞
0
− x

∫ ∞
0

e−τ sin(τx)dτ
]

=
1

π

[
1− x(−e−τ sin(τx))

∣∣∣∞
0

+ x2

∫ ∞
0

e−τcos(τx)
]

=
1

π

[
1− x2

∫ ∞
0

e−τcos(τx)dτ
]
.

Solving this for the integral we obtain:

1

π

∫ ∞
0

cos(τx)e−τdτ =
1

π(1 + x2)
.

Thus,

fX(x) =
1

π

∫ ∞
0

cos(τx)e−τdτ =
1

π(1 + x2)
.

7. (a) g(−t) =
1− e−t

t

(b) etg(t) =
e2t − et

t

(c) g(et) =
e3t − 1

3t

(d) ebg(at) =
eb(eat − 1)

at

8. (a) g(t) =
eat − ebt

t(b− a)
.

(b) g(t) =
(eat − ebt
t(b− a)

)2

.

(c) g(t) =
(eat − ebt
t(b− a)

)n
.
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(d) g(t) =
(eat/n − ebt/n

t(b− a)

)n
.

(e) g(t) = e−
√
nµ/σ

(eat/√nσ − ebt/√nσ
t(b− a)

)n
.

9. (a) g(t) = et
2+t

(b)
(
g(t)

)2

(c)
(
g(t)

)n
(d)

(
g(t/n)

)n
(e) et

2/2

10. (a) m = 0, σ2 = 2 .

(b) g
X1

(t) =
1

1− t2
, g

Sn
(t) =

( 1

1− t2
)n
, t < 1 ,

g
An

(t) =
( 1

1− ( tn )2

)n
g
S∗n

(t) =
( 1

1− t2

2n

)n
.

(c) g
S∗n

(t)→ e−
t2

2 as n→∞ .

(d) g
An

(t)→ 1 as n→∞ .
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Chapter 11

Markov Chains

11.1 Introduction

1. w(1) = (.5, .25, .25)

w(2) = (.4375, .1875, .375)

w(3) = (.40625, .203125, .390625)

2. P =

(
1 0
1
2

1
2

)
, P2 =

(
1 0
3
4

1
4

)
, P3 =

(
1 0
7
8

1
8

)
.

Pn =

(
1 0

2n−1
2n

1
2n

)
→
(

1 0
1 0

)
.

Whatever the President’s decision, in the long run each person will be told
that he or she is going to run.

3. Pn = P for all n.

4. .7.

5. 1

6. w(1) = w(2) = w(3) = w(n) = (.25, .5, .25).

7. (a) Pn = P

(b) Pn =

{
P, if n is odd,
I, if n is even.

8. P =

( 0 1

0 1− p p
1 p 1− p

)
.

105
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9. p2 + q2, q2,

( 0 1

0 p q
1 q p

)
11. .375

12. (a) P =


P SL UL NS

P .64 .08 .08 .2
SL .16 .48 .16 .2
UL .2 .2 .4 .2
NS 0 0 0 1

.
(b) .24.

19. (a) 5/6.

(b) The ‘transition matrix’ is

P =

( H T

H 5/6 1/6
T 1/2 1/2

)
.

(c) 9/10.

(d) No. If it were a Markov chain, then the answer to (c) would be the same
as the answer to (a).

11.2 Absorbing Markov Chains

1. a = 0 or b = 0

2. H is the absorbing state. Y and D are transient states. It is possible to go
from each of these states to the absorbing state, in fact in one step.

3. Examples 11.10 and 11.11

4.

N =

(Gg gg

GG 2 0
gg 2 1

)
.
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5. The transition matrix in canonical form is

P =



GG,Gg GG, gg Gg,Gg Gg, gg GG,GG gg, gg

GG,Gg 1/2 0 1/4 0 1/4 0
GG, gg 0 0 1 0 0 0
Gg,Gg 1/4 1/8 1/4 1/4 1/16 1/16
Gg, gg 0 0 1/4 1/2 0 1/4
GG,GG 0 0 0 0 1 0
gg, gg 0 0 0 0 0 1

.

Thus

Q =



GG,Gg GG, gg Gg,Gg Gg, gg

GG,Gg 1/2 0 1/4 0
GG, gg 0 0 1 0
Gg,Gg 1/4 1/8 1/4 1/4
Gg, gg 0 0 1/4 1/2
.

,
and

N = (I −Q)−1 =


GG,Gg GG, gg Gg,Gg Gg, gg

GG,Gg 8/3 1/6 4/3 2/3
GG, gg 4/3 4/3 8/3 4/3
Gg,Gg 4/3 1/3 8/3 4/3
Gg, gg 2/3 1/6 4/3 8/3

.
From this we obtain

t = Nc =


GG,Gg 29/6
GG, gg 20/3
Gg,Gg 17/3
Gg, gg 29/6

,
and

B = NR =


GG,GG gg, gg

GG,Gg 3/4 1/4
GG, gg 1/2 1/2
Gg,Gg 1/2 1/2
Gg, gg 1/4 3/4

.

6. The canonical form of the transition matrix is

P =


N S R

N 0 1/2 1/2
S 1/4 1/2 1/4
R 0 0 1

,



108 CHAPTER 11. MARKOV CHAINS

N =

( N S

N 4/3 4/3
S 2/3 8/3

)
,

t = Nc =

(
N 8/3
S 10/3

)
,

B = NR =

(
N 1
S 1

)
.

Here is a typical interpretation for an entry of N. If it is snowing today,
the expected number of nice days before the first rainy day is 2/3. The
entries of t give the expected number of days until the next rainy day.
Starting with a nice day this is 8/3, and starting with a snowy day it is
10/3. The entries of B reflect the fact that we are certain to reach the
absorbing state (rainy day) starting in either state N or state S.

7. N =

 2.5 3 1.5
2 4 2

1.5 3 2.5


Nc =

 7
8
7


B =

 5/8 3/8
1/2 1/2
3/8 5/8


8. The transition matrix in canonical form is

P =



1 2 3 0 4

1 0 2/3 0 1/3 0
2 1/3 0 2/3 0 0
3 0 1/3 0 0 2/3
0 0 0 0 1 0
4 0 0 0 0 1 cr

,

N =


1 2 3

1 7/5 6/5 4/5
2 3/5 9/5 6/5
3 1/5 3/5 7/5

,

B = NR =


0 4

1 7/15 8/15
2 3/15 12/15
3 1/15 14/15

,
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t = NC =

1 17/5
2 18/5
3 11/5

.

9. 2.08

12.

P =



ABC AC BC A B C none

ABC 5/18 5/18 4/18 0 0 4/18 0
AC 0 5/12 0 5/2 0 1/12 1/12
BC 0 0 10/18 0 5/18 2/18 1/18
A 0 0 0 1 0 0 0
B 0 0 0 0 1 0 0
C 0 0 0 0 0 1 0
none 0 0 0 0 0 0 1



N =

 1.385 .659 .692
0 1.714 0
0 0 2.25



Nc =

 2.736
1.714
2.25



B =


A B C none

ABC .275 .192 .440 .093
AC .714 0 .143 .143
BC 0 .625 .25 .125


13. Using timid play, Smith’s fortune is a Markov chain with transition matrix

P =



1 2 3 4 5 6 7 0 8

1 0 .4 0 0 0 0 0 .6 0
2 .6 0 .4 0 0 0 0 0 0
3 0 .6 0 .4 0 0 0 0 0
4 0 0 .6 0 .4 0 0 0 0
5 0 0 0 .6 0 .4 0 0 0
6 0 0 0 0 .6 0 .4 0 0
7 0 0 0 0 0 .6 0 0 .4
0 0 0 0 0 0 0 0 1 0
8 0 0 0 0 0 0 0 0 1


.
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For this matrix we have

B =



0 8

1 .98 .02
2 .95 .05
3 .9 .1
4 .84 .16
5 .73 .27
6 .58 .42
7 .35 .65


.

For bold strategy, Smith’s fortune is governed instead by the transition
matrix

P =



3 4 6 0 8

3 0 0 .4 .6 0
4 0 0 0 .6 .4
6 0 .6 0 0 .4
0 0 0 0 1 0
8 0 0 0 0 1

,
with

B =


0 8

3 .744 .256
4 .6 .4
6 .36 .64

.
From this we see that the bold strategy gives him a probability .256 of
getting out of jail while the timid strategy gives him a smaller probability
.1. Be bold!

14. It is the same.

15. (a)

P =



3 4 5 1 2

3 0 2/3 0 1/3 0
4 1/3 0 2/3 0 0
5 0 2/3 0 0 1/3
1 0 0 0 1 0
2 0 0 0 0 1

.
(b)

N =


3 4 5

3 5/3 2 4/3
4 1 3 2
5 2/3 2 7/3

,

t =

3 5
4 6
5 5

,
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B =


1 2

3 5/9 4/9
4 1/3 2/3
5 2/9 7/9

.
(c) Thus when the score is deuce (state 4), the expected number of points to

be played is 6, and the probability that B wins (ends in state 2) is 2/3.

16. 

g,GG G,Gg g,Gg G, gg G,GG g, gg

g,GG 0 1 0 0 0 0
G,Gg .25 .25 .25 0 .25 0
g,Gg 0 .25 .25 .25 0 .25
G, gg 0 0 1 0 0 0
G,GG 0 0 0 0 1 0
g, gg 0 0 0 0 0 1

 ,

N =


1.667 2.667 1.333 .333
.667 2.667 1.333 .333
.333 1.333 2.667 .667
.333 1.333 2.667 1.667

 ,

Nc =


6
5
5
6
,



B =


.667 .333
.667 .333
.333 .667
.333 .667

 .

17. For the color-blindness example, we have

B =


G,GG g, gg

g,GG 2/3 1/3
G,Gg 2/3 1/3
g,Gg 1/3 2/3
G, gg 1/3 2/3

,
and for Example 9 of Section 11.1, we have

B =


GG,GG gg, gg

GG,Gg 3/4 1/4
GG, gg 1/2 1/2
Gg,Gg 1/2 1/2
Gg, gg 1/4 3/4

.
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In each case the probability of ending up in a state with all G’s is propor-
tional to the number of G’s in the starting state. The transition matrix
for Example 9 is

P =



GG,GG GG,Gg GG, gg Gg,Gg Gg, gg gg, gg

GG,GG 1 0 0 0 0 0
GG,Gg 1/4 1/2 0 1/4 0 0
GG, gg 0 0 0 1 0 0
Gg,Gg 1/16 1/4 1/8 1/4 1/4 1/16
Gg, gg 0 0 0 1/4 1/2 1/4
gg, gg 0 0 0 0 0 1

.

Imagine a game in which your fortune is the number of G’s in the state that
you are in. This is a fair game. For example, when you are in state Gg,gg
your fortune is 1. On the next step it becomes 2 with probability 1/4,
1 with probability 1/2, and 0 with probability 1/4. Thus, your expected
fortune after the next step is equal to 1, which is equal to your current
fortune. You can check that the same is true no matter what state you are
in. Thus if you start in state Gg,gg, your expected final fortune will be 1.
But this means that your final fortune must also have expected value 1.
Since your final fortune is either 4 if you end in GG,GG or 0 if you end
in gg, gg, we see that the probability of your ending in GG,GG must be
1/4.

18. (a)



1 2 3 F G

1 r p 0 q 0
2 0 r p q 0
3 0 0 r q p
F 0 0 0 1 0
G 0 0 0 0 1


(b) Expected time in second year = 1.09.

Expected time in med school = 3.3 years.

(c) Probability of an incoming student graduating = .67.

19. (a)

P =


1 2 0 3

1 0 2/3 1/3 0
2 2/3 0 0 1/3
0 0 0 1 0
3 0 0 0 1

.
(b)

N =

( 1 2

1 9/5 6/5
2 6/5 9/5

)
,
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B =

( 0 3

1 3/5 2/5
2 2/5 3/5

)
,

t =

(
1 3
2 3

)
.

(c) The game will last on the average 3 moves.

(d) If Mary deals, the probability that John wins the game is 3/5.

20. Consider the Markov chain with state i (for 1 ≤ i < k) the length of the
current run, and k an absorbing state. Then when in state i < k, the chain
goes to i + 1 with probability 1/m or to 1 with probability (m − 1)/m.
Thus, starting in state 1, in order to get to state j + 1 the chain must be
in state j and then move to j + 1. This means that

N1,j+1 = N1,j(1/m) ,

or
N1,j = mN1,j+1 .

This will be true also for j + 1 = k if we interpret N1,k as the number
of times that the chain enters the state k, namely, 1. Thus, starting
with N1,k = 1 and working backwards, we see that N1,j = mk−j for
j = 1, · · · , k. Therefore, the expected number of experiments until a run
of k occurs is

1 +m+m2 + · · ·+mk−1 =
mk − 1

m− 1
.

(The initial 1 is to start the process off.) Putting m = 10 and k = 9 we
see that the expected number of digits in the decimal expansion of π until
the first run of length 7 would be about 111 million if the expansion were
random. Thus we should not be surprised to find such a run in the first
100,000,000 digits of π and indeed there are runs of length 9 among these
digits.

21. The problem should assume that a fraction

qi = 1−
∑
j

qij > 0

of the pollution goes into the atmosphere and escapes.

(a) We note that u gives the amount of pollution in each city from today’s
emission, uQ the amount that comes from yesterday’s emission, uQ2 from
two days ago, etc. Thus

wn = u + uQ + · · ·uQn−1 .
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(b) Form a Markov chain with Q-matrix Q and with one absorbing state to
which the process moves with probability qi when in state i. Then

I + Q + Q2 + · · ·+ Qn−1 → N ,

so
w(n) → w = uN .

(c) If we are given w as a goal, then we can achieve this by solving w = Nu
for u, obtaining

u = w(I−Q) .

22.

(a) The total amount of goods that the ith industry needs to produce $1 worth
of goods is

x1q1i + x2q2i + · · ·+ xnqni .

This is the i’th component of the vector xQ.

(b) By part (a) the amounts the industries need to meet their internal demands
is xQ. Thus to meet both internal and external demands, the companies
must produce amounts given by a vector x satifying the equation

x = xQ + d .

(c) From Markov chain theory we can always solve the equation

x = xQ + d

by writing it as
x(I−Q) = d

and then using the fact that (I−Q)N = I to obtain

x = dN .

(d) If the row sums of Q are all less than 1, this means that every industry
makes a profit. A company can rely directly or indirectly on a profit-
making company. If for any value of n, qnij > 0, then i depends at least
indirectly on j. Thus depending upon is equivalent in the Markov chain
interpretation to being able to reach. Thus the demands can be met if
every company is either profit-making or depends upon a profit-making
industry.

(e) Since x = dN, we see that

xc = dNc = dt .
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24. When the walk is in state i, it goes to i+ 1 with probability p and i− 1
with probability q. Condition (a) just equates the probability of winning
in terms of the current state to the probability after the next step. Clearly,
if our fortune is 0, then the probability of winning is 0, and if it is T , then
the probability is 1. Here is an instructive way (not the simplest way) to
see that the values of w are uniquely determined by (a), (b), and (c). Let
P be the transition matrix for our absorbing chain. Then these equations
state that

Pw = w .

That is, the column vector w is a fixed vector for P. Consider the transition
matrix for an arbitrary Markov chain in canonical form and assume that
we have a vector w such that w = Pw. Multiplying through by P, we see
that P2w = w, and in general Pnw = w. But

Pn →
(
0 B
0 I

)
.

Thus

w =

(
0 B
0 I

)
w .

If we write

w =

(
wT

wA

)
,

where T is the set of transient states and A the set of absorbing states,
then by the argument above we have

w =

(
wT

wA

)
=

(
BwA

wA

)
.

Thus for an absorbing Markov chain, a fixed column vector w is determined
by its values on the absorbing states. Since in our example we know these
values are (0,1), we know that w is completely determined. The solutions
given clearly satisfy (b) and (c), and a direct calculation shows that they
also satisfy (a).

26. Again, it is easy to check that the proposed solution f(x) = x(n − x)
satisfies conditions (a) and (b). The hard part is to prove that these
equations have a unique solution. As in the case of Exercise 23, it is most
instructive to consider this problem more generally. We have a special
case of the following situation. Consider an absorbing Markov chain with
transition matrix P in canonical form and with transient states T and
absorbing statesA. Let f and g be column vectors that satisfy the following
system of equations(

Q R
0 I

)(
f
A

0

)
+

(
g
A

0

)
=

(
f
A

0

)
,



116 CHAPTER 11. MARKOV CHAINS

where g
A

is given and it is desired to determine f
A

. In our example, g
A

has all components equal to 1. To solve for f
A

we note that these equations
are equivalent to

Qf
A

+ g
A

= f
A
,

or

(I−Q)f
A

= g
A
.

Solving for f
A

, we obtain

f
A

= Ng
A
.

Thus f
A

is uniquely determined by g
A

.

27. Use the solution to Exercise 24 with w = f.

28. Using the program Absorbing Chain for the transition matrix corre-
sponding to the pattern HTH, we find that

t =

HT 6
H 8
∅ 10

 .

Thus E(T ) = 10. For the pattern HHH the transition matrix is

P =


HHH HH H ∅

HHH 1 0 0 0
HH .5 0 0 .5
H 0 .5 0 .5
∅ 0 0 .5 .5

 .

Solving for t for this matrix gives

t =

HH 8
H 12
∅ 14

 .

Thus for this pattern E(T) = 14.

29. For the chain with pattern HTH we have already verified that the con-
jecture is correct starting in HT. Assume that we start in H. Then the
first player will win 8 with probability 1/4, so his expected winning is 2.
Thus E(T |H) = 10−2 = 8, which is correct according to the results given
in the solution to Exercise 28. The conjecture can be verified similarly
for the chain HHH by comparing the results given by the conjecture with
those given by the solution to Exercise 28.
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30. T must be at least 3. Thus when you sum the terms

P (T > n) = 2P (T = n+ 1) + 8P (T = n+ 3),

the coefficients of the 2 and the 8 just add up to 1 since they are all
possible probabilies for T . Let T be an integer-valued random variable.
We write

E(T ) = P (T = 1) + P (T = 2) + P (T = 3) + · · ·
+P (T = 2) + P (T = 3) + · · ·

+P (T = 3) + · · ·

If we add the terms by columns, we get the usual definition of expected
value; if we add them by rows, we get the result that

E(T ) =

∞∑
n=0

P (T > n) .

That the order does not matter follows from the fact that all the terms in
the sum are positive.

31. You can easily check that the proportion of G’s in the state provides a
harmonic function. Then by Exercise 27 the proportion at the starting
state is equal to the expected value of the proportion in the final aborbing
state. But the proportion of 1s in the absorbing state GG,GG is 1. In the
other absorbing state gg, gg it is 0. Thus the expected final proportion is
just the probability of ending up in state GG,GG. Therefore, the proba-
bility of ending up in GG,GG is the proportion of G genes in the starting
state.(See Exercise 17.)

32. The states with all squares the same color are absorbing states. From
any non-absorbing state it is possible to reach any absorbing state corre-
sponding to a color still represented in the state. To see that the game is
fair, consider the following argument. In order to decrease your fortune
by 1 you must choose a red square and then choose a neighbor that is
not red. With the same probability you could have chosen the neighbor
and then the red square and your fortune would have been increased by
1. Since it is a fair game, if at any time a proportion p of the squares are
red, for example, then p is also the probability that we end up with all
red squares.

33. In each case Exercise 27 shows that

f(i) = biNf(N) + (1− biN )f(0) .

Thus

biN =
f(i)− f(0)

f(N)− f(0)
.

Substituting the values of f in the two cases gives the desired results.
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11.3 Ergodic Markov Chains

1. (a), (f)

2. (a) P3 =

 .5 .333 .167
.562 .250 .187
.375 .500 .125

. Since P3 has no zero entries, P is regular.

(b) 1/6.

(c) w = (1/2, 1/3, 1/6).

3. (a) a = 0 or b = 0

(b) a = b = 1

(c) (0 < a < 1 and 0 < b < 1) or (a = 1 and 0 < b < 1) or (0 < a < 1 and
b = 1).

4. w = (b/(b+ a), a/(b+ a)).

5. (a) (2/3, 1/3)

(b) (1/2, 1/2)

(c) (2/7, 3/7, 2/7)

6. Let P =

(
0 1
1 0

)
. Then P2n+1 = P and P2n = I. Thus P is not regu-

lar. However, the average An = 1
n

(
P + P2 + · · ·+ Pn

)
of these matrices

converges to (
1/2 1/2
1/2 1/2

)
.

The vector w = (1/2, 1/2) is a fixed vector for P . Its components represent
the average number of times the process will be in each state in the long
run.

7. The fixed vector is (1, 0) and the entries of this vector are not strictly
positive, as required for the fixed vector of an ergodic chain.

8. The vectors (1,0,0) and (0,0,1) are fixed vectors, and so is any vector of
the form a(1,0,0) + (1− a)(0,0,1) for 0 < a < 1.

Pn →

 1 0 0
1/2 0 1/2
0 0 1

 .
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9. Let

P =

 p11 p12 p13

p21 p22 p23

p31 p32 p33

 ,

with column sums equal to 1. Then

(1/3, 1/3, 1/3)P = (1/3

3∑
j=1

pj1, 1/3

3∑
j=1

pj2, 1/3

3∑
j=1

pj3)

= (1/3, 1/3, 1/3) .

The same argument shows that if P is an n × n transition matrix with
columns that add to 1 then

w = (1/n, · · · , 1/n)

is a fixed probability vector. For an ergodic chain this means the the
average number of times in each state is 1/n.

10. In Example 11.10 of Section 11.1, the state GG is an absorbing state, and
it is impossible to go from this state to either of the other two states.

11. In Example 11.11 of Section 11.1, the state (GG,GG) is absorbing, and
the same reasoning as in the immediately preceding answer applies to show
that this chain is not ergodic.

12. The chain is ergodic but not regular. Note that it is impossible to reach
states 1 and 3 from state 0 in an even number of steps, and it is impossible
to reach states 0, 2, and 4 from state 0 in an odd number of steps.

13. The fixed vector is w = (a/(b + a), b/(b + a)). Thus in the long run
a proportion b/(b+ a) of the people will be told that the President will
run. The fact that this is independent of the starting state means it
is independent of the decision that the President actually makes. (See
Exercise 2 of Section 11.1)

14. The fixed vector is the common row of P.

The chain is regular if and only if the entries of this vector are strictly positive.

15. It is clearly possible to go between any two states, so the chain is ergodic.
From 0 it is possible to go to states 0, 2, and 4 only in an even number of
steps, so the chain is not regular. For the general Erhrenfest Urn model
the fixed vector must statisfy the following equations:

1

n
w1 = w0 ,

wj+1
j + 1

n
+ wj−1

n− j + 1

n
= wj , if 0 < j < n,
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1

n
wn−1 = wn .

It is easy to check that the binomial coefficients satisfy these conditions.

16. P2 is strictly positive. The fixed vector is w = (1/4, 1/2, 1/4).

17. Consider the Markov chain whose state is the value of Sn mod(7), that
is, the remainder when Sn is divided by 7. Then the transition matrix for
this chain is

P =



0 1 2 3 4 5 6

0 0 1/6 1/6 1/6 1/6 1/6 1/6
1 1/6 0 1/6 1/6 1/6 1/6 1/6
2 1/6 1/6 0 1/6 1/6 1/6 1/6
3 1/6 1/6 1/6 0 1/6 1/6 1/6
4 1/6 1/6 1/6 1/6 0 1/6 1/6
5 1/6 1/6 1/6 1/6 1/6 0 1/6
6 1/6 1/6 1/6 1/6 1/6 1/6 0


.

Since the column sums of this matrix are 1, the fixed vector is

w = (1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7) .

18. 2r + 1 (by this power there must have been a repetition of the pattern of
positive numbers in the matrix so nothing new can occur). N(3) = 5. See
Exercise 19.

19.

(a) For the general chain it is possible to go from any state i to any other state
j in r2 − 2r + 2 steps. We show how this can be done starting in state 1.
To return to 1, circle (1, 2, .., r − 1, 1) r − 2 times (r2 − 3r + 2 steps) and
(1, ..., r, 1) once (r steps). For k = 1, ..., r − 1 to reach state k + 1, circle
(1, 2, . . . , r, 1) r−k times (r2−rk steps) then (1, 2, . . . , r−1, 1) k−2 times
(rk − 2r− k + 2 steps) and then move to k + 1 in k steps.You have taken
r2 − 2r + 2 steps in all. The argument is the same for any other starting
state with everything translated the appropriate amount.

(b)

P =

 0 ∗ 0
∗ 0 ∗
∗ 0 0

 , P2 =

 ∗ 0 ∗
∗ ∗ 0
0 ∗ 0

 , P3 =

 ∗ ∗ 0
∗ ∗ ∗
∗ 0 ∗

 ,

P4 =

 ∗ ∗ ∗∗ ∗ ∗
∗ ∗ 0

 , P5 =

 ∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 .
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20. The transition matrix is



0 1 2 . . . n− 1 n

0 1− p p 0 . . . 0 0
1 r(1− p) pr + (1− p)(1− r) p(1− r) . . . 0 0
2 0 r(1− p) pr + (1− p)(1− r) . . . 0 0
...

...
...

. . .
...

n 0 0 . . . . . . r 1− r

 .

This transition matrix has a property called reversibility which will be
discussed in Section 11.5. For such a chain the fixed vector w satisfies the
condition

wipij = wjpji .

When this condition is satisfied, it is easy to determine the fixed vector.
For this example, reversibility in this chain means that

wip(1− r) = wi+1r(1− p) , 0 < i < n ,

or
wi+1

wi
=
p(1− r)
r(1− p)

, 0 < i < n .

Thus

wi = cρi, 0 < i < n,

where

ρ =
p(1− r)
r(1− p)

.

The values for w0 and wn are obtained from w0p = w1r(1 − p) and wnr =
wn−1p(1−r). The constant c is then chosen to make the probabilities add
to 1. If the traffic intensity s = p/r is greater than 1 then ρ is greater
than 1, and if it is less than 1 then ρ is less than one. Thus when the
traffic intensity is greater than 1 the fixed vector is large for large values
of i, and when it is less than 1 the fixed vector is small for large values of
n. This means that the queue size will build up when the traffic intensity
is greater than or equal to 1. The case ρ eaual to 1 is a border-line case,
and in this case the equilibrium vector is constant for 0 < i < n.

22. (a)

P (S = j) = P (customer does not finish in j − 1 sec.,but does in jth sec. )
= (1− r)j−1r ,

P (T = j) = P (no arrival in j − 1 seconds,but arrival in jth second )
= (1− p)j−1p .
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(b) S and T have geometric distributions, and so E(S) = 1/r and E(T ) = 1/p.

(c) The traffic intensity s greater than 1 means p is greater than r, or E(S)
is greater than E(T ). This means that the arrival rate is faster than the
service rate, so the queue size builds up; s equal to 1 means p is equal to
r or that E(S) is equal to E(T ); s less than 1 means that p is less than r,
or E(S) is less than E(T ) and the queue size does not build up.

24. Fixed probability vector is (1/5, 4/5). Thus wP = w implies

1

5
× .5 +

4

5
p =

1

5
,

so p = .125.

25. To each Markov chain we can associate a directed graph, whose vertices are
the states i of the chain, and whose edges are determined by the transition
matrix: the graph has an edge from i to j if and only if pij > 0. Then
to say that P is ergodic means that from any state i you can find a path
following the arrows until you reach any state j. If you cut out all the
loops in this path you will then have a path that never interesects itself,
but still leads from i to j. This path will have at most r − 1 edges, since
each edge leads to a different state and none leads to i. Following this
path requires at most r − 1 steps.

26. Assume that P is ergodic. Let M be the maximum of the steps required
to go between two states. Then it is possible to go from any state i to any
state j in M steps. To see this, assume that it is possible to go from i to
j in m steps with m < M . Then just stay in i for M −m steps before
starting on your route to M . Thus P is regular.

27. If P is ergodic it is possible to go between any two states. The same will
be true for the chain with transition matrix 1

2 (I+P). But for this chain it
is possible to remain in any state; therefore, by Exercise 26, this chain is
regular.

28. Assume that wP = w. Then

w(I + P)/2 = (w + w)/2 = w .

Conversely, if
w(I + P)/2 = w

then wP/2 = w/2, and wP = w.

29.

(b) Since P has rational transition probabilities, when you solve for the fixed
vector you will get a vector a with rational components. We can multiply
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through by a sufficiently large integer to obtain a fixed vector u with
integer components such that each component of u is an integer multiple
of the corresponding component of a. Let a(n) be the vector resulting
from the nth iteration. Let b(n) = a(n)P. Then a(n+1) is obtained by
adding chips to b(n+1). We want to prove that a(n+1) ≥ a(n). This is true
for n = 0 by construction. Assume that it is true for n. Then multiplying
the inequality by P gives that b(n+1) ≥ b(n). Consider the component

a
(n+1)
j . This is obtained by adding chips to b

(n+1)
j until we get a multiple

of aj . Since b
(n)
j ≤ b

(n+1)
j , any multiple of aj that could be obtained in

this manner to define a
(n+1)
j could also have been obtained to define a

(n)
j

by adding more chips if necessary. Since we take the smallest possible

multiple aj , we must have a
(n)
j ≤ a

(n+1)
j . Thus the results after each

iteration are monotone increasing. On the other hand, they are always
less than or equal to u. Since there are only a finite number of integers
between components of a and u, the iteration will have to stop after a
finite number of steps.

30. Assume that the tape can hold at most n units.Then the transition matrix
is

P =



0 1 2 3 . . . n− 1 n

0 0 1 0 0 . . . 0 0
1 0 p q 0 . . . 0 0
2 0 p2

(
2
1

)
pq q2 . . . 0 0

...
...

...
...

...
. . .

...
...

n pn
(
n
1

)
pn−1q

(
n
2

)
pn−2q2

(
n
3

)
pn−3q3 . . .

(
n
n−1

)
pqn−1 qn

.

(Note that we assume that the request has no effect when the tape is full).
When the chain is in state i the expected value of the next position is
1− ip. No matter how small p is, for large enough i this will be negative.
Thus, no matter how small p is, we see that if the tape is big enough,
there will be a tendancy to free up space when a large number of spaces
are occupied.

31. If the maximum of a set of numbers is an average of other elements of the
set, then each of the elements with positive weight in this average must
also be maximum. By assumption, P x = x. This implies Pnx = x for
all n. Assume that xi = M , where M is the maximum value for the xk’s,
and let j be any other state. Then there is an n such that pnij > 0. The
ith row of the equation Pnx = x presents xi as an average of values of xk
with positive weight,one of which is xj . Thus xj = M , and x is constant.

32. If 0 is the average of non-negative numbers, then any element of this
average occurring with positive weight must be 0. Assume that w is
a fixed probability vector for an ergodic chain P . Then wP = w and
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wPn = w. Assume that wi = 0. For any j there is an n such that
pnij > 0. Thus the ith column of wPn presents wi as an average of other
values of wk, with wj occurring with positive weight. Hence wj = 0.

11.4 Fundamental Limit Theorem for Regular
Chains

1.

(
1/3
1/3

)
2. Pn → cw. Thus Pny→ cwy = wyc, since wy is a number.

3. For regular chains, only the constant vectors are fixed column vectors.

4. All vectors of the form ay + bz for a and b constants are fixed vectors for
the matrix P of Exercise 3. There are no other fixed vectors.

6. Let y(n) = Pny. Then y
(n+1)
i =

∑
j pijy

(n)
j . Thus y

(n+1)
i ≤

∑
j pijMn =

Mn. This means that Mn is a upper bound for y
(n+1)
i . Therefore, Mn+1 ≤

Mn. A similar argument shows that mn+1 ≥ mn. Hence Mn+1−mn+1 ≤
Mn − mn for any n ≥ 1. Thus if we can show that a subsequence of
differences Mn −mn tends to 0, then the same will be true for the entire
sequence of differences, since this sequence is monotone decreasing.

8. This game has the flavor of Doeblin’s coupling idea. Once you and your
friend happen to be looking at the same number, from that time on you
will continue together. If this happens you will end up together and you
can successfully state that she stopped the same place you did. To see
how successful you will be, you will have to estimate the probability that
the coupling takes place. It is easy to write a program using random
permutations of 52 objects to simulate this process. If you do, you will
find that about 75 percent of the time the coupling is successful.

11.5 Mean First Passage Time for Ergodic Chains

1.

Z =

(
11/9 −2/9
−1/9 10/9

)
.
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and

M =

(
0 2
4 0

)
.

2. P =


S A W

S 1/2 1/2 0
A 1/4 1/2 1/4
W 0 1/3 2/3

.

Z =


S A W

S 1.333 0 −1
A −.222 .889 −.333
W −.889 −.444 1.667

, w = (2/9, 4/9, 3/9).

(a) Mean recurrence time for S = 1/w1 = 4.5.

(b) m31 = 10.

3. 2

4. Mean recurrence time for Yes is 1 + a/b, and for No it is 1 + b/a. For a =
.5 and b = .75 this gives a mean recurrence time of 5/3 for Yes and 5/2
for No.

5. The fixed vector is w = (1/6,1/6,1/6,1/6,1/6,1/6), so the mean recurrence
time is 6 for each state.

6. P =


R N S

R 1 0 0
N 1/2 0 1/2
S 1/4 1/4 1/2

,

N =

( N S

N 4/3 4/3
S 2/3 8/3

)
,

t = Nc =

(
N 8/3
S 10/3

)
.

This tells us that if it is nice today, then the expected number of days until
rain is 8/3. If it is snowy today, then the expected number of days until
rain is 10/3.
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7. (a) 

1 2 3 4 5 6

1 0 0 1 0 0 0
2 0 0 1 0 0 0
3 1/4 1/4 0 1/4 1/4 0
4 0 0 1/2 0 0 1/2
5 0 0 1/2 0 0 1/2
6 0 0 0 1/2 1/2 0


(b) The rat alternates between the sets {1, 2, 4, 5} and {3, 6}.

(c) w = (1/12, 1/12, 4/12, 2/12, 2/12, 2/12).

(d) m1,5 = 7

8. The mean recurrence time for state 0 is the average time between times
that the server is busy.

9. (a) if n is odd, P is regular. If n is even, P

is ergodic but not regular.

(b) w = (1/n, · · · , 1/n).

(c) From the program Ergodic we obtain

M =



0 1 2 3 4

0 0 4 6 6 4
1 4 0 4 6 6
2 6 4 0 4 6
3 6 6 4 0 4
4 4 6 6 4 0

.

This is consistent with the conjecture that mij = d(n − d), where d is the
clockwise distance from i to j.

10. The transition matrix is:

P =



0 1 2 3 4 5

0 0 1 0 0 0 0
1 1/2 0 1/2 0 0 0
2 0 1/2 0 1/2 0 0
3 0 0 1/2 0 1/2 0
4 0 0 0 1/2 0 1/2
5 0 0 0 0 1 0

,

w = (.25, .125, .125, .125, .125, .25),
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and

M =



0 1 2 3 4 5

0 0 1 4 9 16 25
1 9 0 3 8 15 24
2 16 7 0 5 12 21
3 21 12 5 0 7 16
4 24 15 8 3 0 9
5 25 16 9 4 1 0

.

Note that the entries of the first passage matrix are all integers. They also form
arithmetic progressions going down diagonals. General formuals for basic
quantities for random walks can be found in Finite Markov Chains by
John G. Kemeny and J. Laurie Snell (New York: Springer-Verlag, l976).

11. Yes, the reverse transition matrix is the same matrix.

12. P =

 1/2 0 1/2
2/3 1/3 0
0 2/3 1/3

 ,

w = (4/10, 3/10, 3/10), w1p12 = 0 6= w2p21.

13. Assume that w is a fixed vector for P . Then

∑
i

wip
∗
ij =

∑
i

wiwjpji
wi

=
∑
i

wjpji = wj ,

so w is a fixed vector for P *. Thus if w* is the unique fixed vector for P *
we must have w = w*.

14. No. In the Land of Oz example we found the mean first-passage matrix
to be

M =


R N S

R 0 4 10/3
N 8/3 0 8/3
S 10/3 4 0

.
Note, for example, that mNR = 8/3 6= mRN = 4.

15. If pij = pji then P has column sums 1. We have seen (Exercise 9 of
Section 11.3) that in this case the fixed vector is a constant vector. Thus
for any two states si and sj , wi = wj and pij = pji. Thus wipij = wjpji,
and the chain is reversible.

16. We first show that

(I + P + · · ·+ Pn−1)(I−P + W) = I−Pn + nW .
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Recall that PW = W so also PkW = W. Thus, just multiplying out the
left side gives this equality. Now if we divide through by n and pass to
the limit we have

I + P + . . .+ Pn−1

n
(I−P + W)→W

Multiplying both sides on the right by Z and recalling that WZ = W we
see that

I + P + . . .+ Pn−1

n
→W

17. We know that wZ = w. We also know that mki = (zii − zki)/wi and
wi = 1/ri. Putting these in the relation

m̄i =
∑
k

wkmki + wiri ,

we see that

m̄i =
∑
k

wk
zii − zki
wi

+ 1

=
zii
wi

∑
k

wk −
1

wi

∑
k

wkzki + 1

=
zii
wi
− 1 + 1 =

zii
wi

.

18. Form a Markov chain whose states are the possible outcomes of a roll.
After 100 rolls we may assume that the chain is in equilibrium. We want
to find the mean time in equilibrium to obtain snake eyes for the first time.
For this chain mki is the same as ri, since the starting state does not effect
the time to reach another state for the first time. The fixed vector has all
entries equal to 1/36, so ri = 36. Using this fact, we obtain

m̄i =
∑
k

wkmki + wiri = 35 + 1 = 36.

We see that the expected time to obtain snake eyes is 36, so the second
argument is correct.

19. Recall that

mij =
∑
j

zjj − zij
wj

.

Multiplying through by wj summing on j and, using the fact that Z has
row sums 1, we obtain

mij =
∑
j

zjj −
∑
j

zij =
∑
j

zjj − 1 = K,

which is independent of i.
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20. Assume that you start in state a. Then the expected amount you win on
the nth step is

∑
j P

n
a,jfj . From this it follows that your expected winning

on the first n steps can be represented by the column vector g(n), with

g(n) = (I + P + P2 + · · ·+ Pn)f .

But since wf = 0 also Wf = 0. Thus we have

g(n) = (I + (P−W) + (P2 −W) + · · ·+ (Pn −W))f

Letting n→∞ we obtain,

g(n) → Zf .

We used here that if P is the transition matrix for a regular chain then Z
is equal to the infinite series:

Z = I + (P−W) + (P2 −W) + (P3 −W) · · · .

21. The transition matrix is

P =


GO A B C

GO 1/6 1/3 1/3 1/6
A 1/6 1/6 1/3 1/3
B 1/3 1/6 1/6 1/3
C 1/3 1/3 1/6 1/6

.
Since the column sums are 1, the fixed vector is

w = (1/4, 1/4, 1/4, 1/4) .

From this we see that wf = 0. From the result of Exercise 20 we see that
your expected winning starting in GO is the first component of the vector
Zf where

f =


15
−30
−5
20

 .

Using the program ergodic we find that the long run expected winning
starting in GO is 10.4.

22. PW = W follows from the fact the columns of W are constant and the
row sums of P are 1. Similarly WW = W follows from the fact that W
has row sums 1 and constant columns. Thus W2 = W. Multiplying both
sides by W gives W3 = W2 = W. Continuing in this way we obtain
Wk = W.
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23. Assume that the chain is started in state si. Let X
(n)
j equal 1 if the chain

is in state si on the nth step and 0 otherwise. Then

S
(n)
j = X

(0)
j +X

(1)
j +X

(2)
j + . . . X

(n)
j

and
E(X

(n)
j ) = Pnij .

Thus

E(S
(n)
j ) =

n∑
h=0

p
(h)
ij .

If now follows from Exercise 16 that

lim
n→∞

E(S
(n)
j )

n
= wj .

24. He got it!



Chapter 12

Random Walks

12.1 Random Walks in Euclidean Space

1. Let pn = probability that the gambler is ruined at play n. Then

pn = 0, if n is even,
p1 = q,
pn = p(p1pn−2 + p3pn−4 + · · ·+ pn−2p1), if n > 1 is odd.

Thus

h(z) = qz + pz
(
h(x)

)2

,

so

h(z) =
1−

√
1− 4pqz2

2pz
.

By Exercise 10 we have

h(1) =

{
q/p, if q ≤ p,
1, if q ≥ p,

h′(1) =

{
1/(q − p), if q > p,
∞, if q = p.

This says that when q > p, the gambler must be ruined, and the expected
number of plays before ruin is 1/(q − p). When p > q, the gambler has a
probability q/p of being ruined. When p = q, the gambler must be ruined
eventually, but the expected number of plays until ruin is not finite.

2.
dn

dxn

(
(1− x)1/2

)∣∣∣
x=0

= (−1)n
1

2

(1

2
− 1
)
· · ·
(1

2
− n+ 1

)
.

Thus,

(1− x)1/2 =

∞∑
n=0

(−1)n
1
2

(
1
2 − 1

)
· · ·
(

1
2 − n+ 1

)
n!

(−x)n

131
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=

∞∑
n=0

1
2

(
1
2 − 1

)
· · ·
(

1
2 − n+ 1

)
n!

xn

=

∞∑
n=0

(
1/2

n

)
xn.

Therefore,

h(z) =
1−

√
1− 4pqz2

2pz
=

1−
∞∑
n=0

(
1/2

n

)
(−4pqz2)n

2pz

=

∞∑
n=1

1

2p
(−1)n

(
1/2

n

)
(4pq)nz2n−1 ,

and

p
T

(n) =

 1

2p
(−1)k

(
1/2

k

)
(4pq)k, if n = 2k − 1 = odd,

0, if n = even.

3. (a) From the hint:

hk(z) = h
U 1

(z) · · ·h
Uk

(z) =
(
h(z)

)k
.

(b)

hk(1) =
(
h(1)

)k
=

{
(q/p)k if q ≤ p,
1 if q ≥ p.

h′(1) =

{
k/(q − p) if q > p,
∞ if q = p.

Thus the gambler must be ruined if q ≥ p. The expected number of plays
in this case is k/(q − p) if q > p and ∞ if q = p. When q < p he is ruined
with probability (q/p)k.


