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Abstract.

For x and y vertices of a connected graph G, let TG(x, y) denote the expected time before a

random walk starting from x reaches y. We determine, for each n > 0, the n-vertex graph G

and vertices x and y for which TG(x, y) is maximized. The extremal graph consists of a clique

on

⌊

2n + 1

3

⌋

(or

⌈

2n − 2

3

⌉

) vertices, including x, to which a path on the remaining vertices,

ending in y, has been attached; the expected time TG(x, y) to reach y from x in this graph is

approximately 4n3/27.
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Much attention has recently been focussed on the topic of random walks in graphs: see for

instance Aldous [1] and the five subsequent papers in that issue of the Journal of Theoretical

Probability. In Aleliunas et al. [4], random walks are used to establish the existence of short

universal sequences for traversing graphs; in Doyle and Snell [7] they are elegantly associated

with electrical networks; in Borre and Meissl [5] they are employed to estimate measurements

given by approximate differences. Aldous [2] gives many other contexts in which random walks

on graphs arise, and a valuable bibliography [3] compiled by the same author lists many more

references on the subject.

A random walk takes place on the vertices of a fixed connected graph G. When the walk

is at vertex x, the next step is to one of the neighbors of x, each neighbor chosen with equal

probability. The stationary state of the resulting Markov chain is easily computed, (see e.g. [4]),

from which we may deduce the simple but remarkable fact that in an infinite such walk, each

edge of the graph will be traversed the same proportion of the time; thus, the probability of being

at a particular vertex is proportional to its degree. It follows that the expected return time for

a vertex x, that is, the expected number of steps before a walk commencing at x first returns

to x, is equal to twice the number of edges of G divided by the degree of x. Unfortunately, the

more general expected hitting time, that is, the expected number of steps before a random walk

beginning at x first reaches a vertex y, is not so easy to calculate.

Extremal results for random-walk parameters have proven difficult to come by, and expected

hitting time is an example. Of course expected hitting time could be as small as 1 (if x has degree

1 and y is its neighbor), but it is not obvious what its maximum value might be in an n-vertex

graph. In [8] Lawler proved that this value could not be more than n3, but (correctly) suspected

that the constant factor could be improved. We believe the “maximum hitting time” problem

has occurred independently to many people, as it did to us; Lawler apparently heard it first from

Paul Erdős.

In this paper we find the n-vertex graphs maximizing the expected hitting time of a vertex

y from a fixed starting vertex x. We suspect that our graphs also maximize the cover time, i.e.,

the expected time (from x) to visit all vertices, but have not been able to prove this.

It will be useful at this point to establish some notation. For distinct vertices x and y of a

graph G, we define TG(x, y) to be the expected hitting time of y for a random walk on G starting

at x. For W a subset of the set V (G) of vertices of G, let TG(x, W ) be the expected time for a

random walk starting from x to reach some vertex of W . It turns out to be convenient for us

to consider an altered version of TG(x, y): for real M ≥ 0, define T M
G (x, y) ≡ TG(x, y) + Me(G),

where e(G) denotes the number of edges of the graph G. We shall actually find the graphs G on

n vertices (together with distinguished vertices x and y) maximizing T M
G (x, y) for all real M ≥ 0.

Of course our primary interest is in the case M = 0, but in the course of the proofs it will become
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necessary for us to consider non-zero, even non-integer, M .

For M ≥ 0, n ∈ N, we set T M (n) equal to the maximum of T M
G (x, y) over all graphs G on n

vertices and vertices x, y of G. Call a graph G on n vertices with distinguished vertices x and y

(n, M)-extremal if T M
G (x, y) = T M (n).

We now define a family of graphs which will turn out to include the (n, M)-extremal graphs.

For n, m ∈ N with 2 ≤ m < n, the n-vertex graph Lm
n consists of a clique on m vertices, including

the ‘start’-vertex x, and a path of length t = n − m with one end joined to one vertex z of the

clique other than x, and the other end of the path being the ‘target’-vertex y. See Figure 1. For

convenience, we define Ln
n to be the complete graph Kn on n vertices. For m = n/2 the graph

Lm
n appears in [8] (having been suggested by Erdős) and again in Chandra et al. [6] where it is

called a ‘lollipop graph’, and we shall find it convenient to broaden that term here to cover our

two-parameter class: a lollipop graph is a graph Lm
n , for 2 ≤ m ≤ n.

Figure 1. The lollipop graph Lm
n .

We shall shortly calculate the value of T M
G (x, y) for G = Lm

n a lollipop graph, but let us see

informally why we should expect it to be large. The random walk spends most of its time in the

large clique of the graph, taking on average m− 1 steps between visits to z. When the walk does

hit z, it only steps to the initial vertex of the path with probability 1/m. Having got as far as the

first vertex on the path, the probability that the walk reaches y before returning to z is still only

1/t. Thus the expected hitting time of y is roughly m2t. This is maximised, for fixed n = m + t,

by setting m = 2n/3: the value obtained is then about 4n3/27. It has been shown several times

(Aleliunas et al. [4], Lawler [8]) that T M (n) = O(n3): we shall show that the value attained by
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our lollipop graph is extremal. As M is increased, the (n, M)-extremal lollipop graph has more

and more of its vertices in the complete part of the graph, and if M ≥ n − 1, it turns out that

the complete graph is (n, M)-extremal.

Our result is as follows.

Theorem.

(i) If M > n − 1, the complete graph Kn is the only (n, M)-extremal graph.

(ii) If 0 ≤ M ≤ n − 1, then the lollipop graph Lm
n with m =

⌊

2n + M + 1

3

⌋

is (n, M)-extremal.

It is the only (n, M)-extremal graph, except when 2n + M + 1 is a multiple of 3, in which

case the choice m = 1

3
(2n + M − 2) also yields an (n, M)-extremal lollipop graph.

We define

f(n, M) =

{

TM
Kn

(x, y) (M ≥ n − 1)

TM
Lm

n
(x, y) (M ≤ n − 1, m =

⌊

2n+M+1

3

⌋

).

With this notation, the theorem says that T M
n = f(n, M). Note that if M = 0, then the

theorem states that the graph G maximizing TG(x, y) is a lollipop graph with as nearly as possible

2n/3 vertices in the complete part.

Before embarking on the proof of the theorem, we put in lemma form the result mentioned

above concerning return time. For any vertex x in a graph G, let TG(x, x) be the expected return

time to x, i.e., the average number of steps of a random walk between visits to x.

Lemma 1. Let x be a vertex of degree d(x) in a graph G. Then TG(x, x) = 2e(G)/d(x). �

Proof of the theorem. The first step in the proof is to evaluate the function f(n, M),

and to prove that the graphs claimed to be (n, M)-extremal are at least (n, M)-extremal among

lollipop graphs (i.e., no n-vertex lollipop graph G, other than those mentioned in the theorem,

has T M
G (x, y) ≥ f(n, M)).

In the complete graph Kn, the expected time for a random walk starting from x to reach a

distinct specified vertex v is just n − 1. One way to see this is to use Lemma 1: the expected

return time from v is exactly n, but a random walk from v consists of a step to some other vertex,

which may as well be x, followed by a random walk from x. Thus the expected hitting time of v

from x is one less than the expected return time from v.

Now consider a lollipop graph G = Lm
n . Since a walk from x to y must go via z, we have:

TG(x, y) = TG(x, z) + TG(z, y)

= m − 1 + TG(z, y).
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If the vertices of the path are labelled consecutively v0 = z, v1, . . . , vt−1, vt = y, where

t = n − m, then

TG(z, y) =

t
∑

i=1

TG(vi−1, vi)

=

t
∑

i=1

TG−{vi+1,...,vt}(vi−1, vi)

=

t
∑

i=1

(

TG−{vi+1,...,vt}(vi, vi) − 1
)

=
t
∑

i=1

(2e(G − {vi+1, . . . , vt}) − 1)

= 2t

(

m

2

)

+
t
∑

i=1

(2i − 1)

= tm(m − 1) + t2.

Thus

TM
Lm

n
(x, y) = tm(m − 1) + t2 + m − 1 + M

m(m − 1)

2
+ Mt. (∗)

We now check that the choice of m indicated in the theorem does indeed maximize the

quantity (∗), for fixed n and M and t = n − m.

We have

TM
Lm

n
− T M

Lm+1
n

=
[

tm(m − 1) − (t − 1)(m + 1)m
]

+
[

t2 − (t − 1)2
]

+
[

m − (m + 1)
]

+

[

M
m(m − 1)

2
− M

(m + 1)m

2

]

+
[

Mt − M(t − 1)
]

= m(m − 2t + 1) + (2t − 1) − 1 − Mm + M

= m(3m − 2n + 1) + 2n − 2m − 2 − M(m − 1)

= (m − 1)(3m − 2n − M + 2)

≥ 0 iff m ≥
1

3
(2n + M − 2).

So if M ≥ n − 1, the complete graph is extremal among lollipop graphs, otherwise the

maximum of (∗) is given by taking m equal to either

⌈

2n + M − 2

3

⌉

or

⌊

2n + M + 1

3

⌋

.

Thus if M ≥ n − 1, then f(n, M) = n − 1 + M
(

n
2

)

; whereas if M ≤ n − 1, then

f(n, M) =
m(m − 1)

2
(2n − 2m + M) + (n − m)(n − m + M) + m − 1,

where m is either of the integer values given above.
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This expression is a little too cumbersome for our purposes, and we now find some fairly

tight bounds for f(n, M) which do not involve evaluation of integer parts.

Let m =
2n + M + α

3
, with −2 ≤ α ≤ 1. Then

TM
Qm

n
=

(2n + M + α)(2n + M + α − 3)(2n + M − 2α)

54

+
(n − M − α)(n + 2M − α)

9
+

2n + M + α

3
− 1

=
(2n + M)3 − 3(2n + M)2

54
+

(n − M)(n + 2M)

9

}

K

+ (2n + M)

[

−α2 + 3α − 2α2

54
−

α

9
+

1

3

]

−
2α2(α − 3)

54
+

α2

9
+

α

3
− 1

= K +
(2n + M)

18
(−α2 − α + 6) −

α2(α − 6)

27
+

α

3
− 1

≤ K +
(2n + M)

18
·
25

4
−

13

27
.

It is easy to see that this quantity is minimized over this range of α at α = 1, so

K +
2

9
(2n + M) −

13

27
≤ f(n, M) ≤ K +

25

72
(2n + M) −

13

27
. (∗∗)

We shall also make use of a recurrence satisfied by f(n, M).

Lemma 2.

(i) If a vertex y has a unique neighbor y′ in a graph G, x is another vertex of G and M ≥ 0,

then T M
G (x, y) = T M+2

G−y (x, y′) + M + 1.

(ii) For M ≤ n − 1, f(n, M) = f(n − 1, M + 2) + M + 1.

Proof. (i) We have TG(x, y) = TG−y(x, y′)+TG(y′, y), and further TG(y′, y) = TG(y, y)−1 =

2e(G)− 1 = 2e(G− y) + 1. Thus T M
G (x, y) = TG−y(x, y′) + (M + 2)e(G− y) + M + 1, as desired.

(ii) Let G be (n, M)-extremal among n-vertex lollipop graphs. We know that y has a unique

neighbor, so from (i) we see that G − y must be (n − 1, M + 2)-extremal among (n − 1)-vertex

lollipop graphs. But we know that f(n, M) is the largest value of T M
G (x, y) for an n-vertex lollipop

graph, and similarly for f(n − 1, M + 2). �

We now only have to prove that every (n, M)-extremal graph is a lollipop graph. Our strategy

will be as follows. First we show that, in every (n, M)-extremal graph G, the neighborhood of y is

complete. We then proceed by induction on the number of vertices, considering two major cases.

In the case where y has a unique neighbor, we use Lemma 2(i) above. When y has more than

one neighbor (but less than n− 2: the case when y has n− 2 neighbors is dealt with separately),

we contract the neighborhood R(y) of y to get a lower bound on T M
G (x, y). Finally, we show that

this bound is always less than f(n, M).
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Lemma 3. Fix n and M and let G, x and y be chosen so as to maximize TG(x, y)+Me(G) over

n-vertex graphs. Then the neighborhood R(y) of y is complete.

Proof. Suppose not, and let a and b be non-adjacent neighbors of y in G. Let A be the graph

obtained from G by replacing the edge {a, y} by {a, b}, and similarly let B be obtained from G

by replacing {b, y} by {a, b}. We claim that

TG(x, y) < max (TA(x, y), TB(x, y)),

which, since G, A and B all have the same number of edges, would contradict the assumption.

Let S denote the set {a, b, y} in any of the three graphs G, A or B. The following quantities do

not depend on which of the three graphs is under consideration. They are defined symmetrically

in a and b.

T (x, S): expected time for a random walk from x to first hit S;

p(x, a): probability (starting from x) that the random walk hits a before any other vertex of S;

T (a, S): expected time for a random walk from a to next hit S, given that no edge inside S is

used (i.e., the walk starts out by leaving S);

p(a, a), p(a, b): probability (starting from a) that the random walk hits a (respectively, b) before

any other vertex of S, given that no edge inside S is used;

d(a): degree of a, not counting edges inside S.

We see that

T (x, y) = T (x, S) + p(x, a)T (a, y) + p(x, b)T (b, y),

and therefore it will suffice to prove that in one of A and B, say C,

TC(a, y) > TG(a, y) and TC(b, y) > TG(b, y).

In fact, we may assume without loss of generality that

1 + d(b)T (b, S)

d(b)p(b, y)
≤

1 + d(a)T (a, S)

d(a)p(a, y)
;

under this assumption, we will show that

TA(a, y) > TG(a, y) and TA(b, y) > TG(b, y).

We now calculate TG(a, y) from the various transition probabilities. Working in G, we have:

TG(a, y) =
1

d(a) + 1
+

d(a)

d(a) + 1

(

T (a, S) + p(a, a)TG(a, y) + p(a, b)TG(b, y)
)
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and

TG(b, y) =
1

d(b) + 1
+

d(b)

d(b) + 1

(

T (b, S) + p(b, a)TG(a, y) + p(b, b)TG(b, y)
)

so
(

1 + d(a) − d(a)p(a, a)
)

TG(a, y) = 1 + d(a)T (a, S) + d(a)p(a, b)TG(b, y)

and
(

1 + d(b) − d(b)p(b, b)
)

TG(b, y) = 1 + d(b)T (b, S) + d(b)p(b, a)TG(a, y).

Let D(a) = 1 + d(a) − d(a)p(a, a) and U(a) = 1 + d(a)T (a, S), with D(b) and U(b) defined

symmetrically. Note that our earlier assumption now translates as

U(b)d(a)p(a, y) ≤ U(a)d(b)p(b, y).

We now have

TG(a, y) =
D(b)U(a) + d(a)p(a, b)U(b)

D(a)D(b) − d(a)d(b)p(a, b)p(b, a)
,

TG(b, y) =
D(a)U(b) + d(b)p(b, a)U(a)

D(a)D(b) − d(a)d(b)p(a, b)p(b, a)
.

Let us repeat this calculation in the graph A. Here

TA(a, y) =
1 + TA(b, y)

d(a) + 1
+

d(a)

d(a) + 1

(

T (a, S) + p(a, a)TA(a, y) + p(a, b)TA(b, y)
)

and

TA(b, y) =
1

d(b) + 2
+

1 + TA(a, y)

d(b) + 2
+

d(b)

d(b) + 2

(

T (b, S) + p(b, a)TA(a, y) + p(b, b)TA(b, y)
)

so

D(a)TA(a, y) = U(a) + (1 + d(a)p(a, b))TA(b, y)

and

(D(b) + 1)TA(b, y) = (U(b) + 1) + (1 + d(b)p(b, a))TA(a, y),

and therefore

TA(a, y) =
(D(b) + 1)U(a) + (1 + d(a)p(a, b))(U(b) + 1)

D(a)(D(b) + 1) − (1 + d(a)p(a, b))(1 + d(b)p(b, a))

and

TA(b, y) =
D(a)(U(b) + 1) + (1 + d(b)p(b, a))U(a)

D(a)(D(b) + 1) − (1 + d(a)p(a, b))(1 + d(b)p(b, a))
.
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To show that TA(a, y)− TG(a, y) is positive, we observe that it is a positive multiple of

[

(D(b) + 1)U(a) + (1 + d(a)p(a, b))(U(b) + 1)
][

D(a)D(b) − d(a)d(b)p(a, b)p(b, a)
]

−
[

D(b)U(a) + d(a)p(a, b)U(b)
][

D(a)(D(b) + 1) − (1 + d(a)p(a, b))(1 + d(b)p(b, a))
]

=
[

U(a) + U(b) + 1 + d(a)p(a, b)
][

D(a)D(b) − d(a)d(b)p(a, b)p(b, a)
]

−
[

D(b)U(a) + d(a)p(a, b)U(b)
][

D(a) − 1 − d(a)p(a, b)− d(b)p(b, a)
]

> U(a)
[

D(b)d(a)p(a, b)− d(a)d(b)p(a, b)p(b, a)
]

− U(b)d(a)p(a, b)
[

D(a) − 1 − d(a)p(a, b)
]

≥ d(a)p(a, b)
[

U(a)d(b)(1− p(b, a) − p(b, b))
]

− U(b)d(a)2p(a, b)
[

1 − p(a, a) − p(a, b)
]

≥ 0,

using our asymmetrical assumption.

Further, TA(b, y)− TG(b, y) is a positive multiple of

[

D(a)(U(b) + 1) + (1 + d(b)p(b, a))U(a)
][

D(a)D(b) − d(a)d(b)p(a, b)p(b, a)
]

−
[

D(a)U(b) + d(b)p(b, a)U(a)
][

D(a)(D(b) + 1) − (1 + d(a)p(a, b))(1 + d(b)p(b, a))
]

=
[

D(a) + U(a)
][

D(a)D(b) − d(a)d(b)p(a, b)p(b, a)
]

−
[

D(a)U(b) + d(b)p(b, a)U(a)
][

D(a) − 1 − d(a)p(a, b)− d(b)p(b, a)
]

> D(a)
[

U(a)d(b)(1− p(b, a)− p(b, b))− U(b)d(a)(1− p(a, a)− p(a, b))
]

≥ 0

as desired, proving the lemma. �

We have shown that, in any (n, M)-extremal graph, the neighborhood R(y) of y is a clique.

In our lollipop graphs, R(y) consists either of y and one other vertex or of the whole graph: the

two extreme possibilities.

We need to show that any graph which is not a lollipop graph cannot be (n, M)-extremal:

the result will then follow by our calculations on lollipop graphs. Suppose this statement is false,

and let G (with distinguished vertices x and y) be an (n, M)-extremal graph, not a lollipop graph,

with a minimum number of vertices. It is easy to check that G must have at least 5 vertices.

We suppose first that r = |R| = 2, so that y has a unique neighbor v in G. Let G− = G− y.

By Lemma 2(i), we have

TM
G (x, y) = T M+2

G− (x, v) + M + 1.
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If G− with target-vertex v is not (n−1, M+2)-extremal, then we can replace G− by an (n−1, M+

2)-extremal graph, and attach y to the target-vertex of that graph, producing a graph showing

that G is not (n, M)-extremal, contrary to hypothesis. Thus G− is (n− 1, M + 2)-extremal, and

so a lollipop graph. Hence G is also a lollipop graph, again a contradiction. So r ≥ 3.

If r = n, then G is the lollipop graph Kn, and we are done. We shall also deal with the

case r = n − 1 separately before proceeding with the general case. Suppose then that y is

adjacent to all but one other vertex of G: clearly we may as well take x to be this vertex. If x

is adjacent to just s vertices of G, a calculation reveals that TG(x, y) = n + 1 −
2(n − s − 2)

n − 1
,

so T M
G (x, y) = M

(

n

2

)

− M(n − s − 1) + n + 1 +
2(n − s − 2)

n − 1
. For M ≥ 2, this is less than

TM
Kn

(x, y) = n − 1 + M
(

n
2

)

; for M ≤ 2, it is less than T M
Ln−1

n

(x, y) = n − 3 + (M + 2)
(

n−1

2

)

.

From now on, we may and shall assume that 3 ≤ r ≤ n − 2.

The next result is designed to give an upper bound on TG(x, y) in graphs where the size

of R(y) is in this intermediate range. For R a subset of the vertices of G, let G/R denote the

“quotient” graph obtained from G by contracting R to a single vertex (also denoted R) and

identifying any resulting multiple edges.

Lemma 4. Let x and y be vertices of a graph G such that R ≡ R(y) is a clique in G, and let

r = |R|. Then

TG(x, y) ≤ TG/R(x, R) +
4

r
e(G) − r + 1.

Proof. Certainly TG(x, R) ≤ TG/R(x, R), so it suffices to prove that

max
w∈R

TG(w, y) ≤
4

r
e(G) − r + 1.

Let w be a vertex in R maximizing TG(w, y), and suppose the degree of w in G is r + k − 1,

so w sends k edges out of R. Let G′ be the graph formed by removing from G the
(

r
2

)

edges inside

R.

We next consider the expected time from w to y given that the walk starts out from w by

leaving R. This is at most TG′(w, R) + max
u∈R

TG(u, y) ≤ TG′(w, w) + TG(w, y), and Lemma 1 tells

us that TG′(w, w) = 2e(G′)/k = 2
(

e(G) −
(

r
2

))

/k.

Thus

TG(w, y) ≤
1

r + k − 1






1 +

∑

u∈R

u6=z,y

(TG(u, y) + 1) + k

(

2
(

e(G) −
(

r
2

))

k
+ TG(w, y)

)






. (∗ ∗ ∗)
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What is TG(y, y)? On the one hand, by Lemma 1 it is 2e(G)/(r − 1): on the other it is
1

r − 1

∑

u∈R

u6=y

(TG(u, y) + 1). So

∑

u∈R

u6=w,y

(TG(u, y) + 1) = 2e(G) − TG(w, y) − 1,

and hence (∗ ∗ ∗) yields:

(r + k − 1)TG(w, y) ≤ 1 + 2e(G) − TG(w, y) − 1 + 2e(G) − r(r − 1) + kTG(w, y),

and therefore TG(w, y) ≤
4e(G)

r
− (r − 1), as claimed. �

From Lemma 4, we see that

TM
G (x, y) ≤ TG/R(x, R) + (M + 4/r)e(G) − r + 1

≤ TG/R(x, R) + (M + 4/r)

[

e(G/R) +

(

r

2

)

+ (n − r)(r − 2)

]

− r + 1,

since contracting R removes at most
(

r
2

)

edges inside r and at most (n − r)(r − 2) edges from

V − R to R (since y has no neighbors outside R).

Therefore

TM
G (x, y) ≤ T M+4/r(n − r + 1) + (M + 4/r)

((

r

2

)

+ (n − r)(r − 2)

)

− r + 1

≤ f(n − r + 1, M + 4/r) + (M + 4/r)

((

r

2

)

+ (n − r)(r − 2)

)

− r + 1,

by the minimality of G, and it is now sufficient to prove that this quantity is less than f(n, M).

Let

∆ = ∆(n, M, r) = f(n, M)− f(n− r + 1, M + 4/r)− (M + 4/r)

((

r

2

)

+ (n − r)(r − 2)

)

+ r − 1.

We shall show that ∆(n, M, r) > 0 for 0 ≤ M and 3 ≤ r ≤ n − 2.

The formula for f(n, M) depends on whether the proposed (n, M)-extremal graph is the

complete graph or not. Thus we have three cases to consider.

Case 1. M ≥ n − 1. In this case, f(n, M) = n − 1 + M
(

n
2

)

and f(n − r + 1, M + 4/r) =

n − r + (M + 4/r)
(

n−r+1

2

)

, and thus

∆(n, M, r) = 2(r − 1) + (M + 4/r)

[(

n

2

)

−

(

n − r + 1

2

)

−

(

r

2

)

− (n − r)(r − 2)

]

−
4

r

(

n

2

)

= 2(r − 1) + (M + 4/r)(n − r) − 2n(n − 1)/r

≥ 2(r − 1) + (n − 1 + 4/r)(n − r) − 2n(n − 1)/r ≡ Y (n, r).
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The quantity rY (n, r) = 2r2 − 6r + r(n− 1)(n− r)− 2n2 +6n is 0 if n = r, and we now show

that it is increasing in n for each fixed r ≥ 3. Indeed

∂

∂n
rY (n, r) = r(2n − r − 1) − 4n + 6

≥ 3(2n − 4) − 4n + 6

= 2n − 6 > 0

for n > r ≥ 3. Thus rY (n, r) > 0 for n > r ≥ 3, and hence ∆(n, M, r) > 0.

Case 2. n−1 ≥ M ≥ n−r−4/r. In this range, the complete graph Kn−r+1 is (n−r+1, M +

4/r)-extremal among lollipop graphs, so, as in Case 1,

∆(n, M, r) = f(n, M)− n + 2r − 1 − (M + 4/r)

((

n

2

)

− n + r

)

.

We now use Lemma 2 (f(n, M) = f(n − 1, M + 2) + M + 1 for M ≤ n − 1) repeatedly. In

each range n − 3(j − 1)− 1 ≥ M ≥ n − 3j − 1 (j ≥ 1), we apply this lemma j times to arrive at:

f(n, M) = f(n − j, M + 2j) + jM + j2 = (n − j − 1) + (M + 2j)

(

n − j

2

)

+ jM + j2.

Thus in each range,

∆(n, M, r) = Aj + M

[(

n − j

2

)

+ j −

(

n

2

)

+ n − r

]

,

where Aj is independent of M .

The quantity in square brackets is negative for each j ≥ 1, so ∆(n, M, r) decreases with M

over each range, and so over the entire range of M covered by this Case.

Case 3. M ≤ n − r − 4/r. In this final range, both values of f are given by non-complete

lollipop graphs. It seems that we need to estimate these values of f fairly precisely.

Lemma 5. If M + 4/r ≤ n − r, and 3 ≤ r ≤ n − 2, then

f(n, M)− f(n − r + 1, M + 4/r) >
1

9
(2n + M)(2n + M − 2r + 4/r)(r − 1 − 2/r) + M/2.

Proof. Recall (∗∗), which states that, for M ≤ n − 1,

f(n, M) =
(2n + M)3 − 3(2n + M)2

54
+

(n − M)(n + 2M)

9
+ g(n, M),

12



where
2

9
(2n + M) −

13

27
≤ g(n, M) ≤

25

72
(2n + M) −

13

27
.

We show first that

M/2 < W ≡
(n − M)(n + 2M)

9
+ g(n, M)−

(n − M − r + 1 − 4/r)(n + 2M − r + 1 + 8/r)

9
− g(n − r + 1, M + 4/r).

We have:

9W ≥ (n − M)(r − 1 − 8/r) + (n + 2M)(r − 1 + 4/r) − (r − 1 − 8/r)(r − 1 + 4/r)

+ 9

(

2

9
(2n + M) −

13

27

)

− 9

(

25

72
(2n + M) −

13

27

)

= n(2r − 2 − 4/r + 4 − 25/4) + M(r − 1 + 16/r + 2 − 25/8) − (r − 1 − 8/r)(r − 1 + 4/r)

≥ n(2r − 4/r − 17/4) + 5M − (r − 1 − 8/r)(r − 1 − 4/r).

For r = 3, each term is positive, and so 9W > 5M . For r ≥ 4:

9W − 5M ≥ n(r − 1 − 2/r) − (r − 1 − 2/r)2 > 0.

Thus W > 5M/9 ≥ M/2, as required.

So it is now sufficient to prove that

h(2n + M) − h(2n + M − 2r + 2 + 4/r) ≥
1

9
(2n + M)(2n + M − 2r + 4/r)(r − 1 − 2/r),

where

h(a) =
a3 − 3a2

54
.

Setting U = 2n − M and t = 2r − 2 − 4/r, we see that this is equivalent to proving:

h(U) − h(U − t) ≥
1

18
Ut(U − t − 2).

This is straightforward enough, since

54[h(U) − h(U − t)] = U3 − U3 + 3U2t − 3Ut2 + t3 − 3U2 + 3U2 − 6Ut + 3t2

= 3(U2t − Ut2 − 2Ut) + t2(t + 3)

≥ 3Ut(U − t − 2). �
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Recalling the definition of ∆(n, M, r), we see that it is now sufficient to prove:

1

9
(2n + M)(2n + M − 2r + 4/r)(r − 1 − 2/r) + M/2

− (M + 4/r)

((

r

2

)

+ (n − r)(r − 2)

)

+ r − 1 ≥ 0

for 3 ≤ r ≤ n − 2 and 0 ≤ M ≤ n − r − 4/r.

Now, the quantity above is easily seen to be at least

1

9
(2n + M)(2n + M − 2r + 4/r)(r − 1 − 2/r) − (M + 4/r)(r − 2)(n − r/2 + 1).

Dividing this through by r − 2, we obtain:

1

9
(2n + M)(2n + M − 2r + 4/r)(1 + 1/r) − (M + 4/r)(n− r/2 + 1),

which we denote by Z.

Over our current range of M , Z is decreasing with M , since

∂Z

∂M
=

1 + 1/r

9
(4n + 2M − 2r + 4/r) − (n − r/2 + 1)

≤
1 + 1/r

9
(6n − 4r − 4/r) − (n − r/2 + 1)

≤
4/3

9
· 6(n − r/2 + 1) − (n − r/2 + 1) < 0.

Hence Z is minimized for M = n − r − 4/r, when

Z =
1

9
(3n − r − 4/r)(3n − 3r)(1 + 1/r) − (n − r)(n − r/2 + 1)

=
n − r

3

[

(3n − r − 4/r)(1 + 1/r) − 3(n − r/2 + 1)
]

.

The expression inside the square brackets increases with n for fixed r, so is minimized if n = r+2.

Hence,

Z ≥
n − r

3

[

(2r + 6 − 4/r)(1 + 1/r) − 3(r/2 + 3)
]

=
n − r

3

[

r/2 − 1 + 2/r − 4/r2

]

=
n − r

3
(r/2 − 1)(1 + 4/r2) > 0.

This completes the proof of the theorem. �
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