
Counting Linear Extensions of a Partial Order

Seth Harris

March 16, 2011

1 Introduction

A partially ordered set (P,<) is a set P together with an irreflexive, transitive relation. A
linear extension of (P,<) is a relation (P,≺) such that (1) for all a, b ∈ P either a ≺ b or
a = b or b ≺ a, and (2) if a < b then a ≺ b; in other words, a total order that preserves
the original partial order. We define Λ(P) as the set of all linear extensions of P , and define
N(P) = |Λ(P)|. Throughout this paper, we will only be considering finite partial orders on
n vertices.

The problem of counting linear extensions is not only important in its home field of order
theory, but is intimately connected to the theory of sorting. After all, if one is performing
a comparison sort, one often starts with incomplete data (a partially sorted set) and must
decide what alternatives exist for a total sorting, and whether there is an optimal pair of
elements to compare next. Clearly one needs to know the number of possible extensions in
order to proceed. It is also common to have partial data but to be unable to compare every
pair of data points, in which case one must estimate a total ranking of the set, for instance
by ranking the “average height” of an element, its mean rank over all linear extensions.
This has widespread applications in the social sciences, such as in ranking lists of consumer
products or athletic competitors. But again, to have any hope of calculating this, one must
know the (approximate) number of extensions.

Graham Brightwell and Peter Winkler have shown in [3] that the problem of exactly
counting N(P) is #P-complete. Our goal is to present a randomized algorithm which ap-
proximates N(P) within a factor of (1 + ε) with probability > 1− β, such that the running
time is polynomial in n, 1/ε, and 1/β.

2 Generating a random linear extension

The first step to achieving our goal comes from an algorithm of Karzanov and Khachiyan
[6] which outputs a random linear extension of P in polynomial time:

1

Theorem 2.1 (Karzanov and Khachiyan). There is an algorithm with the following proper-
ties:

Input: An n-element partial order (P,<), a number ε > 0.

Output: A linear extension of P , such that for any λ ∈ Λ(P)∣∣∣∣P(output is λ)− 1

N(P)

∣∣∣∣ < ε

N(P)

Running Time: O(n6 log(n) log(1/ε))

We now define a graph associated with Λ(P) and consider a Markov chain for a random
walk on this graph.

Definition 2.2. The linear extension graph of P , G(P), is the graph whose vertices are
linear extensions in Λ(P), and such that λ and µ are adjacent in the graph if and only if λ
can be obtained from µ by an adjacent transposition.

For a very simple example, suppose that we have a partial order on 4 vertices {v1, v2, v3, v4}
with relations v1 < v2, v1 < v3. One linear extension of this is λ = v1 < v2 < v3 < v4. What
other extensions are adjacent to λ in G(P)? There are only three possible adjacent trans-
postions, and the one that swaps v1 and v2 violates the original order relation v1 < v2. So
that leaves two legal adjacent transpositions: v1 < v3 < v2 < v4 and v1 < v2 < v4 < v3, and
thus λ has degree 2 in G(P). Note that the highest possible degree of a vertex is n− 1.

The order Markov chain for P is the chain for a random walk on G(P) with the following
transition matrix:

Pλ,µ =

1/(2n− 2) if λ and µ are adjacent
1− d(λ)/(2n− 2) if λ = µ
0 otherwise

This Markov chain is clearly aperiodic, since it loops with probability at least 1/2. It is
also irreducible. For suppose that λ = v1 < v2 < . . . vn and µ = vσ(1) < vσ(2) < . . . vσ(n) are
two valid linear extensions. How do we “travel” from λ to µ on the graph? Simple: Find
vσ(1) in λ, move it to the bottom by transposing it one place at a time; then find vσ(2) in λ
and move it to second from the bottom, etc. All such moves will be legal, since all relations
in P hold in both λ and µ, and therefore will hold in all intermediate steps in the algorithm.

So we have an ergodic Markov chain, and thus if we can find a stationary distribution, the
chain will converge to this distribution. And indeed the uniform distribution, πµ = 1

N(P)
∀µ,

is stationary, since

πµ =
1

N(P)
= (1)

(
1

N(P)

)
=

[∑
λ,µ adj

1

2n− 2
+

(
1− d(µ)

2n− 2

)](
1

N(P)

)
=
∑

πλPλ,µ.

2

Therefore, we will eventually converge to the uniform distribution. It remains to show
that we have rapid mixing, i.e., that the Markov chain will converge in polynomial time.

Definition 2.3. The conductance, α, of a reversible Markov chain with underlying graph
G, is defined as

α =
1

2n− 1
min
X

|E(X, X̄)|
|X|

.
where the minimum is taken over all X ⊆ V (G) such that 1 ≤ |X| ≤ |G|/2. E(X, X̄) is

the total number of edges between a vertex in X and a vertex in X̄.

The conductance of a reversible Markov chain is frequently used to prove rapid mixing,
largely thanks to the following result of Sinclair and Jerrum [7]:

Theorem 2.4 (Sinclair, Jerrum).∣∣∣∣π(λ, t)− 1

N(P)

∣∣∣∣ ≤ (1− α2

2

)t

Hence it suffices to show that the conductance α is sufficiently large to guarantee rapid
mixing, and in some way this is the key step and the true content of Karzanov and Khachiyan’s
proof. And indeed, they show in [6]:

Theorem 2.5 (Karzanov and Khachiyan). The conductance of the random walk on G(P)
satisfies α > 2−3/2n−5/2.

I will not delve into the details of their proof, but it involves translating our problem into
the problem of computing the volume of certain convex bodies. The order polytope Q(P)
of a partial order P = {p1, . . . , pn} is the subset of [0, 1]n such that xi < xj if and only
if pi < pj in P . One can subdivide the n-cube [0, 1]n into n! regions of equal volume, one
corresponding to each linear extension pi1 < . . . < pin , and so computing the volume of Q(P)
would easily tell you how many linear extensions of P exist.

Now that we know that α > 2−3/2n−5/2, we can solve for t in the equation in (2.4), and
we have |π(λ, t) − 1

N(P)
| < ε

N(P)
provided t > 16n6 log n log 1/ε. Thus we have found a

random polynomial-time algorithm for generating a linear extension, as desired.

3 Approximating the number of linear extensions

Now that we can generate a single linear extension in polynomial time, how does this help
us count the total number of extensions? Let us simulate the process of slowly building a
linear order out of a partial order. Given a partial order P , define a sequence of partial
orders P = P0, P1, . . . , Pk, where Pk is a linear extension of P0 and Pj+1 is just Pj with one

3

additional relation aj < bj (plus the transitive closure, i.e., if a < aj in Pj, then a < bj is
also a new relation in Pj+1). If we are at stage Pj, we can ask ourselves what the probability
is that aj ≺ bj in the final linear order Pk; we will call this probablility P(aj ≺ bj | Pj). Now
we observe that

P(aj ≺ bj | Pj) =
|extensions of Pj with aj ≺ bj|
|total extensions of Pj|

=
N(Pj+1)

N(Pj)
.

Therefore,

N(P) =
k−1∏
j=0

N(Pj)

N(Pj+1)
=

k−1∏
j=0

1

P(aj ≺ bj | Pj)

(Note that N(Pk) = 1.) So we now have a bridge between Karzanov and Khachiyan’s
algorithm (2.1) and our final desired result: First we run the algorithm on P a large number
of times, giving us a large random sample of linear extensions of P . Next we look at our
sample and calculate what proportion of the extensions satisfy aj ≺ bj. Then, we take
that proportion as an estimate for P(aj ≺ bj |Pj). We then add (aj, bj) to our ordering to
obtain Pj+1, and proceed to estimate P(aj+1 ≺ bj+1 |Pj+1). Our next algorithm will be the
“proportion-calculating” one.

Theorem 3.1 (Brightwell and Winkler [3]). There is an algorithm with the following prop-
erties:

Input: An n-element partial order (P,<); two numbers η, δ, 0 < η, δ < 1/3;

an ordered pair (x, y) incomparable in P such that P(x ≺ y | P) = γ > 2/5.

Output: An estimate U for γ such that

P
(∣∣∣∣Uγ − 1

∣∣∣∣ > η

)
< δ

Running Time: O(n6 log(n) log(1/η) η−2 log(1/δ))

Let us sketch a few details of the proof of this algorithm. The probability p that one
trial of the K-K algorithm outputs an order with x ≺ y satisfies |p/γ−1| ≤ ε, where we take
ε = η/3. (This follows from multiplying equation (2) through by N(P) and simplifying).
Since we will be running the algorithm a large N number of times, the number SN,p of
orderings with x ≺ y will be a binomial random variable in N and p. Standard calculations
involving the binomial distribution show that if p > 1/3,

P(|SN,p −Np| > εNp) < exp(−ε2N/100)

4

(Note: The assumption that p > 1/3 is very mild, for if it is not, just switch the roles of
x and y). A few quick inequality calculations will deduce that

P(|U − γ| > 3εγ) < exp(−ε2N/100)

So if we choose N > 100η−2log(1/δ), then we have, as desired,

P
(∣∣∣∣Uγ − 1

∣∣∣∣ > η

)
< δ

.
Note that the running time is nearly the same as the one in (2.1), except multiplied by

a factor of η−2log(1/δ), the approximate size of N . This makes sense, as we are performing
N trials of the random linear extension generator.

While for us the calculation of P(aj ≺ bj | Pj) is essentially a stepping stone to our
final result, there is a significant unsolved problem related to it — the so-called “1/3–2/3
conjecture.” The conjecture states: For any partial order P , there exist a pair of incomparable
elements (a, b) such that P(a ≺ b | P) ∈ [1/3, 2/3]. This result would be valuable for
comparison sorting, as it implies that there exist (a, b) such that comparing them will reduce
the number of possible sortings by a factor of 2/3. Brightwell, Felsner and Trotter [2] show
that the conjecture is true if one replaces [1/3, 2/3] with [(5 −

√
5)/10, (5 +

√
5)/10] ∼

[0.2764, 0.7236].
We are now in a position to estimate N(P), using the identity obtained in (3):

Theorem 3.2 (Brightwell and Winkler). There is an algorithm with the following properties:

Input: An n-element partial order (P,<); two numbers ε > 0, β > 0

Output: A number L such that

P
(∣∣∣∣ L

N(P)
− 1

∣∣∣∣ > ε

)
< β.

Running Time: O(n9 log6(n) log(1/ε) ε−2 log(1/β))

Starting with P0 = P , we follow a sorting algorithm with no more than 2n logn steps.
When we find a pair (a, b) which are not related in Pj, run the previous algorithm (3.1)
to estimate P(a ≺ b | Pj), using η = ε/(4n logn) and δ = β/(2n logn). Without loss of
generality, we have P(a ≺ b | Pj) > 2/5 (again, if not, just reverse the roles of a and b). So
with probability > 1− δ, our estimate Ej for P(a ≺ b | Pj) will satisfy∣∣∣∣ Ej

P(a ≺ b | Pj)
− 1

∣∣∣∣ < η.

Add the relation a ≺ b (plus transitive closure) to obtain Pj+1. We continue following
the sorting algorithm until every pair has been compared, at which point we have reached

5

a linear order Pk. By the nature of the sorting algorithm, k < 2n logn. Now we make an
estimate L for N(P), given by L =

∏k−1
j=0 E

−1
j , again following the identity in (3). Thus we

have (this is an exact equality):

L

N(P)
=

k−1∏
j=0

P(aj ≺ bj | Pj)
Ej

With probability ≥ 1 − kδ ≥ 1 − β, each term in the product is between (1 + ε/2k)−1

and (1− ε/2k)−1. Thus with probability ≥ 1− β,

1− ε <
(

1

1 + ε/2k

)k
<

L

N(P)
<

(
1

1− ε/2k

)k
< 1 + ε

exactly as desired.

If we compare the running time of the extension count algorithm (3.2) with the running
time of the proportion estimator (3.1), we note that in (3.2) each proportion estimate takes
O(n6 log(n) log(1/η) η−2 log(1/δ)) steps, which by the way we defined η and δ, is bounded
above by O(n8 log5(n) log(1/ε) ε−2 log(1/β)). Since we perform this estimate at most 2n logn
times, that gives us our running time bound stated above.

Given that our main results were proved two decades ago, it is no surprise that there are
more efficient algorithms for counting N(P) today. Indeed, Banks et al. [1] detail a method
called the Tootsie Pop Algorithm (TPA) that countsN(P) inO(n3 logn (logN(P))2ε−2 log (1/β))
steps.

References

[1] J. Banks, S. Garrabrant, M. Huber, A. Perizzolo (2010). “Using TPA to count linear
extensions.” arXiv:1010.4981v1

[2] G. Brightwell, S. Felsner, W. Trotter, Balancing Pairs and the Cross-Product Conjecture.
Order 12 (1995), 327-349.

[3] G. Brightwell and P. Winkler, Counting Linear Extensions. Order 8 (1991), 225-242.

[4] M. Dyer, A. Frieze, R. Kannan, A Random Polynomial-Time Algorithm for Approxi-
mating the Volume of Convex Bodies. Proc 21st ACM Symposium on the Theory of
Computing, 375-381.

[5] O. Häggström, Finite Markov Chains and Algorithmic Applications. Cambridge Univer-
sity Press, Cambridge, 2008.

[6] A. Karzanov and L. Khachiyan, On the Conductance of Order Markov Chains. Order 8
(1991), 7-15.

6

[7] A. Sinclair and M. Jerrum, Approximate counting, generation, and rapidly mixing Markov
chains. Information and Computation 82 (1989), 93-133.

7

