Brill-Noether special cubic fourfolds of discriminant 26

Richard Haburcak (Joint with Asher Auel)
Dartmouth College
AMS Spring Central Sectional
April $16^{\text {th }}, 2023$

Special cubic fourfolds

Let \mathcal{C} be the 20 -dimensional moduli space of smooth cubic fourfolds $X \subset \mathbb{P}^{5}$.

Let X be a cubic fourfold, we denote by

$$
A(X):=H^{2,2}(X) \cap H^{4}(X, \mathbb{Z})
$$

the lattice of algebraic cycles.
Definition
X is special if $\operatorname{rk} A(X) \geq 2$.
That is, X contains an algebraic surface T not homologous to a complete intersection.

Hassett divisors

The special cubic fourfolds are a union of divisors Hassett \mathcal{C}_{d} of cubic fourfolds such that $A(X)$ admits a primitive embedding preserving h^{2} of a lattice of discriminant d.
\mathcal{C}_{d} is nonempty if $d>6$ and $d \equiv 0$ or $2(\bmod 6)$. (e.g., $8,12,14,18,20$, $24,26, \ldots$)

Labelled cubic fourfolds

More generally, one can consider lattice polarized cubic fourfolds.

Definition

Let Λ be a positive definite lattice with a distinguished element $h^{2} \in \Lambda$ of norm 3 .

A Λ-polarized cubic fourfold, (X, Λ), is a cubic fourfold X together with a fixed primitive isometric embedding $\Lambda \hookrightarrow A(X)$ preserving h^{2}.

Let \mathcal{C}_{Λ} denote the moduli space of Λ-polarized cubic fourfolds.

By work of Laza and Looijenga, \mathcal{C}_{Λ} is non-empty if and only if Λ admits a primitive embedding into $H^{4}(X, \mathbb{Z})$ and Λ has no short roots or long roots.

Cubic fourfold lattices

Let Λ be a positive definite lattice with distinguished element h^{2} of norm 3 .

Definition

We say $v \in\left\langle h^{2}\right\rangle^{\perp} \subseteq \Lambda$ is a

- short root if $v^{2}=2$
- long root if $v^{2}=6$ and $v \pm h^{2} \in 3 \Lambda$.

A positive definite lattice Λ such that \mathcal{C}_{Λ} is non-empty is called a cubic fourfold lattice.

Following Hassett's argument for \mathcal{C}_{d} shows that \mathcal{C}_{Λ} is a ($21-\mathrm{rk} \Lambda$)-dimensional quasiprojective variety.

Associated polarized K3 surfaces

Let $d>6$ divide $2\left(n^{2}+n+1\right)$, (e.g. $14,26,38,42, \ldots$)
For a cubic fourfold X with a marking of discriminant d, there is an associated polarized K 3 surface (S, H) of genus $g=\frac{d}{2}+1$ such that there is a Hodge isometry

$$
H^{4}(S, \mathbb{Z}) \supset K_{d}^{\perp} \cong H^{\perp}(-1) \subset \operatorname{Pic}(S)(-1)
$$

This gives rise to an open immersion $\mathcal{C}_{\Lambda} \hookrightarrow \mathcal{K}_{g}$ of moduli spaces.

We extend this open immersion to Λ-polarized cubic fourfolds.

Lattice theory

Let
with K_{d} be a positive definite lattice of discriminant d and Λ a cubic fourfold lattice.

Lemma

Suppose $\operatorname{gcd}\left(3, h^{2} . T\right) \mid h^{2} . J$ and $-3 \in(\mathbb{Z} / d \mathbb{Z})^{\times 2}$.
Then, up to isometry, there is a unique rank 2 even indefinite lattice

$$
\sigma(\Lambda)=\begin{gathered}
\\
H
\end{gathered} \begin{array}{cc}
H & M \\
& d \\
\alpha & \alpha \\
\alpha & \beta
\end{array}
$$

with discriminant $-\operatorname{disc}(\Lambda)$ such that $K_{d}^{\perp} \cong H^{\perp}(-1)$.

Standard form of lattices

Corollary

Since $\operatorname{gcd}\left(3, h^{2} . T\right) \mid h^{2} . J$, we can choose $a=0$, i.e., there is a basis of Λ with respect to which Λ has Gram matrix

h^{2}	T	J	
h^{2}	3	x	0
T	x	y	b
J	0	b	c

for some integers $0 \leq b \leq d / 2$ and $c>\max \left(2,3 b^{2} / d\right)$ even.

$\operatorname{Pic}(S)$ of associated K3

The standard form of Λ gives us an algorithm for computing $\sigma(\Lambda)$.
For fixed K_{d},

$$
\Lambda=\begin{array}{c|ccc}
& h^{2} & T & J \\
\cline { 2 - 4 } & 3 & x & 0 \\
T & x & y & b \\
J & 0 & b & c
\end{array} \text { is determined by }(b, c)
$$

$$
\sigma(\Lambda)=\begin{gathered}
\\
H \\
M
\end{gathered} \begin{array}{cc}
d & M \\
\hline \alpha & \beta
\end{array} \text { is determined by }(\alpha, \beta) \text {. }
$$

We can recover Λ with the fixed embedding of K_{26} from $\sigma(\Lambda)$.

Moduli Summary

Theorem (Auel-H.)

Let $d=2 g-2$ have a unique odd prime divisor.
Let $\Lambda=\left\langle h^{2}, T, J\right\rangle$ be a rank 3 cubic fourfold lattice with a fixed primitive embedding of K_{d} preserving h^{2} such that $\operatorname{gcd}\left(3, h^{2} . T\right) \mid h^{2} . J$. Then there exists an open immersion $\mathcal{C}_{\Lambda} \hookrightarrow \mathcal{K}_{\sigma(\Lambda)}$ of moduli spaces and a commutative diagram

where the vertical arrows are the forgetful maps and the top arrow is the open immersion constructed by Hassett.

Cubic fourfolds of discriminant 26

$$
K_{26}=\begin{array}{c|cc}
& h^{2} & T \\
\cline { 2 - 3 } & 3 & 7 \\
T & 7 & 25
\end{array}
$$

A cubic fourfold containing a 3 -nodal septic scroll is K_{26}-polarized, as does the general $X \in \mathcal{C}_{26}$.

We focus on cubic fourfolds that are Λ-polarized, where Λ has a fixed primitive embedding $K_{26} \hookrightarrow \Lambda$.
$\{$ What does Λ look like $?\} \longleftrightarrow\{$ What does $\operatorname{Pic}(S)$ look like? $\}$

Brill-Noether special cubic fourfolds

Definition (Mukai)

A polarized K3 surface (S, H) of genus $g,\left(H^{2}=2 g-2\right)$, is Brill-Noether special if there is a nontrivial $J \neq H \in \operatorname{Pic}(S)$ such that

$$
g-h^{0}(S, J) h^{0}(S, H-J)<0
$$

Else (S, H) is called Brill-Noether general.

Definition (Auel)

A special cubic fourfold X is Brill-Noether special if it has an associated polarized K3 surface (S, H) that is Brill-Noether special.

Brill-Noether special K3s of genus 14

Definition

A curve C of genus g is Brill-Noether special if it has a line bundle A such that

$$
\rho(g, r, d)=\underbrace{g}_{\operatorname{genus}(C)}-\underbrace{(r+1)}_{h^{0}(C, A)} \underbrace{(g-d+r)}_{h^{0}\left(C, \omega_{C}-A\right)}<0 .
$$

In genus 8 , a curve is BN special if and only if it has a g_{7}^{2}. In higher genus, this becomes more complicated.

Theorem (Auel-H.)

Let (S, H) be a polarized K3 surface of genus 14. Then (S, H) is Brill-Noether special if and only if a smooth irreducible curve $C \in|H|$ is Brill-Noether special.

Genus 8

Theorem (Mukai, Lelli-Chiesa, Auel)

A cubic fourfold of discriminant 14 is Brill-Noether special if and only if the associated K3 satisfies that $C \in|H|$ has a g_{7}^{2}. Moreover, such cubic fourfolds contain 2 disjoint planes.

Proposition (Auel)

A cubic fourfold is pfaffian if and only if it has a discriminant 14 marking whose associated K3 is Brill-Noether general.

Theorem (Auel)

The complement of the pfaffian locus is contained in the locus of cubic fourfolds containing 2 disjoint planes.

Lattices of Brill-Noether special K3s of genus 14

Let \mathcal{K}_{g} be the moduli space of primitively quasi-polarized K3 surfaces of genus g.
The Noether-Lefschetz divisor $\mathcal{K}_{g, d}^{r} \subset \mathcal{K}_{g}$ parameterizes K3 surfaces with a specific lattice polarization

$$
\Lambda_{g, d}^{r}:=\begin{array}{c|cc}
& H & L \\
H & \begin{array}{c}
2 g-2 \\
d
\end{array} & d \\
\hline & 2 r-2
\end{array} \subseteq \operatorname{Pic}(S) .
$$

Theorem (Greer-Li-Tian)
(S, H) is Brill-Noether special if and only if $(S, H) \in \mathcal{K}_{g, d}^{r}$ where

- $2 \leq d \leq g-1$,
- $\Delta(g, r, d):=\operatorname{disc}\left(\Lambda_{g, d}^{r}\right)=4(r-1)(g-1)-d^{2}<0$,
- and $\rho(g, r, d)<0$.

Associated cubic fourfold lattices

For each of these lattices, we recover a lattice Λ such that $\sigma(\Lambda)=\Lambda_{g, d}^{r}$, excluding those with roots.

Theorem (Auel-H.)

Let X be a Brill-Noether special cubic fourfold of discriminant 26, and (S, H) the associated polarized K3 of genus 14. Then $\operatorname{Pic}(S)$ has a primitive embedding of one of the following lattices:

- $\Lambda_{14,6}^{1} \quad(\gamma(C)=4)$
- $\Lambda_{14,9}^{2} \quad(\gamma(C)=5)$
- $\Lambda_{14,10}^{2} \quad(\gamma(C)=6)$
- $\Lambda_{14,11}^{2}, \Lambda_{14,13}^{3} \quad(\gamma(C)=6)$

In particular, for the general such K3 surface, $\gamma(C)=4,5$, or 6 , and C has no other Brill-Noether special line bundles of Clifford index $\leq \gamma(C)$.

Interesting Overlaps

Given $\Lambda_{g, d}^{r}=\sigma(\Lambda)$ on the list above, we look for which other markings Λ admits.
$\Lambda_{14,6}^{1}$

- $\left\langle h^{2},-2 h^{2}+T-J\right\rangle$ gives a discriminant 8 marking.
- $\left\langle h^{2}, 6 h^{2}-2 T+J\right\rangle$ gives a discriminant 14 marking.

We note that such cubic fourfolds form a component of $\mathcal{C}_{8} \cap \mathcal{C}_{14}$, due to Auel-Bernardara-Bolognesi-Várilly-Alvarado, and the general one has non-trivial Clifford invariant $\beta \in \operatorname{Br}(S)$.

Interesting Overlaps

$\Lambda_{14,9}^{2}$

- $\left\langle h^{2},-2 h^{2}+T-J\right\rangle$ gives a discriminant 8 marking.
- $\left\langle h^{2},-h^{2}+T-2 J\right\rangle$ gives a discriminant 14 marking.

We note that such cubic fourfolds form a component of $\mathcal{C}_{8} \cap \mathcal{C}_{14}$, due to Auel-Bernardara-Bolognesi-Várilly-Alvarado, and have trivial Clifford invariant, hence are rational.

Interesting Overlaps

```
Theorem (Auel-H.)
Let X be a Brill-Noether special cubic fourfold of discriminant 26, then \(X \in \mathcal{C}_{8}\).
```

We note that general Brill-Noether special cubic fourfolds of discriminant 26 admit no \mathcal{C}_{42} marking.

Summary

$\begin{aligned}\{\text { Rank } 3 \text { cubic fourfold lattices }\} \longleftrightarrow & \left\{\begin{array}{c}\text { Rank } 2 \text { K3 lattices } \\ \text { Brill-Noether special K3 surfaces }\end{array}\right\} \\ & \text { \{Brill-Noether special curves }\}\end{aligned}$

Summary

\{Rank 3 cubic fourfold lattices $\} \longleftrightarrow$ \{Brill-Noether special K3 surfaces $\}$
\{Brill-Noether special curves\}

Thank You!

Questions?

