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Abstract

The road coloring problem is an interesing problem proposed over 40
years ago by Adler, Goodwyn and Weiss. Hundreds of mathematicians
worked on this problem and failed to make the conjecture a theorem.
Finally, in 2007, it was proved by a 60-year-old Israeli mathematician,
Avraham Trahtman. It turns out the prove was quite simple after Traht-
man partitioned the graph into cycles and trees. The details are stated
below.

1 Introduction

The road Coloring Problem was posted in the year 1970 by Adler, Goodwyn
and Weiss. It was stated explicitly for a strongly connected directed finite graph
with constant outdegree of all its vertices where the greatest common divisor
(gcd) of lengths of all its cycles is one. Road coloring is an edge coloring prob-
lem. It could be phrased in the following way: For a graph who has uniform
outdegree and is aperiodic, there should exist a coloring for the edges such that
for a certain sequence, regardless of the initial vertex, follwing this sequence of
color(or word) will always lead to the same vertex.
In Figure 1 for example, for the vertex marked in yellow, regardless of the initial

vertex, traversing all nine edges in the walk blue-red-red–blue-red-red–blue-red-
red, will lead to the yellow vertex. Similarly, if one will always terminates at
the green vertex by using this walk blue-blue-red–blue-blue-red–blue-blue-red.

For almost 40 years, hundreds of mathematicians have tried to solve this
problem, even though progress is made, but the conjecture remains unproven
until 2007, an Israel scientist finally came up with the prove and made it a
theorem. Avraham Trahtman was a Soviet Union scientist. When he came to
Israel, he worked as a security guard before he returned to the academic field.

This theorem is extremely useful in the theory of automaton. When the
automaton is running and encounters an error, and if the road coloring conjec-
ture is true, the automaton can always follow a certain sequence and go back to
the previous “correct” state, regardless of what error it encountered. The road
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Figure 1: An Example of Road Coloring Problem

coloring is also useful in Symboic Dynamics according to Trahtman.

The idea of the prove is quite simple. Due to the special structure of the
graph, we can always partition the graph into cycles and trees. Trahtman proved
that there exists such a sub-graph, such that there is only one non-trivial tree
outside the cycle with only one leaf with the hightest value. What is more, by
his definition of “subgraph” each vertex only has one outgoing edge. Therefore,
as long as we get out of the cycle, we can always end up at the same vertex.
However, in the cycle, Trahtman proved that one can always follow a sequence
and enter the tree regardless of the initial vertex. Then, we can prove this
theorem easily.

2 Theorems and Lemmas used in the proof

The following notations and Theorems and Lemmas are from [2].

A digraph D is said to be out-regular or have uniform outdegree if there
is an integer ∆ such that odv = ∆ for every vertex v of D. A digraph with
uniform outdgree need not have uniform indegree, however.

A digraph D is perodic if it is possible to partition V (D) into k ≥ 2 subsets
V1, V2, ..., Vk, Vk+1 = 1 such that if (u, v) is an arc of D, then u ∈ Vi, v ∈ Vi+1 for
some i with 1 ≤ i ≤ k. Such a partition of V (D) is called a cyclic k-partition.
Thus D is periodic if there is a cyclic k-partition of V (D) for some integer k ≥ 2.
If D is not periodic, then it is called aperiodic. A strong aperiodic graph with
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uniform outdegree is also called AGW graph.

An arc coloring c of a digraph D is proper if every two arcs incident from
the same vertex of D are assigned different colors. For a strong digraph D with
uniform outdegree ∆ a proper ∆−arc coloring c of D is said to be synchro-
nized (or synchronizing) if for every vertex v of D, there exists a sequence sv
of colors such that for every vertex u of D, the directed walk with initial vertex
u determined by sv has terminal vertex v. In this case, the sequence sv is called
a synchronized (or synchronizing) sequence of the vertex v.

If there exist a path in an automaton from the state p to the state q
and the edges of the path are consecutively labeled by σ1, σ2, ..., σk, then for
s = σ1σ2...σk ∈ Σ+ let us write q = ps.

Let Ps be the map of the subset P of the graph by help of s ∈ Σ+ and let
Ps−1 be the maximal set of states Q such that Qs ⊆ P . A word s ∈ Σ+ is called
a synchronizing word of the automaton with transition graph D if |Ds| = 1.

A pair of distinct vertices p, q will be called synchronizing if ps = qs for
some s ∈ Σ+. In the opposite case, if for any s ps 6= qs, we call the pair dead-
lock. A synchronizing pair of vertices p,q of a graphis called stable if for any
word u, the pair pu,qu is also synchronizing. We call the set of all outgoing
edges of a vertex a bunch if all these edges are incoming edges of only one vertex.

Let u be a left eigenvector with positive components having no common divi-
sor of adjacency matrix of a graph with vertices p1, ..,pn. The i-th component
ui of the vector u is called the weight of the vertex pi and denoted by wpi.
The sum of the weights of the vertices from a set D is denoted by w(D) and is
called the weight of D. Th subset D of a graph G such that w(D) is maximal
and |Ds| = 1 for some word s ∈ Σ+, let us call if F-maximal.

Theorem 1: There exists a partition of D of F-maximal sets (of the same
weight).1

Theorem 2: Let us consider a coloring of AGW graph D. Stability of states
is a binary relation of the set of states of the obtained automaton; denote this
relation by ρ.

Then ρ is a congruence relation, D/ρ presents an AGW graph and synchro-
nizing coloring of D/ρ implies synchronizing coloring.

Lemma 1: Let w be the weight of F-maximal set of the AGW graphD via
some coloring. Then the size of every F-clique of the coloring is the same and

1The subset G of states of an automaton such that w(D) is maximal and |Ds| = 1 for some
word s, let us call F-maximal, where Ds be the map of the subset P o states of an automaton
by help of s.
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equal to w(D)/w (the size of partition of D on F-maximal sets).

Lemma 2: Let F be F-clique via some coloring of AGW graph D. For any
words s the set Fs is also an F-clique and any state [vertex]p belongs to some
F-clique.

Lemma 3: Let An and B (|A| > 1) be distinct F-cliques via some coloring
without stable pairs of the AGW graph D. Then |A|−|A∩B| = |B|−|A∩B| > 1.

Lemma 4: Let some vertex of AGW graph D have two incoming bunches.
Then any coloring of D has a stable couple.

Definition: Let us call a subgraph S of the AGW graph D a spanning sub-
graph of D if to S belong all vertices of D and exactly one outgoing edge of every
vertex.

A maximal subtree of the spanning subgraph S with root on a cycle from S
and having no common edges with cycles from S is called a tree of S. The length
of path from a vertex p through the edges of the tree of the spanning set S to
the root of the tree is called the level of p in S.

Lemma 5: Let N be a set of vetices of level n from some tree of the spanning
subgraph S of AGW graph D. Then in a coloring of D where all edges of S have
the same color α any F-clique F satisfies |F ∩N | ≤ 1

Lemma 6: Let AGW graph have a spanning subgraph R of only disjoint
cycles (without trees). Then D also has another spanning subgraph with exactly
one vertex of maximal positive level.

Lemma 7: Let any vertex of an AGW graph D have no two incoming
bunches. Then D has a spanning subgraph such that all its vertices of maximal
positive level belong to one non-trivial tree.

Lemma 8: Let D be an AGW graph having two cycles Cu and Cv. Suppose
that either Cu ∩ Cv = {p1} or Cu ∩ Cv = {pk, ..., p1}, where all incoming edges
of pi develop a bunch from pi+1(i < k). Let u ∈ Cu and v ∈ Cv be the distinct
edges of the cycles Cu and Cv leaving p1. Let Ru be a spanning subgraph with
all edges from Cu and Cv except u. The spanning subgraph Rv is obtained from
Ru by removing v and add u. Then at least one of two spanning subgraphs
Ru, Rv has a unique maximal tree whose root is p1.

Theorem 3: Any AGW graph D has a coloring with stable couples.

Theorem 4: Every AGW graph D has synchronizing coloring.
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3 Some thoughts about the theorems and lem-
mas

The idea of the theorem and the lemmas are quite obvious. As stated above, the
author intends to divide the graph into two parts: tree and cycle. According to
the definition of the subgraph, there would be only one edge leaving any vertex
on the subgraph and any vertex on the cycle would have the same level. At
the same time, there would only exist one non-trivial tree with only one highest
level leaf. Therefore, if we follow a sequence s, as soon as we leave the cycle,
then we always reach the same vertex since there is only one leaf with the high-
est level. This would be true only if the graph is a subgraph as mentioned in
the definition so we would not have multiple paths on a tree. Therefore, lemma
5, 6 and 7 prove this idea. One of the most important ideas in the paper is
subsititution.

Consider Lemma 6. If we only have disjoint cycles on a subgraph R, then
there must be two edges u and v such that u = p→ q and v = p→ s and s 6= q.
We can replace v by u, then only s has the maximal level in the new spanning
subgraph. This is an important idea, and it is also used in proving lemma 7.
By subsititution, the author proved that there can be only one non-trivial tree
with one maximal level if no vertex has two incoming bunches. This leads to
the final proof of the Road Coloring Theorem.

Before Trahtman proved this theorem, there were others mathematicians
tried to prove this problem and made some progress. Their basic approach was
to simplify the graph and partition the graph based on weights.

4 Algorithm for Road Coloring Problem

Soon after the author proved the Road Coloring Theorem, he developed a new
algorithm for the road coloring problem.

Even before Trahtman proved the theorem, reserchers have been developing
algorithm for this problem. In DNA computing, scholars have developed an al-
gorithm based on the massive parallel computing of sequences of length O(n3)
related to the road coloring problem. In [1], the author developed an algorithm
of a O(n2) complexity in majority cases O(n3) in worst cases. It is quite a posi-
tive result. It is much faster than we would image to calculate a “synchrionizing
word” on an AGW graph. As Trahtman points out, we can apply this algorithm
in automaton theory, symbolic dynamics, even DNA computing and other fields.

The main steps of the algorithm is built on the theorems and the lemmas
stated above. The algorithm can be applied to any graph, no matter whether
they are AGW graphs or not, because the algorithm checks the property of the
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graph before it actually assigns colors.

The main algorithm flow is stated as follows. First, the algorithm checks if
the graph has a sink. This step is just to check if the graph has a stable couple
or not. If there are multiple sinks, then, lemma 3 is applied to reduce the graph
into a smaller graph using the congruence property. This is repeated until there
is only one sink in the graph. However, if the graph does not have a sink, then
the algorithm returns the error message that the graph is not an AGW graph.

Then, the algorithm use a function “FindLoopColoring” to find the sychro-
nizing words, which is also the coloring sequence. After this, the algorihtm
needs to check if the gcd of all the circles are 1 or not. If not, the algorithm
terminates. If the gcd is 1, then the algorihtm proceeds.

The following is the main part of the algorithm. Here, for each color we
found previously, the algorithm checks for each vertex if it has two incoming
bunches, and then finds the spanning subgraph, change it to the subgraph with
only circles. Then, the algorithm uses lemma 7 to change it into a graph with
only one non-trivial tree with maximal level. At this point, the algorithm has
almost finished all the main jobs.

The complexity of the algorithm is usually O(n2) since the finding subgraph
and modify function are linear. Then looping the colors makes the algorithm
quadratic. However, the worst case of the algorithm is O(n3) since if the number
of edges in the cycles grows slowly, the size of the graph also decreases slowly.
The loops do not appear and the case of two ingoing bunches emerges rarely.
This leads to the O(n3) in worst cases. What is more, the space complexity is
also quadratic.

Trahtman implemented this algorihm in the freeware package TESTAS.
which can be found at (http:// www.cs.biu.ac.il/ trakht/syn.html).
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