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Abstract

ADMM, the alternating direction method of multipliers is a useful algorithm that solves
convex optimization problems by separating the problems into different part. And soft shrink-
age, an effective iterative method is applied to generate the result. This paper would evaluate
the application of ADMM and soft shrinkage on 2D signal reconstruction, including the choice
of perimeters and the error. The second part of this paper studies the weighted reconstruction
method: assuming there is a set of different measurements of an identical signal, but they are
subject to different random noise; how the previous method be improved.
Keywords: ADMM, soft shrinkage, signal reconstruction, perimeters, 2D, weighted reconstruc-
tion

1 Introduction
There are four main sections for this paper. The first section discusses how ADMM and soft
shrinkage are applied in the main algorithm. The second section analyzes the results generated
by different perimeters, and thus evaluate the effect of perimeter and how to optimize the choose
of perimeter. The third section introduce the algorithm for weighted reconstruction, and the final
section evaluate the result of weighted reconstruction.

2 Using ADMM for signal reconstruction
Suppose we have a measurement of signal g with some noise, we can have the following model (Uri
& Chen, 2011)[1]:

~f = ~g + ε (1)

in which vector ~f is the signal we want to recover and ε is some additional noise we want to
cut down. If we assume ε a random noise, then one way to solve the problem is

min
~f

1

2
||~f − ~g||22 + λ|∇~f | (2)

in which λ is an input constant and ∇~f is the gradient of the function. Here we apply ADMM to
solve the problem. Now, we rewrite (2) in as following function:

min
~f

1

2
||~f − ~g||22 + λ|~h| (3)

in which
~h = ∇~f (4)

We could further write the function as (Gabay & Mercie, 1976)[2]:

min
~f,~h

1

2
||~f − ~g||22 + λ|~h|+ α

2
||∇~f − ~h||22 (5)
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Assume we have a fixed ~h at this step, then we are to solve:

min
~f

1

2
||~f − ~g||22 +

α

2
||∇~f − ~h||22 = G(~f) (6)

in which α is an arbitrarily chosen value. There are many way to calculate ∇~f , in the primary
step, we apply total variance. In which:

∇~f =


f2 − f1
f3 − f2

...
fn − f1

 = D × ~f (7)

in which D is the matrix: 
−1 1 0 0 · · · 0
0 −1 1 0 · · · 0

...
1 0 · · · −1

 (8)

Here, if we want to minimize G(~(f)), this means:

∇G(~f) =


δG
δf1
δG
δf2
...
δG
δfn

 = 0 (9)

The expansion of this function is:

∇G(~f) = ~f − ~g + αDT (D~f − ~h) = 0 (10)

Thus
~f = (I + αDTD)−1(αDT~h+ ~g) (11)

On the other hand, once we have ~f , we can solve ~h by following formula:

min
~h

n∑
i=1

λ|~h|+ α

2
||~h−D~f ||22 (12)

The function is separable on each line, so that we could solve

min
~hi

λ|~hi|+
α

2
||~hi −D~fi||22 = T (~(h)) (13)

By taking the sun derivate towards hi each time:

|hi|′ =

{
1, for hi > 0
−1, for hi < 0

}
(14)

To generate the minimum value, we have

T (~h)′ = 0 (15)

thus on each line: {
λ+ α(hi − (Df)i) = 0, for hi > 0
−λ+ α(hi − (Df)i) = 0, for hi < 0

}
(16)

However, each time h should subject to restriction, so we set h equal to zero if the condition is
violated.

hi =


(Df)i − λ

α , for (Df)i >
λ
α

0, for − λ
α < (Df)i <

λ
α

(Df)i + λ
α , for (Df)i < − λ

α

 (17)

The algorithm is, starting with an initial guess of h, repeat (11) and (17) to recover f.
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Figure 1: λ=0.02,α=0.1

3 Results and discussion
The algorithm is applied on the reconstruction of steps functions. Each measurement are subject
to a random error uniformly distributed on (-0.02, 0.02);

3.1 Results subject to different α value
The following results (figure 1-6) shows the reconstruction of steps function with different α values.
It turns out when α is small, then recovered points are sticked on measurements. As α value
increases, the measurements are less trusted, the recover turned to be piecewise smooth. Another
observation is as α increases, the recover near the jump discontinuities less accuracy. The conclusion
is that, α represent the penalty assigned when solving the problems; in other words, how much the
measurements are trusted: the α value should proportional to the magnitude of error. By doing
experiments on the algorithm,

α ≈ 0.2× ε (18)

in which ε is the maximum percentage error gives best result.

3.2 Results subject to different λ value
The following results (figure 9- 13) shows the reconstruction of steps function with different λ
values. It turns out that, when λ is very small, the reconstructions stick on measurements. As
λ increases, the recover of the smooth part suddenly becomes smooth and stay constant, but the
recover near the jump loses accuracy. The explanation of this phenomena is in formula(17). notice
that h is the total variance vector. When hi ∈ (− λ

α ,+
λ
α ), it becomes zero. Here, suppose the are

two consecutive points a and b which are equal, but they are subject to noise thus become a′ and
b′. The gradient at a, |a′ − b′| < 2× εmax should be zero. So, if λ is too small, the fluctuation on
smooth region would be recovered as jump. And if λ is too large, the jump won’t be successfully
recovered because (− λ

α ,+
λ
α ) is large and hi becomes zero while the gradient is large. So we have

following formula for λ:

(−λ
α
,+

λ

α
) ∝ 2× εmax (19)

3.2.1 Results subject to different number of points

Three measurements with 40, 80, 120 points are generated. Figure 15-18 show the result and error
plot. The error does not change much for the recover of a steps function with different N.
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Figure 2: λ=0.02, α=0.2

Figure 3: λ=0.02, α=0.5
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Figure 4: λ=0.02, α=1.0

Figure 5: λ=0.02, α=1.5
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Figure 6: λ=0.02, α=3.0

Figure 7: λ=0.02, α=5.0
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Figure 8: error for different α

Figure 9: λ=0.01, α=4
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Figure 10: λ=0.02, α=4

Figure 11: λ=0.05, α=4
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Figure 12: λ=0.1, α=4

Figure 13: λ=0.2, α=4
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Figure 14: error for different λ

Figure 15: n=40
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Figure 16: n=80

Figure 17: n=120
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Figure 18: error for different N

4 Weighted reconstruction method
4.0.1 problem set

Assume instead of having a single measurement g1, we have a set of different measurements
g1, g2, ..., gm, those g are all signal of f subject to noise. Could we get a better result from this
set.(Gelb, 2017)[3]

4.1 A variance weighted attempt
According to result from previous part, the value α determines how much a point would be trust;
thus, a possible solution is: instead of assigning a fix α, we assign different α for each point of
the measurement. The magnitude of α is set depending on the relative accuracy of each point.
The algorithm is, first, using the original method to recover f1, f2, ..., fm, and then calculate the
variance at each point. So we have Vy = v1, v2, ..., vi, the variance at each recovered point. There
are four cases:
1. variance is large, and the total variance at the point(Pi − Pi+1) is small.
2. variance is small, and the total variance at the point(Pi − Pi+1) is small.
3. variance is small, and the total variance at the point(Pi − Pi+1) is large.
4. variance is large, and the total variance at the point(Pi − Pi+1) is large.
For case one, the reconstruction at this point is not precise, so set a larger αi value. For case
two, the reconstruction at this point is precise, so set a smaller αi value. For case 3 and case 4,
a large total variance at the point implies a jump discontinuity over there. Notice that at the
jump discontinuity, no matter whether the recovers at this point are precise or not, they are not
guaranteed to be accurate, so we choose a small α value here to ensure the jump is successfully
recovered. λi should also change so that λi

αi
is constant. In the weighted recover method, we change

(5) to

min
~f,~h

1

2
||~f − ~g||22 + |Λ~h|+ ||A(∇~f − ~h)||22 (20)

in which A is the diagonal matrix:
a1 0 0 0 · · · 0
0 a2 0 0 · · · 0

...
0 0 · · · an

 (21)
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Figure 19: newf1 vs f1

Here, set a threshold L for TV at a point:

ai =

{
α× V ari

V armedian
, for (Df)i ≤ L

0.1α, for (Df)i > L

}
(22)

and Λ is the diagonal matrix of λi to ensure λi

αi
= λ

α Applying the soft shrinkage method to (20),
the new iterative method is

~f = (I +DTATAD)−1(DTATA~h+ ~g) (23)

and (17).

5 result and discussion of weighted method
5.0.1 result in steps function

Here, a set of five measurements g1, ..., g5 are generated. Figure 19 shows both newf1, the result of
applying weighted method on g1, and f1, the recover of original method. Figure 20 is the error plot.
It turns out that recover from the weighted method is better than the original recover; however,
there is no guarantee that the weighted method gives better result on each single point because
the variance could carry wrong information. For example, a point that is not accurate but precise
would be trust more.

5.0.2 future research direction

The A matrix and Λ matrices in the weighted method are carrying informations about the accuracy
and jump discontinuity. So, it is worthy to investigate how to set some knowing character of a
function by changing those matrix. In addition, the regularization used in this paper is total
variance, it worthy to study the performance of using other regularization terms, for example, the
polynomial annihilation.
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Figure 20: error of newf1 vs f1
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