

DARTMOUTH

Abstract

We answer a question of Mukai and Knutsen on polarized K3 surfaces with a Brill-Noether special curve. Using recent developments in the study of lifting linear systems on curves in polarized K3 surfaces, a bounded version of the Donagi–Morrison conjecture, and a study of Lazarsfeld–Mukai bundles, we prove that a polarized K3 surface of genus $g \leq 19$ is Brill–Noether special if and only if a curve in the polarization class is Brill-Noether special.

Brill–Noether Theory (Curves)

Let C be a curve and $A \in Pic(C)$ a line bundle. We say A is a g_d^r when $h^0(C,A) = r+1$ and $\deg(A) = d$. The Clifford index of A is $\gamma(A) = d-2r$. The Clifford index of C is $\gamma(C) := \min\{\gamma(A) | A \in \operatorname{Pic}(C), h^0(C, A), h^1(C, A) \ge 2\}.$

The Brill–Noether theorem states that when

$$\rho(g, r, d) = \underbrace{g}_{\text{genus}} - \underbrace{(r+1)}_{h^0(C, A)} \underbrace{(g-d+r)}_{h^0(C, \omega_C - A)} \ge 0$$

then C admits a g_d^r . Therefore $\gamma(C) \leq \left|\frac{g-1}{2}\right|$.

Moreover, if $\rho(g, r, d) < 0$ then a general curve of genus g has no g_d^r . A line bundle A with $\rho(A) < 0$ is called Brill-Noether special, and a curve admitting such a line bundle is also called Brill-Noether special.

Brill–Noether Theory (K3 surfaces)

Let (S, H) be a polarized K3 surface of genus g (degree 2g-2). That is, $H^2 = 2g-2$, and a smooth curve $C \in |H|$ has genus g.

Definition: [Mukai] (S, H) is Brill-Noether special if there is a nontrivial $M \neq H \in \operatorname{Pic}(S)$ such that

$$h - h^0(S, M)h^0(S, H - M) < 0.$$

Else (S, H) is called Brill–Noether general.

Proposition: If (S, H) is Brill–Noether special, then C is Brill–Noether special. **Proof:** Let $M \in \operatorname{Pic}(S)$ make (S, H) Brill-Noether special. Then $M|_C \in \operatorname{Pic}(C)$ is Brill-Noether special.

Theorem [6]: If $Pic(S) = \mathbb{Z}H$, then $C \in |H|$ is Brill–Noether general.

In particular, Pic(S) admits a primitive embedding of the lattice [3, 4]

$$\Lambda_{g,d}^r = H \begin{bmatrix} 2g - 2 & d \\ L & d & 2r - 2 \end{bmatrix}$$

In the moduli space \mathcal{K}_g of polarized K3 surfaces of genus g, there is a Noether–Lefschetz divisor $\mathcal{K}_{g,d}^r$ parameterizing such polarized K3 surfaces.

Conjecture and Theorem

Brill–Noether special K3 conjecture: Let (S, H) be a polarized K3 surface of genus $g \ge 2$. Then (S, H) is Brill–Noether special if and only if a curve $C \in |H|$ is Brill-Noether special.

Strategy: Suppose that C admits a Brill–Noether special line bundle A. Then find a Donagi–Morrison lift $M \in Pic(S)$ of A making (S, H) Brill–Noether special.

Theorem [H.]: The conjecture holds in genus $2 \le g \le 19$

In genus ≥ 20 , we show that a Bounded Donagi–Morrison conjecture implies the Brill–Noether special K3 conjecture.

Brill-Noether Special K3 Surfaces

Richard Haburcak Dartmouth College

Lifting Brill–Noether Special Line Bundles

Let $A \in Pic(C)$ be a Brill-Noether special line bundle. We are interested in finding a lift of A to a line bundle $M \in Pic(S)$.

Donagi–Morrison Conjecture [1, 8]: Let (*S*, *H*) be a polarized K3 surface and $C \in |H|$ be a smooth irreducible curve of genus ≥ 2 . Suppose A is a complete basepoint free g_d^r on C such that $d \leq q-1$ and $\rho(q,r,d) < 0$. Then there exists a line bundle $M \in \operatorname{Pic}(S)$ adapted to |H| such that

• |A| is contained in the restriction of |M| to C, and • $\gamma(M \otimes \mathcal{O}_C) \leq \gamma(A).$

In particular, $M.H \ge d$. The line bundle M is called a Donagi–Morrison lift of A. Donagi and Morrison verified the Donagi–Morrison conjecture for r = 1, and Lelli-Chiesa verified it for r = 2 [1, 7] and when $\gamma(A) = \gamma(C)$ [8]. These lifting results prove the Brill–Noether special K3 conjecture when $\gamma(A) \leq \gamma(C)$.

Proposition: Suppose $N \in Pic(S)$ is a globally generated line bundle and

 $0 \to N \to E_{C,A} \to E \to 0$

is exact, with E stable. Then $M := \det E$ is a Donagi–Morrison lift of A.

Strong Donagi–Morrison Conjecture [4]: Let (*S*, *H*) be a polarized K3 of genus g and A a complete basepoint free g_d^r on $C \in |H|$ with $\rho(g, r, d) < 0$. Then there is a nontrivial globally generated line bundle $N \subset E_{C,A}$ with $E_{C,A}/N$ stable.

By the Proposition above, this implies the Donagi–Morrison conjecture.

Counterexample in genus 19

Let S be a K3 surface of genus 19 with $Pic(S) = \Lambda_{19,16}^4$. Curves $C_1 \in |H - L|$ and $C_2 \in |L|$ have generic gonality and are Brill-Noether general. Let E_i be the Lazarsfeld-Mukai bundles of the gonality pencils on C_i , and let $E = E_1 \oplus E_2$, which is the Lazarsfeld–Mukai bundle of a g_{17}^3 on $C \in |H|$.

It can be shown that E has a filtration of type $0 \subset \operatorname{rk} 2 \subset E$, but no injective map from a nontrivial line bundle. Thus the g_{17}^3 does not lift to a linear system on S. However, in this example, C does not have generic Clifford index. In fact, $\gamma(C) \le 8.$

Modified Donagi–Morrison conjecture

Bounded Strong Donagi-Morrison Conjecture [4]: There is a bound β depending on C and S such that if $d < \beta$, then the Strong Donagi–Morrison conjecture holds. This has been proven for r = 2 by Lelli-Chiesa [7] and for r = 3 [2].

Proof Idea

Show that the Donagi-Morrison lift of A makes (S, H) Brill-Noether special! In particular, find restrictions on $M = \det(E)$.

$$0 \longrightarrow F_{C,A} \longrightarrow$$

short exact sequence

$$0 \longrightarrow H^0(C, A)^{\vee}$$

on $C \subset S$, then:

•
$$rk = r + 1, c_1 = H = [C$$

• If $\rho(A) < 0$, then $E_{C,A}$ is not stable

Restrictions on Lifts from Stable Quotients

Let A be a Brill-Noether special line bundle on $C \in |H|$, and assume the Strong Donagi-Morrison conjecture. Let $E = E_{C,A}/N$ be stable. We would like to show that $M = \det(E)$ makes (S, H) Brill-Noether special. Let $M^2 = 2r' - 2$ and M.H = d'.

Lemma: We may assume $\gamma(A) > \gamma(C) = \left| \frac{g-1}{2} \right|$.

- r' > r
- " $\gamma(M)$ " := $d' 2r' \leq \gamma(A)$
- $\rho(g, r', d') \le \rho(g, r, d) < 0$

Theorem: $\rho(g, r', d') < 0.$

special K3 conjecture.

Hence M makes (S, H) Brill–Noether special.

sponsors of GAel XXX for support to attend.

- [2] Asher Auel and Richard Haburcak, Maximal Brill–Noether loci via K3 surfaces, 2022.
- Research Notices 2015 (2014), no. 16, 7238-7257. [4] Richard Haburcak, Curves on Brill–Noether special K3 surfaces, 2023.

- [8] Margherita Lelli-Chiesa, Generalized Lazarsfeld-Mukai bundles and a conjecture of Donagi and Morrison, Adv. Math. 268 (2015), no. 2, 529-563.

Lazarsfeld-Mukai Bundles

We define a bundle $F_{C,A}$ on S via the short exact sequence

 $\longrightarrow H^0(C, A) \otimes \mathcal{O}_S \xrightarrow{ev} \iota_*(A) \longrightarrow 0.$

Dualizing gives $E_{C,A} = F_{C,A}^{\vee}$ (the LM bundle associated to A on C) sitting in the

$\mathcal{O}_S \longrightarrow \mathcal{O}_S \longrightarrow \mathcal{U}_*(\omega_C \otimes A^{\vee}) \longrightarrow 0;$

The LM bundle $E_{C,A}$ is like a lift of A to a vector bundle on S.

Let $E_{C,A}$ be a LM bundle associated to a basepoint free line bundle A of type g_d^r

C], $c_2 = d$ • $E_{C,A}$ is globally generated off the base locus of $\iota_*(\omega_C \otimes A^{\vee})$

Proof: The lifting results of Knutsen [5] and Lelli-Chiesa [8] suffice to show that (S, H) is Brill-Noether special when $\gamma(A) = \gamma(C) \leq \left|\frac{g-1}{2}\right|$.

We study restrictions on $c_2(E)$ and M coming from stability of E and show that

Theorem: The Strong Donagi–Morrison conjecture implies the Brill–Noether

Proof: As $h^2(S, M) = h^2(S, N) = 0$, $h^0(S, M) \ge r' + 1$ and $h^0(S, H - M) \ge g - d' + r'$.

Acknowledgments

We would like to thank Asher Auel, Margherita Lelli-Chiesa, and Andreas Leopold Knutsen for helpful conversations. We also thank the

References

[1] Ron Donagi and David R. Morrison, *Linear systems on K3-sections*, J. Differential Geom. **29** (1989), no. 1, 49–64.

Francois Greer, Zhiyuan Li, and Zhiyu Tian, Picard Groups on Moduli of K3 Surfaces with Mukai Models, International Mathematics

[5] Andreas Leopold Knutsen, On kth-order embeddings of K3 surfaces and Enriques surfaces, Manuscripta Math. 104 (2001), no. 2, 211–237 [6] Robert Lazarsfeld, Brill-Noether-Petri without degenerations, Journal of Differential Geometry 23 (1986), no. 3, 299 – 307.

[7] Margherita Lelli-Chiesa, Stability of rank-3 Lazarsfeld-Mukai bundles on K3 surfaces, Proc. Lon. Math. Soc. 107 (2013), no. 2, 451–479.

[9] Margherita Lelli-Chiesa, A codimension 2 component of the Gieseker–Petri locus, 2021, to appear J. Algebraic Geom.