

DARTMOUTH

Abstract

We study the lifting of linear systems on curves in polarized K3 surfaces and prove a bounded version of the Donagi–Morrison conjecture for rank 3 linear systems. Using these developments, and a study of Lazarsfeld–Mukai bundles, we prove that a polarized K3 surface of genus $q \leq 17$ is Brill–Noether special if and only if a curve in the polarization class is Brill-Noether special.

Brill–Noether Theory (Curves)

Let C be a curve and $A \in Pic(C)$ a line bundle. We say A is a g_d^r when $h^0(C, A) = 1$ r+1 and $\deg(A) = d$. The Clifford index of A is $\gamma(A) = d-2r$. The Clifford index of $C \text{ is } \gamma(C) := \min\{\gamma(A) | A \in \operatorname{Pic}(C), h^0(C, A), h^1(C, A) \ge 2\}.$

The Brill–Noether theorem states that when

$$\rho(g,r,d) = \underbrace{g}_{\text{genus}} - \underbrace{(r+1)}_{h^0(C,A)} \underbrace{(g-d+r)}_{h^0(C,\omega_C-A)} \ge 0$$

then C admits a g_d^r . Therefore $\gamma(C) \leq \lfloor \frac{g-1}{2} \rfloor$.

Moreover, if $\rho(g, r, d) < 0$ then a general curve of genus g has no g_d^r . A line bundle A with $\rho(A) < 0$ is called Brill-Noether special, and a curve admitting such a line bundle is also called Brill-Noether special.

Brill–Noether Theory (K3 surfaces)

Let (S, H) be a polarized K3 surface of genus g (degree 2g-2). That is, $H^2 = 2g-2$, and a smooth curve $C \in |H|$ has genus g.

Definition: [Mukai] (S, H) is Brill-Noether special if there is a nontrivial $J \neq H \in \operatorname{Pic}(S)$ such that

$$g - h^0(S, J)h^0(S, H - J) < 0.$$

Else (S, H) is called Brill–Noether general.

Proposition: If (S, H) is Brill–Noether special, then C is Brill–Noether special. **Theorem [4]:** If $Pic(S) = \mathbb{Z}H$, then $C \in |H|$ is Brill–Noether general. So if C is Brill–Noether special, then $\operatorname{rk}\operatorname{Pic}(S) \geq 2$.

In particular, Pic(S) admits a primitive embedding of the lattice

$$\begin{array}{cccc} H & L \\ \Lambda_{g,d}^r = & H \boxed{2g-2} & d \\ L & d & 2r-2 \end{array}$$

In the moduli space \mathcal{K}_g of polarized K3 surfaces of genus g, there is a Noether–Lefschetz divisor $\mathcal{K}_{q,d}^r$ parameterizing such polarized K3 surfaces.

Conjecture and Theorem

Brill–Noether special K3 conjecture: Let (S, H) be a polarized K3 surface of genus $g \ge 2$. Then (S, H) is Brill–Noether special if and only if a curve $C \in |H|$ is Brill-Noether special.

Strategy: Suppose that C admits a Brill–Noether special line bundle A. Then find a Donagi–Morrison lift $M \in Pic(S)$ of A and use M to find the required line bundle J making (S, H) Brill-Noether special.

Theorem [Auel-H.]: The conjecture holds in genus $2 \le g \le 17$

In genus ≥ 17 , similar techniques can prove the conjecture, however, additional results regarding lifts of Brill–Noether special line bundles are needed.

Brill-Noether Special K3 Surfaces

Asher Auel and Richard Haburcak

Dartmouth College

Lattice Restrictions

For a polarized K3 surface with $Pic(S) = \Lambda_{a,d}^r$ to exist, the Hodge index theorem implies

 $\Delta(g, r, d) := \operatorname{disc}(\Lambda_{a, d}^{r}) = 4(r - 1)$

Proposition [3]: The locus of Brill–Noether special K3 surfaces in \mathcal{K}_q is a union of the Noether–Lefschetz divisors $\mathcal{K}_{q,d}^r$ satisfying $2 \leq d \leq g-1$, $\Delta(g,r,d) < 0$, and $\rho(g, r, d) < 0.$

Lifting Brill–Noether Special Line Bundles

Let $A \in Pic(C)$ be a Brill-Noether special line bundle. We are interested in finding a lift of A to a line bundle $M \in Pic(S)$. We do this by studying the lifting of line bundles on polarized K3 surfaces.

Donagi–Morrison Conjecture [1, 6]: Let (S, H) be a polarized K3 surface and $C \in |H|$ be a smooth irreducible curve of genus ≥ 2 . Suppose A is a complete basepoint free g_d^r on C such that $d \leq g - 1$ and $\rho(g, r, d) < 0$. Then there exists a line bundle $M \in Pic(S)$ adapted to |H| such that

• |A| is contained in the restriction of |M| to C, and • $\gamma(M \otimes \mathcal{O}_C) \leq \gamma(A).$

The line bundle M is called a Donagi–Morrison lift of A.

Donagi and Morrison verified the Donagi–Morrison conjecture for r = 1, and Lelli-Chiesa verified it for r = 2 [1, 5] and when $\gamma(A) = \gamma(C)$ [6]. These lifting results prove the Brill–Noether special K3 conjecture when $\gamma(A) \leq \gamma(C)$.

Genus ≥ 14

In genus $g \ge 14$, there are Brill-Noether special line bundles with $\gamma(A) > \gamma(C)$. In genus 14, a general curve has Clifford index $\gamma(C) = 6$, however there are two Brill–Noether line bundles with $\gamma = 7$: g_{11}^2 and g_{13}^3 .

Lifting g_d^3 s

Theorem [2]: Let (S, H) be a polarized K3 surface of genus $g \neq 2, 3, 4, 8$, and $C \in |H|$ a smooth irreducible curve of Clifford index $\gamma(C)$. Then there is a constant $\kappa(\gamma(C), \operatorname{Pic}(S))$ such that if $d < \kappa$ then the Donagi–Morrison conjecture holds for any g_d^3 on C.

Proof Idea

Not every Donagi–Morrison lift M makes (S, H) Brill–Noether special!! Find new line bundle $K \in Pic(S)$.

	H	M	K
Η	2g - 2	e	K.F
M	e	2s - 2	$K.\Lambda$
K	K.H	K.M	K^2

Maybe some combination of H, M, and K will work!

$$1)(g-1) - d^2 < 0.$$

$$\overline{\overline{A}} \subseteq \operatorname{Pic}(S).$$

Lazarsfeld-Mukai Bundles

We define a bundle $F_{C,A}$ on S via the short exact sequence

$$0 \longrightarrow F_{C,A}$$

short exact sequence

$$0 \longrightarrow H^0(C, A)^{\vee}$$

on $C \subset S$, then:

•
$$rk = r + 1, c_1 = H = [0]$$

• If $\rho(A) < 0$, then $E_{C,A}$ is not stable

Proposition: Suppose $N \in Pic(S)$ is a globally generated line bundle and

is exact, with E stable. Then $M := \det E$ is a Donagi–Morrison lift of A.

Generalized Lazarsfeld-Mukai Bundles

E such that $h^2(S, E) = 0$ and either

(I) E is locally free and globally generated off finitely many points; or

(II) E is globally generated.

The Clifford index of E is $\gamma(E) := c_2(E) - 2(\operatorname{rk}(E) - 1)$. **Proposition:** When A and $\omega_C \otimes A^{\vee}$ are basepoint free, the quotient E := $E_{C,A}/N$ is a generalized Lazarsfeld–Mukai bundle of type (II).

•
$$\gamma(E_{C,A}) = d - 2r = \gamma(A)$$

• $\gamma(E) = \gamma(A) - M.H + C$

works!

We would like to thank Margherita Lelli-Chiesa for helpful conversations. The second author also thanks AGNES for funding participation in the conference

- [2] Asher Auel and Richard Haburcak, Maximal Brill–Noether loci via K3 surfaces, 2022.
- Research Notices **2015** (2014), no. 16, 7238–7257.

- 529-563.

 $\longrightarrow H^0(C, A) \otimes \mathcal{O}_S \xrightarrow{ev} \iota_*(A) \longrightarrow 0.$

Dualizing gives $E_{C,A} = F_{C,A}^{\vee}$ (the LM bundle associated to A on C) sitting in the

$\mathcal{O}_S \longrightarrow E_{C,A} \longrightarrow \iota_*(\omega_C \otimes A^{\vee}) \longrightarrow 0;$

The LM bundle $E_{C,A}$ is like a lift of A to a vector bundle on S.

Let $E_{C,A}$ be a LM bundle associated to a basepoint free line bundle A of type g_d^r

 $[C], c_2 = d$

• $E_{C,A}$ is globally generated off the base locus of $\iota_*(\omega_C \otimes A^{\vee})$

 $0 \to N \to E_{C,A} \to E \to 0$

Definition: A generalized Lazarsfeld – Mukai bundle is a torsion free coherent sheaf

 $+ M^2 + 2$ "=" $\gamma(A) - \gamma(M|_C)$

Genus ≤ 17 : Can assume $0 \leq \gamma(E) \leq 2$, and $E = E_{D,B}$ for a smooth irreducible curve D and line bundle B. Lift B to $K \in Pic(S)$. Taking J = M or J = M - K

Acknowledgments

References

[1] Ron Donagi and David R. Morrison, *Linear systems on K3-sections*, J. Differential Geom. **29** (1989), no. 1, 49–64.

[3] Francois Greer, Zhiyuan Li, and Zhiyu Tian, *Picard Groups on Moduli of K3 Surfaces with Mukai Models*, International Mathematics

[4] Robert Lazarsfeld, Brill-Noether-Petri without degenerations, Journal of Differential Geometry 23 (1986), no. 3, 299 – 307. [5] Margherita Lelli-Chiesa, Stability of rank-3 Lazarsfeld-Mukai bundles on K3 surfaces, Proc. Lon. Math. Soc. 107 (2013), no. 2, 451–479. [6] Margherita Lelli-Chiesa, Generalized Lazarsfeld-Mukai bundles and a conjecture of Donagi and Morrison, Adv. Math. 268 (2015), no. 2,

[7] Margherita Lelli-Chiesa, A codimension 2 component of the Gieseker–Petri locus, 2021, to appear J. Algebraic Geom.