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Overview of Problem

Given a blurry image, or noisy signal, one can ”deblurr” the signal
to get a clearer picture.

• Signal: B (a measurement vector)

• Transform Matrix: A

• ”True Image”: f

Af = B is the equation to solve in order to get the true image.



Overview of Problem
Continued

Now, since we are constructing our own data, we can assume error
in our true equation, giving us

Af = B + ε.



Overview of Problem
Continued

Since A is an ill-posed matrix, we minimize f in order to generate
estimates of the true signal.

arg min
f
||Af − B||22 + λ||Lf ||1
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Fourier Coefficients Reconstruction
Toy Problem

Example

Imagine this piece-wise function for the interval [-π, π] :

f (x) =

{
1 −π ≤ x ≤ π
0 otherwise

We want to estimate this function.



Fourier Coefficients Reconstruction
Continued

Data had to be created by using a Fourier coefficients to simulate
a B measurement vector.

B =
1

2π

∫ π

−π
f (x)e−ikxdx

for k = −N...N



Fourier Coefficients Reconstruction
Continued

The largest k value determines the largest Fourier coefficient.
After constructing data from [−N,N], we can use the Discrete
Fourier Transform to construct the transform matrix A. Since we
are switching from continuous to discrete, we already know there is
going to be a certain amount of error in our reconstruction.



Fourier Coefficients Reconstruction
Continued

The Discrete Fourier Transform Matrix is constructed using the
equation below, where n = 2N + 1 and xj is the data point at the
j th point for j = 1...n. Also, k = −N...N:

A =
1

2n
f (xj )e

−ikxj

For j = 1 and j = n, those terms are
1

2
(

1

2n
f (xj )e

−ikxj )

This constructs an nxn matrix where n is equal to the total data
points we want to reconstruct.



Fourier Coefficients Reconstructions
Continued

To reconstruct the true coefficients from the original B vector, we
use the minimization:

arg min
f
||Af − B||22 + λ||f − fapprox .||2

Where λ is a parameter and fapprox . is the approximation of f
calculated as fapprox . = (e−ikxj )B for j = 1...n and k = −N...N



Fourier Coefficients Reconstruction
Reconstruction with normal coefficients
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Figure: Reconstruction of the function from the B vector



Fourier Coefficients Reconstruction
Continued

We know that the Fourier coefficient vector reconstructs the
function well, now we can add noise to multiple vectors. This
simulates more data being collected (the multi-measurement
vectors).
The minimization is the same as before but is done for each noisy
data vector i .

arg min
f i

||Af i − B i ||22 + λ||f i − f i
approx .||2

Where λ is a parameter, and f i
approx . is the approximation of f i

calculated as f i
approx . = (e−ikxj )B i for j = 1...n and k = −N...N



Fourier Coefficients Reconstruction
Reconstruction of all data vectors
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Figure: Reconstruction of the function from the 20 noisy data vectors



Fourier Coefficients Reconstruction
Continued

The optimal vector reconstruction out of all the data vector
reconstructions can be chosen by using a Distance matrix:

Dist(i , g) =

√√√√ n∑
k=1

(f i
k − f g

k )2

The optimal vector reconstruction is chosen by whichever row has
the lowest sum in the Distance matrix.Then that reconstruction is
the only one used from then on.



Fourier Coefficients Reconstruction
Continued

In order to adjust the optimal vector reconstruction using the other
reconstructions, the variance (V ) of each data point in the data
vectors is calculated.
Utilizing the variance, weights for each data point in the optimal
vector reconstruction can be applied by using this weight equation:

Wi =
1

Vi + ε

where ε = 1x10−12



Fourier Coefficients Reconstruction
Continued

These weights can be factored into the minimization problem. The
new minimization is:

arg min
f final

||Af final − Bopt.||22 + λ||f final − f opt.||1,W

Where λ is a parameter



Fourier Coefficients Reconstruction
Final Reconstruction
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Figure: Reconstruction of the function from the optimal data vector with
weighting



Fourier Coefficients Reconstruction
Conclusion

• More data vectors could be constructed

• More data points could be constructed

• The error could be adjusted to see how well the model does
with more noise
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Multiplicative Poisson Noise Reconstruction

Inconsistency in the deblurring model creates an additional model
error on our inverse problem. For example, instead of our original
inverse problem,

Af = B + ε,

we now look at

(A + C )f = B + ε

where C is an additive noise matrix supplement to the transform
matrix. In this case, we will assume C is a Poisson error
distribution matrix and the transform matrix A is a discrete
Fourier transform matrix. We will also assume that our Poisson
error distribution matrix has a mean of zero.



Multiplicative Poisson Noise Reconstruction
Obtaining MMV Constructions

Obtaining our estimated data vectors will look like

y j =
(
A + C j

)
f + ηj , j = 1, ..., J

where ηj are the preexisting Gaussian noise vectors.

`1 regularization will provide an effective means for reconstruction
of the true image given J noisy data vectors. We have the
following optimization problem to find our MMV constructions
using these estimated data vectors:

f̂
j

= arg min
g
||Ag − y j ||22 +

λ

2
||Lg ||1, j = 1, ..., J

where λ is the `1 regularization parameter and L is the 2nd order
polynomial annihilation transform.



Multiplicative Poisson Noise Reconstruction
Obtaining MMV Constructions

Figure: Five reconstructions, f̂
j
, j = 1, ..., 5, of true image f with

λ = 0.3, n = 50, m = 50, and J = 10.



Multiplicative Poisson Noise Reconstruction
Computing Variance

Next, we must compute the variance of Lf̂
j
, j = 1, ..., J, using

v̂i =
1

J

J∑
j=1

P2
i ,j −

(
1

J

J∑
j=1

Pi ,j

)2

, i = 1, ...N

where P is the matrix of J vectors approximating some sparse
feature of the underlying function f , defined as

P = [ Lf̂ 1 Lf̂ 2 ... Lf̂ J ],∈ RN×J .



Multiplicative Poisson Noise Reconstruction
Computing Variance

Figure: Variance graph of J reconstructions of true image f with
λ = 0.3, n = 50, m = 50, and J = 10.



Multiplicative Poisson Noise Reconstruction
Determining Weights

Next, from v̂i , we must determine the weights for the weighted `1
norm in the joint sparsity reconstruction. We calculate a vector of
weights greater than zero:

wi =


C

(
1− vi

maxi vi

)
, i /∈ I

1
C

(
1− vi

maxi vi

)
, i ∈ I

where I consists of i such that 1
J

∑J
j=1 P̃i ,j > τ . We choose τ so

that when I is satisfied, we assume an edge at xi , and that the
index i is part of support in the sparsity domain of f .



Multiplicative Poisson Noise Reconstruction
Determining Weights

Normalizing the polynomial annihilation transform matrix gives us

P̃ = [ P̃1 P̃2 ... P̃J ],∈ RN×J .

C we define as a weighting scalar that is the average `1 norm
across all measurements of the normalized sparsifying transform of
our measurements.

C =
1

J

J∑
j=1

N∑
i=1

P̃i ,j

This allows us to scale the weights according to the size of the
values in the sparsity domain.



Multiplicative Poisson Noise Reconstruction
Determining Weights

Figure: J corresponding sparsity vectors of our MMVs.



Multiplicative Poisson Noise Reconstruction
Detecting Edges using τ

Figure: Illustrating the threshold of τ on the graph of P̃ in order to
detect edges and ignore noise. We choose a τ to be less than the average
of the normalized PA transform. With our example, our MMVs’ P̃ means
range from 0.1892 ≤ µ ≤ 0.2366, so we choose our τ to be 0.15.



Multiplicative Poisson Noise Reconstruction
Determining Weights

Figure: Weights graph of J reconstructions of true image f with
λ = 0.3, n = 50, m = 50, J = 10, and a chosen τ of 0.15.



Multiplicative Poisson Noise Reconstruction
Choosing Optimal Data Vector

Next, we must find an optimal data vector ŷ that will enable us to
avoid “bad” information in our joint sparsity reconstruction. We
choose ŷ to be one whose corresponding measurements are nearest
to the majority of the other J data vectors. We will define this to
be the distance matrix D, which will look like

Di ,j = ||f̂ i − f̂ j ||2.

Our optimal data vector ŷ will correspond to the j∗th index that
solves

(i∗, j∗) = arg min
1≤i ,j≤J, i 6=j

Di ,j .

We are choosing the optimal column index j∗ for our final
reconstruction.



Multiplicative Poisson Noise Reconstruction
Choosing Optimal Data Vector

Figure: Construction of the distance matrix D with λ = 0.3, n = 50,
m = 50, and J = 10.



Multiplicative Poisson Noise Reconstruction
Final Reconstruction of True Image

Finally, using our newly obtained ŷ , we solve the jointly sparse,
weighted `1 minimization problem to conclusively reconstruct f :

ĝ = arg min
g∈RN

λ

2
||Lg ||1,w + ||Ag − ŷ ||22.

We are now weighting the `1 regularized polynomial annihilation
transform for optimal edge detection, and we are minimizing g for
ĝ with our optimal data vector.



Multiplicative Poisson Noise Reconstruction
Final Reconstruction of True Image

Figure: Final reconstruction ĝ of the true image f using `1 regularization
and with λ = 0.3, n = 50, m = 50, and J = 10.



Multiplicative Poisson Noise Reconstruction
Error

Figure: Error graph illustrating the accuracy of our final reconstruction
compared to the accuracy of our MMV measurements.

Using |||f̂ − f |||1, we determine that our MMV constructions have
an average error of approximately 3.32% from the true image.
Similarly, using |||ĝ − f |||1, we determine our final reconstruction
has an error of approximately 1.32%. Therefore, our final
reconstruction is more accurate than our MMV constructions.



Multiplicative Poisson Noise Reconstruction
Increasing Poisson Noise

Next, we want to test how much multiplicative noise the algorithm
can handle. Before, we dampened our Poisson noise by 50%. Now,
we test the algorithm with 100% of the Poisson noise.

Figure: MMV constructions
with λ = 0.3, n,m = 100,
and J = 10.

Figure: Final reconstruction
with λ = 0.3, n,m = 100,
and J = 10.



Multiplicative Poisson Noise Reconstruction
Increasing Poisson Noise

Figure: Error of MMV constructions compared to final reconstruction
with 100% of additive Poisson noise.

MMV Error = 4.01%
Final Reconstruction Error = 1.83%



Multiplicative Poisson Noise Reconstruction
Poisson Noise with Mean of 1

Conclusively, scaling up the Poisson error supplemented to our
transform matrix doesn’t greatly affect the accuracy of our
algorithm. Instead, we can try to manipulate the mean of the
Poisson distribution. Before, we were assuming the Poisson error
distribution matrix had a mean of zero. Now, we see what
happens when this matrix instead has a mean of 1. We maintain
the Poisson noise at 100%.

Figure: MMV constructions with
λ = 0.3, n,m = 100, and J = 10.

Figure: Final reconstruction with
λ = 0.3, n,m = 100, and J = 10.



Multiplicative Poisson Noise Reconstruction
Poisson Noise with Mean of 1

Figure: Error of MMV constructions compared to final reconstruction
with our Poisson noise having a mean of 1.

MMV Error = 78.91%
Final Reconstruction Error = 102.38%



Multiplicative Poisson Noise Reconstruction
Poisson Noise with Mean of 0.5

Figure: MMV constructions
with λ = 0.3, n,m = 100,
and J = 10.

Figure: Final reconstruction
with λ = 0.3, n,m = 100,
and J = 10.



Multiplicative Poisson Noise Reconstruction
Poisson Noise with Mean of 0.5

Figure: Error of MMV constructions compared to final reconstruction
with our Poisson noise having a mean of 0.5.

MMV Error = 51.85%
Final Reconstruction Error = 71.49%



Multiplicative Poisson Noise Reconstruction
Poisson Noise with Mean of 0.05

Figure: MMV constructions
with λ = 0.3, n,m = 100,
and J = 10.

Figure: Final reconstruction
with λ = 0.3, n,m = 100,
and J = 10.



Multiplicative Poisson Noise Reconstruction
Poisson Noise with Mean of 0.05

Figure: Error of MMV constructions compared to final reconstruction
with our Poisson noise having a mean of 0.05.

MMV Error = 10.12%
Final Reconstruction Error = 5.03%



Multiplicative Poisson Noise Reconstruction
Conclusions & Notes

• This method assumes we have well-sampled data (N = M).

• The mean of the multiplicative Poisson noise must be very
close to zero.

• As long as the mean of the Poisson noise is exactly equal to
zero, the noise will not significantly disrupt the algorithm.

• This method uses the 2nd order polynomial annihilation
transform. Higher orders of this method may yield more
accurate results.

• Preexisting Gaussian noise ηj is assumed to be a random
vector. Throughout this algorithm, it has been dampened by
50%.
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