Exponents of Primitive Digraphs

Amir Barghi

1 Introduction

Let A be an $n \times n$ matrix whose entries are nonnegative and let $D=(V, E)$ be the digraph associated with A where $V=[n]$ and $(i, j) \in E$ if $a_{i, j}>0$. We call A primitive, if there exists some k such that A^{k} has positive entries. Equivalently, we call D primitive, if there exists a positive integer k such that there is a directed walk between any pair of vertices in D of length k (number of edges in the walk). Let D^{k} be the digraph that has the same vertices as D where there is a directed edges between two vertices u and v if there is a directed walk of length k from v to u. The smallest k satisfying this property is the exponent of D and is denoted by $\gamma(D)$.

2 Main Theorem

Theorem 1. If D is a primitive digraph, then $\gamma(D) \leq n^{2}-2 n+2$.
In order to prove this theorem, we will show a lemma due to [4]. Let us say that a walk touches a given set of vertices if there is some vertex in that set which belongs to the walk.

Lemma 2. If D be a primitive digraph with n vertices, let D^{\prime} be a subset containing n_{s} distinct vertices of the digraph, and let v be any vertex in D. Then there is always a walk from v which touches D^{\prime} whose length is less than or equal to $n-n_{s}$.

Proof. If $v \in D^{\prime}$, then the lemma is trivial. Suppose $v \in D^{\prime}$. By primitivity, we know that there is at least one walk which starts at v and touches D^{\prime}. Let W be such a walk of shortest length and let $u \in D^{\prime}$ be the vertex where this walk ends. This walk has no repeated vertices and u is the only vertex in D^{\prime} that occurs in W. Hence, W has at most $n-n_{s}$ vertices.

Proof. (Theorem 1)[P. Winkler] We know that there is a cycle C in D of length $k<n$; if not, then D is a single cycle which contradicts the primitive property of D. We also know from Lemma 2 that from any vertex v there is a walk of length at most $n-k$ to C. We can get from C to any vertex u in exactly $k(n-1)$ steps: in D^{k}, due to the loops at vertices in C, we can get to u in $m=n-1$ steps; therefore, in D we can get to u in $k(n-1)$ steps. Thus, we can get from v to u in $n-k+k(n-1)$ steps. For $k=(n-1)$, we have $n-k+k(n-1)=1+(n-1)^{2}$. Now for $k \leq(n-1)$, we have $n-(k-1)+(k-1)(n-1)=n-k+k(n-1)+1-(n-1)=$ $n-k+k(n-1)-(n-2)$. Since $n \geq 2$, then for $k<(n-1), n-k+k(n-1) \leq 1+(n-1)^{2}$.

Now we will show some examples that satisfy this upper bound.

Figure 1: Δ

Example 3. Let Δ be the digraph depicted in Figure 1. For this digraph, we have $\gamma(\Delta)=$ $5=(3-1)^{2}+1$: let A be the associated matrix to Δ and we have

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
0 & + & + \\
0 & 0 & + \\
+ & 0 & 0
\end{array}\right) \\
& A^{2}=\left(\begin{array}{lll}
+ & 0 & + \\
+ & 0 & 0 \\
0 & + & +
\end{array}\right) \\
& A^{4}=\left(\begin{array}{lll}
+ & + & + \\
+ & 0 & + \\
+ & + & +
\end{array}\right)
\end{aligned}
$$

where + represents a positive entry.

3 A Concise History of the Upper Bounds for $\gamma(D)$

In 1950, H . Wielandt stated without proof that $\gamma(A) \leq n^{2}-2 n+2$ for a primitive $n \times n$ matrix. In the special case that all the diagonal entries of A are positive, he showed that $\gamma(A) \leq n-1$. P. Perkins proved Theorem 1 in 1961. In 1964, A.L. Dulmage and N.S. Mendelsohn proved the following which was also proved by E.V. Denardo in 1977:

Theorem 4. If D is a primitive digraph on n vertices and if s is length of the shortest cycle in D, then $\gamma(D) \leq n+s(n-2)$.

4 Minimally Strong, Primitive Digraphs

A digraph D is called strongly connected (strong) if there is a walk from any vertex v to any vertex $u \neq v$ in D. Moreover, a strong graph is called minimally strong given that removal of an edge will result in a digraph that is not strong.

Theorem 5 (R. Brualdi, J. Ross - 1980). Let D be a primitive, minimally strong digraph on n vertices. Then

$$
\gamma(D) \leq n^{2}-4 n+6,
$$

with equality if and only if D is isomorphic to the digraph D_{n}.

Figure 2: D_{n}
Let D be a primitive digraph and let $p_{1}, p_{2}, \ldots, p_{k}$ be the distinct lengths of closed path of D. Define $r_{u, v}$ to be the length of the shortest walk from vertex u to vertex v such that for all $i \in[k]$, it contains a vertex of some closed path of length p_{i}. Let $r(D)=\max \left\{r_{u, v}\right\}$. An ordered pair u, v has the unique path property if every walk from u to v of length at least $r_{u, v}$ consists of some walk W from u to v of length $r_{x, y}$ augmented by closed paths each of which has a vertex in common with W.

Let $n_{1}, n_{2}, \ldots, n_{k}$ be relatively prime positive integers, and let $F\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ be the largest integer that is not expressible as linear composition of n_{i} 's with nonnegative coefficients. Dulmage and Mendelsohn proved in [2] the following lemma:

Lemma 6. Let D be a primitive digraph for which $p_{1}, p_{2}, \ldots, p_{k}$ are the distinct lengths of closed paths. Then

$$
\begin{equation*}
\gamma(D) \leq F\left(n_{1}, n_{2}, \ldots, n_{k}\right)+r(D)+1 \tag{1}
\end{equation*}
$$

If the pair u, v has the unique path property, then

$$
\begin{equation*}
F\left(p_{1}, p_{2}, \ldots, p_{k}\right)+r_{u, v}+1 \leq \gamma(D) \tag{2}
\end{equation*}
$$

Proof. (Theorem 5, Outline) Clearly, $r\left(D_{n}\right)=r_{n-1, n}=n$. We use (1) and $F(n, m)=$ $n m-n-m$ to show that $\gamma\left(D_{n}\right) \leq n^{2}-4 n+6$. Since the ordered pair $n-1, n$ has the unique path property, then using (2), we have $n^{2}-4 n+6 \leq \gamma\left(D_{n}\right)$.

Let D be a minimally strong, primitive digraph. We know that D has a closed path of length $k<n$, and let s be the minimum length of a closed path. The case $s=n-1$ can not happen. Hence, $s \leq n-2$. When $s \leq n-4$, we know from Theorem 4 that

$$
\gamma(D) \leq n^{2}-5 n+8<n^{2}-4 n+6
$$

When $s=n-2, D$ has a closed path of length $n-1$. Using some basic properties of digraphs, it is easy to show that D is isomorphic to D_{n}. When $n=s-3, D$ has a closed path C_{1} of length $n-3$. It also has a closed path C_{2} of length $l=n-1$ or $l=n-2$. When $l=n-2$, two or three vertices of C_{2} are not in C_{1}. It follows that the digraph D^{\prime} induced on the vertices of C_{1} and C_{2} is isomorphic to D_{n-1} or the digraph E_{n} in Figure 3. In either case, $\gamma(D)<n^{2}-4 n+6$. When $l=n-1$, using basic properties of digraphs, we can show that D is the digraph F_{n} in Figure 4. Using a similar argument as was given for D_{n}, it can be proved that $\gamma\left(F_{n}\right)<n^{2}-4 n+6$.

Figure 3: E_{n}

Figure 4: F_{n}

Figure 5: $D_{s, n}$

We will finish this project paper by stating the following theorem that improves the bound in Theorem 4 when D is a minimally strong, primitive digraph:

Theorem 7 (J. Ross - 1982). Let D be a minimally strong, primitive digraph on n vertices. Then

$$
\gamma(D) \leq n+s(n-3)
$$

with equality if and only if D is isomorphic to the digraph $D_{s, n}$. In particular, if g.c.d $(s, n-1) \neq$ 1 , then $\gamma(D)<n+s(n-3)$, and if g.c. $d(s, n-1)=1$, then $D_{s, n}$ is a primitive, minimally strong digraph on n vertices with exponent $n+s(n-3)$.

References

[1] E.V. Denardo, Periods of connected networks and powers of nonnegative matrices, Math. Oper. Res., 2 (1977), pp. 20-24.
[2] A.L. Dulmage, N.S. Mendelsohn, Gaps in the exponent set of primitive matrices, Illinois J. Math., 8 (1964), pp. 642-656.
[3] A.L. Dulmage, N.S. Mendelsohn, The exponent of a primitive matrix, Canad. Math. Bull., vol. 5 (1962), pp. 241-244.
[4] P. Perkins, A theorem on regular graphs, Pacific J. Math., vol. II (1961), pp. 1529-1533.
[5] H. Wielandt, Unzerlegbare, nicht negativen Matrizen, Math. Zeitschrift, vol. 52 (1950), pp. 642-648.

