

DARTMOUTH

Abstract

The Brill-Noether (BN) loci $\mathcal{M}_{a,d}^r$ parameterize curves of genus g admitting a line bundle of degree d and r+1 global sections, and when the BN number is negative, sit as proper subvarieties of the moduli space of genus g curves. We explain a strategy for distinguishing BN loci by studying the lifting of line bundles on curves on polarized K3 surfaces, which motivates a conjecture identifying the maximal Brill-Noether loci. Via an analysis of the stability of Lazarsfeld-Mukai bundles, we obtain new lifting results for line bundles of type g_d^3 which suffice to prove the maximal BN loci conjecture in genus 9 - 19, 22, and 23.

Brill–Noether Loci

The Brill-Noether theorem states that when $\rho(g, r, d) = g - (r+1)(g - d + r) \ge 0$, then every curve of genus g admits a line bundle of type g_d^r . When $\rho(g, r, d) < 0$, the Brill-Noether locus $\mathcal{M}_{q,d}^r$ is a proper subvariety of \mathcal{M}_q .

There are many containments among BN loci:

- $\mathcal{M}_{g,d}^r \subseteq \mathcal{M}_{g,d+1}^r$, and
- $\mathcal{M}_{q,d}^r \subseteq \mathcal{M}_{q,d-1}^{r-1}$ when $\rho(g, r-1, d-1) < 0$.

The expected maximal Brill-Noether loci are the $\mathcal{M}_{a,d}^r$, where for each r, d is maximal such that $\rho(g, r, d) < 0 \text{ and } \rho(g, r - 1, d - 1) \ge 0.$

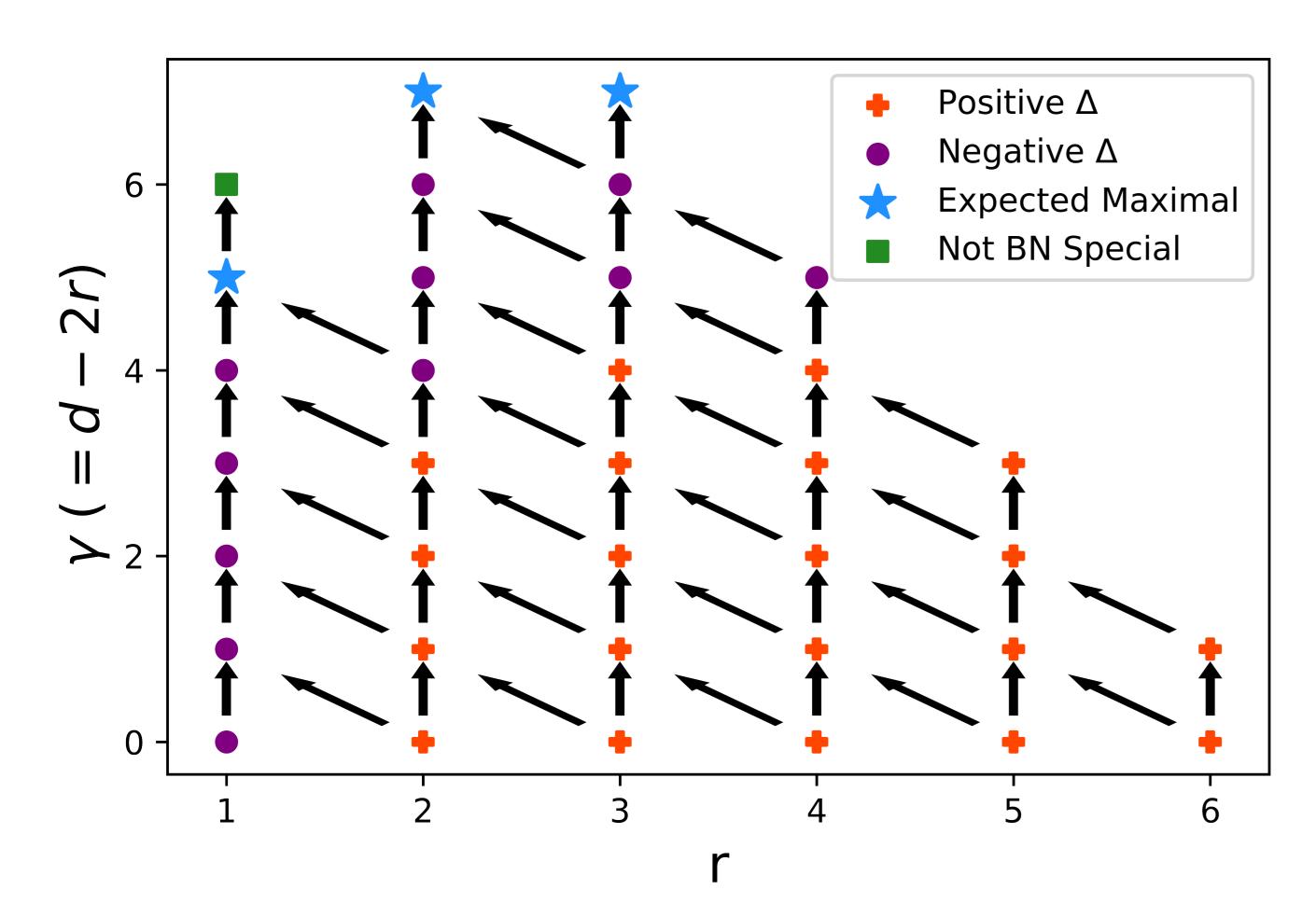


Figure 1. g_d^r s in genus 14. Arrows show containments of the corresponding Brill–Noether loci. The general Clifford index (γ) is 6.

Conjecture and Theorem

- Conjecture^{*}: In genus $q \ge 9$, the maximal Brill-Noether loci are the expected maximal ones.
- **Theorem:** The conjecture holds in genus 9 19, 22, and 23.

In genus 20, 21, and $g \ge 24$, we cannot show that some of the expected maximal Brill-Noether loci are not contained in the expected maximal $\mathcal{M}_{q,d}^4$. If we knew that $\operatorname{codim} \mathcal{M}_{q,d}^r = -\rho(g,r,d)$ for $\rho = -4$ and $\rho = -5$ in these cases, then the conjecture holds in genus 20 and 21.

Maximal Brill-Noether Loci via K3 Surfaces

Richard Haburcak

Dartmouth College

K3 Surfaces

The Noether–Lefschetz divisor \mathcal{K}_{ad}^r is the locus of polarized K3 surfaces (S, H) of genus g such that

$$\Lambda_{g,d}^r = H \begin{bmatrix} H \\ 2g - 2 \\ L \end{bmatrix} d$$

admits a primitive embedding in Pic(S) preserving H. **Proposition:** Let $(S, H) \in \mathcal{K}_{q,d}^r$ and let $C \in |H|$ be a smooth irreducible curve. If L and H - L are basepoint free, $r \geq 2$, and $0 < d \leq g - 1$, then $L \otimes \mathcal{O}_C$ is a g_d^r .

Distinguishing Brill–Noether Loci and Lifting q_d^r s

Our strategy is to show that a curve on a very general polarized K3 surface in $\mathcal{K}_{a,d}^r$ admits a g_d^r , but no other expected maximal $g_{d'}^{r'}$. We do this by studying the lifting of line bundles on polarized K3 surfaces.

Donagi-Morrison Conjecture [1, 3]: Let (S, H) be a polarized K3 surface and $C \in$ |H| be a smooth irreducible curve of genus ≥ 2 . Suppose A is a complete basepoint free g_d^r on C such that $d \leq g - 1$ and $\rho(g, r, d) < 0$. Then there exists a line bundle $M \in \operatorname{Pic}(S)$ adapted to |H| such that

• |A| is contained in the restriction of |M| to C, and

• $\gamma(M \otimes \mathcal{O}_C) \leq \gamma(A).$

Donagi and Morrison verified the conjecture for r = 1, and Lelli-Chiesa verified it for r = 2 [1, 2], she also verified it under a technical hypothesis that the pair (C, A) do not have any unexpected secant varieties up to deformation [3].

By considering curves $C \in \mathcal{M}_{ad}^r$ that lie on a K3 surface S with $\operatorname{Pic}(S) = \Lambda_{ad}^r$, and showing that $\langle H, M \rangle \not\subseteq \operatorname{Pic}(S)$, the Donagi–Morrison conjecture, and codimension considerations implies the maximal Brill-Noether loci conjecture up to genus 88. After that, there are exceptions, though we expect them to be sparse.

Genus 14

The expected maximal BN loci are $\mathcal{M}_{14,8}^1$, $\mathcal{M}_{14,11}^2$, and $\mathcal{M}_{14,13}^3$. Work of Lelli-Chiesa shows that $\mathcal{M}_{14,13}^3 \not\subseteq \mathcal{M}_{14,11}^2$. Recent work on Brill–Noether theory for curves of fixed gonality shows that $\mathcal{M}^1_{14,8}$ is maximal. Moreover, using Lelli-Chiesa's lifting results, it can be shown that $\mathcal{M}^2_{14,11}, \mathcal{M}^3_{14,13} \not\subseteq \mathcal{M}^1_{14,8}$. It remains to find a curve with a g^2_{11} that does not admit a g^3_{13} .

Lifting g_d^3 s

Theorem: Let (S, H) be a polarized K3 surface of genus $g \neq 2, 3, 4, 8$, and $C \in |H|$ a smooth irreducible curve of Clifford index $\gamma(C)$. Suppose that S has no elliptic curves and $d < \frac{3}{4}\gamma(C) + 6$, then the Donagi–Morrison conjecture holds for any g_d^3 on C.

We prove a slightly more refined version, replacing the hypothesis on non-existence of elliptic curves with an explicit dependence on the Picard lattice of S.

Proof Idea

Let A be a line bundle of type g_d^3 on $C \in |H|$. If $\rho(g, r, d) < 0$, then $E_{C,A}$ is not stable. To obtain a Donagi–Morrison lift of \ddot{A} , we want to show that $E_{C,A}$ has a maximal destabilizing subline bundle. To do this, we find lower bounds on d whenever $E_{C,A}$ has a different destabilizing subsheaf by analyzing the Harder–Narasimhan and Jordan–Hölder filtrations.

$$\frac{L}{d}$$

$$2r-2$$

Lazarsfeld-Mukai Bundles

We define a bundle $F_{C,A}$ on S via the short exact sequence

$$0 \longrightarrow F_{C,A}$$

sequence

$$0 \longrightarrow H^0(C, A)^{\vee} \otimes \mathcal{O}_S \longrightarrow E_{C, A} \longrightarrow \iota_*(\omega_C \otimes A^{\vee}) \longrightarrow 0;$$

The LM bundle $E_{C,A}$ is like a lift of A to a vector bundle on S.

- $c_1(E_{C,A}) = [C]$ and $c_2(E_{C,A}) = \deg(A)$;

- $\chi(F_{C,A} \otimes E_{C,A}) = 2(1 \rho(g, r, d)).$

 $\mathcal{O}_S(C) \otimes N^{\vee}.[3]$

Stability of Sheaves on K3 Surfaces

The slope of E is $\mu(E) = \frac{c_1(E).H}{\mathrm{rk}(E)}$. A torsion-free coherent sheaf is called slope stable or μ -stable $(\mu$ -semistable) if $\mu(F) < \mu(E)$ (respectively, $\mu(F) \leq \mu(E)$) for all coherent sheaves $F \subseteq E$ with $0 < \operatorname{rk}(F) < \operatorname{rk}(E).$

Every torsion-free coherent sheaf E has a unique Harder–Narasimhan filtration, which is an increasing filtration

$0 = HN_0(E) \subset HN_1(E) \subset \cdots \subset HN_\ell(E) = E,$

such that the factors $gr_i^{HN}(E) = HN_i(E)/HN_{i-1}(E)$ for $1 \le i \le \ell$ are torsion free semistable sheaves with $\mu(gr_1^{HN}(E)) > \mu(gr_2^{HN}(E)) > \cdots > \mu(gr_\ell^{HN}(E)).$ Likewise, every semistable sheaf E has a Jordan–Hölder filtration, which is an increasing filtration with stable factors all of slope $\mu(E)$.

I am grateful to my PhD advisor Asher Auel for discussions and for suggesting research that led to this project. I would also like to thank David Jensen and Nathan Pflueger for helpful conversations about Brill-Noether theory, Margherita Lelli-Chiesa for explaining aspects of her work, Isabel Vogt for pointing out useful facts about Brill-Noether loci, and John Voight for helpful conversations and computations.

- (1989), no. 1, 49–64.
- Math. Soc. **107** (2013), no. 2, 451–479.
- Morrison, Adv. Math. 268 (2015), no. 2, 529-563.

 $\longrightarrow H^0(C, A) \otimes \mathcal{O}_S \xrightarrow{ev} \iota_*(A) \longrightarrow 0.$

Dualizing gives $E_{C,A} = F_{C,A}^{\vee}$ (the LM bundle associated to A on C) sitting in the short exact

Let $E_{C,A}$ be a LM bundle associated to a basepoint free line bundle A of type g_d^r on $C \subset S$, then:

• $\operatorname{rk}(E_{C,A}) = r + 1$ and $E_{C,A}$ is globally generated off the base locus of $\iota_*(\omega_C \otimes A^{\vee})$; • $h^0(S, E_{C,A}) = h^0(C, A) + h^0(C, \omega_C \otimes A^{\vee}) = 2r + 1 + g - d = g - (d - 2r) + 1;$ • $h^1(S, E_{C,A}) = h^2(S, E_{C,A}) = 0, \ h^0(S, E_{C,A}^{\vee}) = h^1(S, E_{C,A}^{\vee}) = 0;$

LM bundles are useful for lifting g_d^r s. In fact, if there is a nontrivial $N \in \operatorname{Pic}(S)$ with $h^0(S, N) \neq 0$, $h^1(S,N) = 0$, and an injection $N \hookrightarrow E_{C,A}$, then the Donagi Morrison conjecture holds with L = 1

Acknowledgments

References

[1] Ron Donagi and David R. Morrison, *Linear systems on K3-sections*, J. Differential Geom. **29**

[2] Margherita Lelli-Chiesa, Stability of rank-3 Lazarsfeld-Mukai bundles on K3 surfaces, Proc. Lon.

[3] Margherita Lelli-Chiesa, Generalized Lazarsfeld-Mukai bundles and a conjecture of Donagi and