Brill–Noether special K3 surfaces

Richard Haburcak (Joint with Asher Auel)

Dartmouth College

AMS Fall Southeastern Sectional October 15th, 2022 Classical Brill–Noether theory studies linear systems on curves. We'll think of these as line bundles A on a curve C.

Call a line bundle A of type g_d^r if $h^0(C, A) = r + 1$ and deg(A) = d. In other words, |A| defines a map $C \to \mathbb{P}^r$ of degree d.

Definition

The Brill-Noether number is

$$\rho(g, r, d) = \underbrace{g}_{\text{genus}} - \underbrace{(r+1)}_{h^0(C,A)} \underbrace{(g-d+r)}_{h^0(C,\omega_C-A)}.$$

Theorem (Brill–Noether Theorem)

$$\dim\{g_d^r \text{ on } C\} \ge \rho(g, r, d).$$

When C is general,

$$\dim\{g_d^r \text{ on } C\} = \rho(g, r, d).$$

Thus when $\rho(g, r, d) < 0$, a general curve has **no** g_d^r .

Definition

A line bundle A with $\rho(A) < 0$ is called *Brill–Noether special*. A curve admitting a Brill–Noether special line bundle A is called *Brill–Noether special*. Otherwise, C is called *Brill–Noether general*.

Example: genus 2

Every genus 2 curve is hyperelliptic (has a g_2^1):

$$\rho(2,1,2) = 2 - (2 - 2 + 1) = 1.$$

Example: genus 3

Not every genus 3 curve is hyperelliptic (has a g_2^1):

$$\rho(3,1,2) = 3 - (2)(3 - 2 + 1) = -1.$$

Let (S, H) be a polarized K3 surface of genus g (degree 2g - 2). That is, $H^2 = 2g - 2$, and a smooth curve $C \in |H|$ has genus g. Let (S, H) be a polarized K3 surface of genus g (degree 2g - 2). That is, $H^2 = 2g - 2$, and a smooth curve $C \in |H|$ has genus g.

Definition (Mukai)

(S, H) is Brill–Noether special if there is a nontrivial $J \neq H \in Pic(S)$ such that

$$g - h^0(S, J)h^0(S, H - J) < 0.$$

Else (S, H) is called *Brill–Noether general*.

Let (S, H) be a polarized K3 surface of genus g (degree 2g - 2). That is, $H^2 = 2g - 2$, and a smooth curve $C \in |H|$ has genus g.

Definition (Mukai)

(S, H) is Brill–Noether special if there is a nontrivial $J \neq H \in Pic(S)$ such that

$$g - h^0(S, J)h^0(S, H - J) < 0.$$

Else (S, H) is called *Brill–Noether general*.

Theorem (Lazarsfeld)

If $Pic(S) = \mathbb{Z}H$, then $C \in |H|$ is Brill–Noether general.

So if C is Brill–Noether special, then $rk \operatorname{Pic}(S) \geq 2$.

What do the Picard groups of Brill–Noether special K3s look like?

Lattices

Let \mathcal{K}_g be the moduli space of primitively quasi-polarized K3 surfaces of genus g.

The Noether–Lefschetz divisor $\mathcal{K}_{g,d}^r \subset \mathcal{K}_g$ parameterizes K3 surfaces with a specific lattice polarization

$$\Lambda_{g,d}^{r} := \begin{array}{cc} H & L \\ \hline 2g-2 & d \\ L & d & 2r-2 \end{array} \subseteq \operatorname{Pic}(S).$$

$$\Delta(g,r,d) := \mathsf{disc}(\Lambda_{g,d}^r) = 4(r-1)(g-1) - d^2$$

Lattices

Let \mathcal{K}_g be the moduli space of primitively quasi-polarized K3 surfaces of genus g.

The Noether–Lefschetz divisor $\mathcal{K}_{g,d}^r \subset \mathcal{K}_g$ parameterizes K3 surfaces with a specific lattice polarization

$$\Lambda_{g,d}^{r} := \begin{array}{ccc} H & L \\ \hline 2g-2 & d \\ L & d & 2r-2 \end{array} \subseteq \operatorname{Pic}(S).$$

$$\Delta(g,r,d) := \operatorname{disc}(\Lambda_{g,d}^r) = 4(r-1)(g-1) - d^2$$

Proposition (Greer–Li–Tian)

The locus of Brill–Noether special K3 surfaces in \mathcal{K}_g is a union of the Noether–Lefschetz divisors $\mathcal{K}_{g,d}^r$ satisfying $2 \le d \le g - 1$, $\Delta(g, r, d) < 0$, and $\rho(g, r, d) < 0$.

Definition (Mukai)

(S, H) is Brill–Noether special if there is a nontrivial $J \neq H \in Pic(S)$ such that

$$g - h^0(S, J)h^0(S, H - J) < 0.$$

Else (S, H) is called *Brill–Noether general*.

Theorem

If (S, H) is Brill–Noether special, then a smooth $C \in |H|$ is Brill–Noether special.

Definition (Mukai)

(S, H) is Brill–Noether special if there is a nontrivial $J \neq H \in Pic(S)$ such that

$$g - h^0(S, J)h^0(S, H - J) < 0.$$

Else (S, H) is called *Brill–Noether general*.

Theorem

If (S, H) is Brill–Noether special, then a smooth $C \in |H|$ is Brill–Noether special.

Proof.

Restrict J to C.
$$\rho(J|_C) = g - h^0(C, J|_C)h^0(C, \omega_C - J|_C)$$
.
(Recall $\omega_C = H|_C$ by adjunction)

Theorem

If (S, H) is Brill–Noether special, then a smooth $C \in |H|$ is Brill–Noether special.

Question (Knutsen, Mukai)

Is the converse true?

Conjecture

Let (S, H) be a polarized K3 surface of genus g. Then (S, H) is Brill–Noether special if and only if a curve $C \in |H|$ is Brill–Noether special.

Theorem

If (S, H) is Brill–Noether special, then a smooth $C \in |H|$ is Brill–Noether special.

Question (Knutsen, Mukai)

Is the converse true?

Conjecture

Let (S, H) be a polarized K3 surface of genus g. Then (S, H) is Brill–Noether special if and only if a curve $C \in |H|$ is Brill–Noether special.

Theorem (Mukai, Knutsen)

The conjecture holds in genus $g \leq 10$, and g = 12.

Proved using Mukai models of K3s.

Theorem

If (S, H) is Brill–Noether special, then a smooth $C \in |H|$ is Brill–Noether special. (Recall $\omega_C = H|_C$)

Question (Knutsen, Mukai)

Is the converse true?

Conjecture

Let (S, H) be a polarized K3 surface of genus g. Then (S, H) is Brill–Noether special if and only if a curve $C \in |H|$ is Brill–Noether special.

Theorem (Auel–H.)

The conjecture holds in genus $g \leq 17$.

Conjecture

Let (S, H) be a polarized K3 surface. Then (S, H) is Brill–Noether special if and only if a curve $C \in |H|$ is Brill–Noether special.

Theorem (Auel–H.)

Conjecture holds in genus $g \leq 17$.

Idea

If C is Brill–Noether special, say it has some line bundle A with $\rho(A) < 0$, can we *lift* A to a line bundle $L \in Pic(S)$ so that L makes (S, H)Brill–Noether special?

Conjecture

Let (S, H) be a polarized K3 surface. Then (S, H) is Brill–Noether special if and only if a curve $C \in |H|$ is Brill–Noether special.

Theorem (Auel–H.)

Conjecture holds in genus $g \leq 17$.

Idea

If C is Brill–Noether special, say it has some line bundle A with $\rho(A) < 0$, can we *lift* A to a line bundle $L \in Pic(S)$ so that L makes (S, H)Brill–Noether special?

So can we always lift a Brill–Noether special line bundle (to make *S* Brill–Noether special)?

NO!

First counterexample by Donagi–Morrison (1989) which disproved a (different) conjecture by Harris and Mumford on the constancy of the gonality of curves on K3 surfaces.

What line bundles can we lift?

Lifting Line Bundles

Let $C \in |H|$ be a smooth irreducible curve of genus $g \ge 2$.

Theorem

- (Saint-Donat) Let A be a g_2^1 on C, then it lifts.
- (Reid) Let A be a g_d^1 on C, then if $d < \kappa(g)$, it lifts.

Lifting Line Bundles

Let $C \in |H|$ be a smooth irreducible curve of genus $g \ge 2$.

Theorem

- (Saint-Donat) Let A be a g_2^1 on C, then it lifts.
- (Reid) Let A be a g_d^1 on C, then if $d < \kappa(g)$, it lifts.

Theorem (Donagi–Morrison)

Let A be a g_d^1 with $\rho(A) < 0$. Then there is a line bundle $M \in Pic(S)$ such that

- M is adapted to H,
- $|A| \subseteq |M||_C$, and
- $\gamma(M|_{\mathcal{C}}) \leq \gamma(\mathcal{A}).$

(Constrains M^2 and H.M)

Clifford Index Interlude

The *Clifford index of a line bundle A* of type g_d^r on *C* is

$$\gamma(A) := d - 2r.$$

The Clifford index of a curve C is

$$\gamma(\mathcal{C}) := \min\left\{\gamma(\mathcal{A}) \mid h^0(\mathcal{C},\mathcal{A}), h^0(\mathcal{C},\omega_{\mathcal{C}}-\mathcal{A}) \geq 2\right\}$$

-		
-:	26	ĽΤ.
	u٩	

$$\underbrace{0 \leq}_{\text{Clifford}} \gamma(C) \leq \left\lfloor \frac{g-1}{2} \right\rfloor_{\text{BN Theory}}$$

Clifford Index Interlude

The *Clifford index of a line bundle A* of type g_d^r on *C* is

$$\gamma(A) := d - 2r.$$

The Clifford index of a curve C is

$$\gamma(\mathcal{C}) := \min\left\{\gamma(\mathcal{A}) \mid h^0(\mathcal{C}, \mathcal{A}), h^0(\mathcal{C}, \omega_{\mathcal{C}} - \mathcal{A}) \geq 2\right\}$$

Fact
$\underbrace{0 \leq}_{Clifford} \gamma(C) \underbrace{\leq \left\lfloor \frac{g-1}{2} \right\rfloor}_{BN \ Theory}$
• $\gamma(C) = 0 \iff C$ is hyperelliptic.
• $\gamma(\mathcal{C})=1\iff \mathcal{C}$ has a g_3^1 or a $g_5^2.$

R. Haburcak (Dartmouth)

15 / 38

Donagi-Morrison Conjecture

Suppose A is a complete basepoint free g_d^r on C with $d \le g - 1$ and $\rho(A) < 0$. Then there is a Donagi–Morrison lift M of A.

Donagi-Morrison Conjecture

Suppose A is a complete basepoint free g_d^r on C with $d \le g - 1$ and $\rho(A) < 0$. Then there is a Donagi–Morrison lift M of A.

Theorem

- (Donagi–Morrison) Conjecture holds for r = 1.
- (Lelli-Chiesa) Conjecture holds for r = 2.
- (Lelli-Chiesa) Conjecture holds if γ(A) = γ(C), except for finitely many explicit cases.

Conjecture

Let (S, H) be a polarized K3 surface. Then (S, H) is Brill–Noether special if and only if a curve $C \in |H|$ is Brill–Noether special.

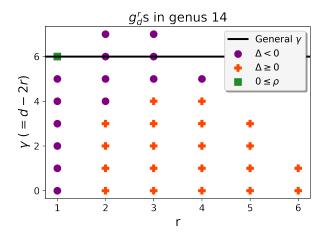
Theorem (Auel–H.)

Conjecture holds in genus ≤ 17 .

Slogan: Lifting results \implies Conjecture Are the previous lifting results enough?

Non-computing g_d^r s

In genus $g \ge 14$, there are Brill–Noether special line bundles A with $\gamma(A) > \left\lfloor \frac{g-1}{2} \right\rfloor \ge \gamma(C)$.



So we need more lifting results.

R. Haburcak (Dartmouth)

Let A be a complete basepoint free g_d^3 with $d \le g - 1$ on $C \subset S$ with $\rho(A) < 0$ and $d < \kappa(\gamma(C), \operatorname{Pic}(S))$. Then there is a Donagi–Morrison lift M of A.

> Maximal Brill–Noether loci via K3 surfaces (Auel–H., 2022) arxiv: 2206.04610

- Classical: Curves (ho < 0)
- Mukai: K3 surfaces $(J \in Pic(S)$ with " $\rho < 0$ ")
- Mukai: Fano 3-folds (anti-canonical section is Brill-Noether special)
- Auel: Cubic 4-folds (Hodge associated Brill-Noether special K3)

Question

What is a good notion of "Brill-Noether special" for hyperkähler varieties?

Genus 14

Theorem (Auel–H.)

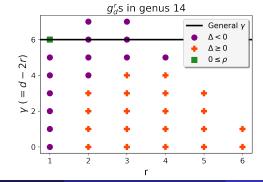
Let (S, H) be a polarized K3 of genus 14. Then (S, H) is Brill–Noether special if and only if $C \in |H|$ is Brill–Noether special.

Genus 14

Theorem (Auel–H.)

Let (S, H) be a polarized K3 of genus 14. Then (S, H) is Brill–Noether special if and only if $C \in |H|$ is Brill–Noether special.

We argue by the Clifford index of C. Suppose C is Brill–Noether special, having a line bundle A with Clifford index $\gamma(A)$.



R. Haburcak (Dartmouth)

Let (S, H) be a polarized K3 of genus 14. Then (S, H) is Brill–Noether special if and only if $C \in |H|$ is Brill–Noether special.

Let (S, H) be a polarized K3 of genus 14. Then (S, H) is Brill–Noether special if and only if $C \in |H|$ is Brill–Noether special.

- If $\gamma(C) < 6$, then $\gamma(A) < 6$.
 - We apply Lelli-Chiesa's lifting results. The Donagi-Morrison lift *M* makes (*S*, *H*) Brill-Noether special.

Let (S, H) be a polarized K3 of genus 14. Then (S, H) is Brill–Noether special if and only if $C \in |H|$ is Brill–Noether special.

- If $\gamma(C) < 6$, then $\gamma(A) < 6$.
 - We apply Lelli-Chiesa's lifting results. The Donagi-Morrison lift *M* makes (*S*, *H*) Brill-Noether special.
- If $\gamma(C) = \gamma(A) = 6$:
 - apply Lelli-Chiesa's lifting results. The Donagi–Morrison lift M makes (S, H) Brill–Noether special.

Let (S, H) be a polarized K3 of genus 14. Then (S, H) is Brill–Noether special if and only if $C \in |H|$ is Brill–Noether special.

- If $\gamma(C) < 6$, then $\gamma(A) < 6$.
 - We apply Lelli-Chiesa's lifting results. The Donagi-Morrison lift *M* makes (*S*, *H*) Brill-Noether special.
- If $\gamma(C) = \gamma(A) = 6$:
 - apply Lelli-Chiesa's lifting results. The Donagi–Morrison lift M makes (S, H) Brill–Noether special.
- If $\gamma(C) = 6$, and $\gamma(A) = 7$:
 - we apply the known r = 2 or r = 3 cases of the Donagi–Morrison conjecture.

Let (S, H) be a polarized K3 of genus 14. Then (S, H) is Brill–Noether special if and only if $C \in |H|$ is Brill–Noether special.

- If $\gamma(C) < 6$, then $\gamma(A) < 6$.
 - We apply Lelli-Chiesa's lifting results. The Donagi–Morrison lift *M* makes (*S*, *H*) Brill–Noether special.
- If $\gamma(C) = \gamma(A) = 6$:
 - apply Lelli-Chiesa's lifting results. The Donagi–Morrison lift M makes (S, H) Brill–Noether special.
- If $\gamma(C) = 6$, and $\gamma(A) = 7$:
 - we apply the known r = 2 or r = 3 cases of the Donagi–Morrison conjecture.
 - Sometimes the lift M does not make (S, H) Brill-Noether special!

Have
$$H \xrightarrow{M} M$$

 $M = 2s - 2$ $Pic(S).$

But M does not always make (S, H) Brill–Noether special.

So need another line bundle!

Obtain new line bundles from the construction of Donagi–Morrison lifts.

Using...

Lazarsfeld–Mukai Bundles

Lazarsfeld-Mukai Bundles

Let A be a basepoint free complete g_d^r on $\iota : C \hookrightarrow S$.

Definition

There is an exact sequence

$$0 \to F_{C,A} \to H^0(C,A) \otimes \mathcal{O}_S \to \iota_*A \to 0.$$

Dualizing gives

$$0 \to H^0(C,A)^{\vee} \otimes \mathcal{O}_S \to E_{C,A} \to \iota_*(\omega_C \otimes A^{\vee}) \to 0.$$

The vector bundle $E_{C,A}$ is the Lazarsfeld–Mukai bundle associated to A.

Lazarsfeld–Mukai Bundles

Let A be a basepoint free complete g_d^r on $\iota : C \hookrightarrow S$.

Definition

There is an exact sequence

$$0 \to F_{C,A} \to H^0(C,A) \otimes \mathcal{O}_S \to \iota_*A \to 0.$$

Dualizing gives

$$0 \to H^0(C,A)^{\vee} \otimes \mathcal{O}_S \to E_{C,A} \to \iota_*(\omega_C \otimes A^{\vee}) \to 0.$$

The vector bundle $E_{C,A}$ is the Lazarsfeld–Mukai bundle associated to A.

Properties of $E_{C,A}$

- rk = r + 1, $c_1 = H = [C]$, $c_2 = d$
- $E_{C,A}$ is globally generated off the base locus of $\iota_*(\omega_C \otimes A^{\vee})$
- If $\rho(A) < 0$, then $E_{C,A}$ is not stable

Proposition

Suppose $N \in Pic(S)$ is a globally generated line bundle and

$$0 \rightarrow N \rightarrow E_{C,A} \rightarrow E \rightarrow 0$$

is exact, with E stable. Then $M := \det E$ is a Donagi–Morrison lift of A.

Proposition

Suppose $N \in Pic(S)$ is a globally generated line bundle and

$$0 \rightarrow N \rightarrow E_{C,A} \rightarrow E \rightarrow 0$$

is exact, with E stable. Then $M := \det E$ is a Donagi–Morrison lift of A.

Even if M does not make (S, H) Brill–Noether special, E can give us more information.

Proposition

Suppose $N \in Pic(S)$ is a globally generated line bundle and

$$0 \to N \to E_{C,A} \to E \to 0$$

is exact, with E stable. Then $M := \det E$ is a Donagi–Morrison lift of A.

Even if M does not make (S, H) Brill–Noether special, E can give us more information.

Generalized LM bundles (gLM)

A generalized Lazarsfeld–Mukai bundle is a torsion free coherent sheaf E such that $h^2(S, E) = 0$ and either

- **0** E is locally free and globally generated off finitely many points; or
- \bigcirc E is globally generated.

Proposition

Suppose $N \in Pic(S)$ is a globally generated line bundle and

$$0 \to N \to E_{C,A} \to E \to 0$$

is exact, with E stable. Then $M := \det E$ is a Donagi–Morrison lift of A.

Definition

Let *E* be a gLM bundle. The Clifford index of *E* is $\gamma(E) := c_2(E) - 2(\mathsf{rk}(E) - 1)$.

Proposition

Suppose $N \in Pic(S)$ is a globally generated line bundle and

$$0 \rightarrow N \rightarrow E_{C,A} \rightarrow E \rightarrow 0$$

is exact, with E stable. Then $M := \det E$ is a Donagi–Morrison lift of A.

Definition

Let *E* be a gLM bundle. The Clifford index of *E* is $\gamma(E) := c_2(E) - 2(rk(E) - 1)$.

Facts

$$\gamma(E_{C,A}) = d - 2r = \gamma(A)$$

Proposition

Suppose $N \in Pic(S)$ is a globally generated line bundle and

$$0 \to N \to E_{C,A} \to E \to 0$$

is exact, with E stable. Then $M := \det E$ is a Donagi–Morrison lift of A.

Definition

Let *E* be a gLM bundle. The Clifford index of *E* is $\gamma(E) := c_2(E) - 2(\mathsf{rk}(E) - 1)$.

Facts

$$\gamma(E_{C,A}) = d - 2r = \gamma(A)$$

$$\gamma(E) = \gamma(A) - \gamma(M|_C)$$

R. Haburcak (Dartmouth)

Genus 14

Have
$$H \xrightarrow{H M} 26 e \subseteq \operatorname{Pic}(S).$$

 $M = 2s - 2$

Need another line bundle.

Have
$$H \xrightarrow{A = M} M \subseteq \operatorname{Pic}(S)$$
.
 $M = 2s - 2$

Remainder of the proof:

We can assume γ(E) ≤ 1. (Else C has a g^r_d with γ(g^r_d)<6, and we're done).

Have
$$H \xrightarrow{A = M} M \subseteq \operatorname{Pic}(S)$$
.
 $M = 2s - 2$

Remainder of the proof:

- We can assume $\gamma(E) \leq 1$. (Else C has a g_d^r with $\gamma(g_d^r) < 6$, and we're done).
- Using *E*, cook up a Lazarsfeld–Mukai bundle $E_{D,B}$ for some smooth irreducible curve $D \subset S$ with $\gamma(D) \leq 1$.

Have
$$H \xrightarrow{A = M} M \subseteq \operatorname{Pic}(S)$$
.
 $M = 2s - 2$

Remainder of the proof:

- We can assume $\gamma(E) \leq 1$. (Else C has a g_d^r with $\gamma(g_d^r) < 6$, and we're done).
- Using *E*, cook up a Lazarsfeld–Mukai bundle $E_{D,B}$ for some smooth irreducible curve $D \subset S$ with $\gamma(D) \leq 1$.

• Thus
$$D$$
 has a g_2^1 , a g_3^1 , or a g_5^2 .

Have
$$H \xrightarrow{A = M} \frac{M}{26 - e} \subseteq \operatorname{Pic}(S).$$

 $M = 2s - 2$

Remainder of the proof:

- We can assume $\gamma(E) \leq 1$. (Else C has a g_d^r with $\gamma(g_d^r) < 6$, and we're done).
- Using *E*, cook up a Lazarsfeld–Mukai bundle $E_{D,B}$ for some smooth irreducible curve $D \subset S$ with $\gamma(D) \leq 1$.

• Thus D has a
$$g_2^1$$
, a g_3^1 , or a g_5^2 .

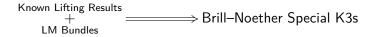
These lift to a line bundle $K \in Pic(S)!$

Have
$$\begin{array}{c|cccc} H & M & K \\ \hline H_{2g-2} & e & d \\ \hline M & e & 2s-2 & \{2,3,5\} \\ K & d & \{2,3,5\} & \{0,0,2\} \end{array} \subseteq {\sf Pic}(S).$$

Taking J = K or J = M - K shows that (S, H) is Brill–Noether special!

Theorem (Auel–H.)

Let (S, H) be a polarized K3 surface of genus $g \le 17$. Then S is Brill–Noether special if and only if a smooth irreducible curve $C \in |H|$ is Brill–Noether special.



Theorem (Auel–H.)

Let (S, H) be a polarized K3 surface of genus $g \le 17$. Then S is Brill–Noether special if and only if a smooth irreducible curve $C \in |H|$ is Brill–Noether special.

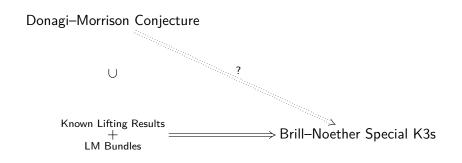
Donagi-Morrison Conjecture

U

Known Lifting Results + Brill–Noether Special K3s LM Bundles

Theorem (Auel–H.)

Let (S, H) be a polarized K3 surface of genus $g \le 17$. Then S is Brill–Noether special if and only if a smooth irreducible curve $C \in |H|$ is Brill–Noether special.



Questions?

(S, H) is a polarized K3 of genus g, and $C \in |H|$ is a smooth irreducible curve

Theorem (Auel–H.)

Let A be a complete basepoint free g_d^3 with $d \le g - 1$ on C with $\rho(A) < 0$ and $d < \kappa(\gamma(C), \operatorname{Pic}(S))$. Then there is a Donagi–Morrison lift M of A.

(S, H) is a polarized K3 of genus g, and $C \in |H|$ is a smooth irreducible curve

Theorem (Auel–H.)

Let A be a complete basepoint free g_d^3 with $d \le g - 1$ on C with $\rho(A) < 0$ and $d < \kappa(\gamma(C), \operatorname{Pic}(S))$. Then there is a Donagi–Morrison lift M of A.

The Lazarsfeld–Mukai bundle $E_{C,A}$ has rk $E_{C,A} = 4$, and is unstable.

(S, H) is a polarized K3 of genus g, and $C \in |H|$ is a smooth irreducible curve

Theorem (Auel–H.)

Let A be a complete basepoint free g_d^3 with $d \le g - 1$ on C with $\rho(A) < 0$ and $d < \kappa(\gamma(C), \operatorname{Pic}(S))$. Then there is a Donagi–Morrison lift M of A.

The Lazarsfeld–Mukai bundle $E_{C,A}$ has rk $E_{C,A} = 4$, and is unstable.

Expanding the Harder–Narasimhan and Jordan–Hölder filtrations of $E_{C,A}$, we obtain a *terminal filtration*

$$0 \subset E_1 \subset \cdots \subset E_4 = E_{C,A}$$

where the quotients are stable.

Proposition

Suppose $N \in Pic(S)$ is a globally generated line bundle and

$$0 \to N \to E_{C,A} \to E \to 0$$

is exact, with E stable. Then $M := \det E$ is a Donagi–Morrison lift of A.

Want the terminal filtration of $E_{C,A}$ to look like

$$0 \subset N \subset E_{C,A}$$
 (type $1 \subset 4$)

for a line bundle N.

"Theorem"

If the terminal filtration of $E_{C,A}$ is not of type $1 \subset 4$, then $c_2(E_{C,A}) = d \gg 0$.

Idea

Depending on the filtration type,

 $c_2(E_{C,A}) = c_2 \text{ terms } + c_1.c_1' \text{ terms} \geq \kappa$

We bound the c_2 terms using the dimension of stable sheaves with given Mukai vector, and the products of c_1 terms using slope arguments.

Thus when $c_2(E_{C,A}) = d < \kappa(\gamma(C), \text{Pic}(S))$, we only have a filtration of type $1 \subset 4$, and we have a Donagi–Morrison lift!

Thank You!

Questions?