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SPOILER ALERT!

Theorem (Crucial Result)
There are no solutions to 4y2 ≡ 2 (mod 13).
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Algebraic Geometry

In algebraic geometry, we study varieties, which are spaces defined as the
solutions to polynomial equations.

x

y
x2 + y2 = 1 y2 = x3 − x

x

y
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Algebraic Geometry

But what if you don’t have equations? Can you still talk about varieties?
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Algebraic Geometry

But what if you don’t have equations? Can you still talk about varieties?

Are there any constraints on what those polynomial equations can be?
What controls those constraints?
How can we find them?
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Curves

Brill–Noether theory studies the ways that curves can be defined by
polynomials.

Definition
A curve C is a (smooth projective) variety of dimension 1 (over C).

Definition
A divisor on C is a formal Z-linear combination of points of C.
If D = a1p1 + a2p2 + · · · + anpn, we say D has degree d =

n∑
i=1

ai.

A divisor is associated to a line bundle O(D) which tells us the functions
with poles or zeros along D.
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Riemann–Roch

Riemann–Roch Problem
How many functions on C have certain poles and zeros?

H0(C, D) = {f : C → C | f has poles and zeros dictated by D}

h0(C, D) = dim H0(C, D)

How does deg(D) influence h0(C, D)?

Theorem (Riemann–Roch Theorem)

h0(C, D) − h1(C, D) = d − g(C) + 1

The genus g(C) tells us a lot about the geometry of C.
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The Nicest Curve

The set of lines through the origin in C2 actually makes a curve, called P1.

P1 has points with coordinates [x : y], where [x : y] = [λx : λy].

Take the point [0 : 1] ∈ P1, and make a divisor D = 3[0 : 1].

H0(P1, D) is generated (over C[x, y]) by the functions
{

x3

x3 , x2y
x3 , xy2

x3 , y3

x3

}
.

We’ll think of these as the functions x3, x2y, xy2, y3. (Which is what we
get after we multiply by x3)
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Maps to Pr

On P1, we can consider the cubic forms x3, x2y, xy2, y3, which give us a
map

P1 → P3, [x : y] 7→ [x3 : x2y : xy2 : y3].

We can use the functions in H0(C, D) to cook up maps to Pr.

Say f0, f1, . . . , fr ∈ H0(C, D) have no common zeros.
We define a map C → Pr that is given by

φ{fi} : C → Pr, p → [f0(p) : f1(p) : · · · : fr(p)]

Definition
A (complete) linear series on C is a basis of H0(C, D).
We say it is of type gr

d if h0(C, D) = r + 1 and deg(D) = d.
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What embeddings do I have?
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Brill–Noether Theory

Brill–Noether theory studies the ways curves can map to projective space.
So it studies linear series on curves.

Recall that a linear system is a gr
d if it gives a map C → Pr of degree d.

Questions
If C has genus g,

what gr
d’s does it have?

what is the minimal k such that C has a g1
k?

▶ The minimal k is called the gonality of C, it measures how far C is
from being P1.

and has a gr
d, what other gs

e does it have/not have?
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Smooth Plane curves

The kinds of linear systems a curve has is constrained by its geometry.

Theorem (Genus–Degree Formula)
Let C be a smooth plane curve of degree d (the zero set of a polynomial
f(x, y) of degree d). Then

g(C) = (d − 1)(d − 2)
2 .

Example
In particular, a smooth plane cubic (degree 3) has genus (2)(1)

2 = 1.
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Clifford index

Theorem (Clifford’s Theorem)
Let D be a gr

d with r ≥ 0 and g − d + r ≥ 1, then

γ(D) := d − 2r ≥ 0.

Equality holds if and only if D = 0 or C has a g1
2 and D is a multiple of it.

Definition
The Clifford index of a curve C is the integer

min
{

γ(D) | h0(C, D), h1(C, D) ≥ 2
}

.

Theorem (Clifford’s Theorem)
γ(C) ≥ 0 with equality if and only if C has a g1

2.
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Moduli space of curves

Curves of genus g can be packaged together into a parameter space Mg

of dimension 3g − 3.

What do the curves in Mg with a gr
d look like?
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Brill–Noether loci

Definition

Mr
g,d := {C ∈ Mg | C has a gr

d}

is called a Brill–Noether locus.

Questions
Is Mr

g,d non-empty?
What’s the geometry of Mr

g,d?
How do different Brill–Noether loci overlap?
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Deep Sea Diving
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Brill–Noether theorem

Definition
The Brill–Noether number is

ρ(g, r, d) = g︸︷︷︸
genus(C)

− (r + 1)︸ ︷︷ ︸
h0(C,D)

(g − d + r)︸ ︷︷ ︸
h1(C,D)

.

Theorem (Brill–Noether theorem)
If C is a general curve in Mg and ρ(g, r, d) ≥ 0, then C has a gr

d.
If ρ(g, r, d) < 0, then C has no gr

d.

So for ρ(g, r, d) < 0, Mr
g,d ⊊ Mg, and such curves are called

Brill–Noether special. We focus on these.

In fact, the expected codimension of Mr
g,d is −ρ.
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Trivial Containments

Question
How do Mr

g,d and Ms
g,e overlap?

Mr
g,d ⊆ Mr

g,d+1
Mr

g,d ⊆ Mr−1
g,d−1
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Maximal Brill–Noether loci

Definition
We say that Mr

g,d is expected maximal if ρ(g, r, d) < 0 and it is not
trivially contained in another Brill–Noether locus.

Maximal Brill–Noether loci conjecture
For g ≥ 3, the expected maximal Brill–Noether loci are maximal (not
contained in each other), except for genus 7, 8, 9.

Theorem (Auel–H.)
The Maximal Brill–Noether loci conjecture holds in genus 3–19, 22, 23.

For example, in genus 14, the expected maximal loci are
M1

14,7, M2
14,11, and M3

14,13
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Let’s prove it!

We want to show each of the loci M1
14,7, M2

14,11, M3
14,13 are not

contained in one another.

ρ(14, 1, 7) = −2, so dim M1
14,7 = 37

ρ(14, 2, 11) = −1, so dim M2
14,11 = 38

ρ(14, 3, 13) = −2, so dim M3
14,13 = 37

So we have M2
14,11 ⊈ M1

14,7 and M2
14,11 ⊈ M3

14,13.

We can find C ∈ M3
14,13 with gonality 8, hence M3

14,13 ⊈ M1
14,7.
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Let’s prove it!

In recent years, there has been a surge of results concerning the
Brill–Noether theory for curves of fixed gonality.

Theorem (Coppens–Martens, Pflueger, Jensen–Ranganathan, Larson,
Vogt,. . . )
Let C be a general curve of gonality k, and r′ = min{r, g − d + r − 1},
then

dim{gr
d’s on C} = ρk(g, r, d) := max

ℓ∈{0,...,r′}
ρ(g, r − ℓ, d) − ℓk.

By considering curves C ∈ M1
14,7 with gonality 7, we can show

M1
14,7 ⊈ M2

14,11 and M1
14,7 ⊈ M3

14,13.
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Last one!

It remains to show that M3
14,13 ⊈ M2

14,11.

We just need to find one curve!

We’ll find a genus 14 curve with a g3
13 but no g2

11.
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K3 surfaces

A K3 surface is a (sm. proj.) variety S of dimension 2 with KS = 0 and
H1(S, O) = 0.
For us, the important fact will be that Pic(S) is a lattice.

Pic(S) =
H L

H 26 13
L 13 4

For C ∈ |H| genus(C) = H2+2
2 , deg L|C = L.H, and

h0(C, L|C) − 1 = L2+2
2 .

So C has genus 14 and L|C is a g3
13!

What happens if C has a g2
11?
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Donagi–Morrison conjecture

If C ⊂ S has a Brill–Noether special line bundle, is it the restriction of a
line bundle on S?

Conjecture (Donagi–Morrison, Lelli-Chiesa)
Let (S, H) be a polarized K3 surface and C ∈ |H| a smooth irreducible
curve of genus g ≥ 2. Suppose A is a basepoint free gr

d on C such that
d ≤ g − 1 and ρ(g, r, d) < 0. Then there exists a line bundle M ∈ Pic(S)
adapted to |H| such that |A| is contained in the restriction of |M | to C
and γ(M |C) ≤ γ(A).

We call M a Donagi–Morrison lift of A.

This turns out to be false in general. In fact there is a counterexample to
lifting g3

d’s in genus 19!
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Donagi–Morrison conjecture

So what could be true?

Bounded Donagi–Morrison conjecture
There is a bound β depending on S and C, such that if d ≤ β, then the
Donagi–Morrison conjecture holds.
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Donagi–Morrison conjecture

What is known?

Theorem
The (bounded) Donagi–Morrison conjecture holds when:

r = 1 (Saint-Donat, Reid, Donagi–Morrison)
r = 2 (Lelli-Chiesa)
γ(A) = γ(C) (Green–Lazarsfeld, Lelli-Chiesa)

Theorem (H.)
The bounded Donagi–Morrison conjecture holds when r = 3, and the
bounds are explicit.
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Back to M3
14,13 ⊈ M2

14,11

Let (S, H) be a polarized K3 surface with

Pic(S) =
H L

H 26 13
L 13 4

Then L|C is a g3
13. So C ∈ M3

14,13.

If C had a g2
11

, then we obtain a Donagi–Morrison lift M ∈ Pic(S).

We must have M2 = 2.

If M = xH + yL ∈ Pic(S), then 26x2 + 26xy + 4y2 = 2.

Theorem (Crucial Result)
There are no solutions to 4y2 ≡ 2 (mod 13).
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How do we find lifts?

The ideas go back to Lazarsfeld’s proof of the Brill–Noether theorem using
K3 surfaces.
Let A be a gr

d on C.

Construction of Lazarsfeld–Mukai Bundles

FC,A

H0(C, A) ⊗ OS
// A // 0
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Lazasfeld–Mukai Bundles

The bundle EC,A is a vector bundle on S called the Lazarsfeld–Mukai
bundle associated to (C, A).

Properties of EC,A

rk EC,A = h0(C, A) = r + 1
c1(EC,A) = [C] = H

c2(EC,A) = deg A = d

2 − 2ρ(g, r, d) = 2h0(S, End(EC,A)) − h1(S, End(EC,A))

Proposition
If there is a globally generated line bundle N ⊂ EC,A such that EC,A/N is
torsion-free, then M = det(EC,A/N) is a Donagi–Morrison lift of A.

The trouble is finding N .
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Stability of sheaves on K3 surfaces

Let (S, H) be a polarized K3 surface, and E a vector bundle on S.

Definition
The slope of E is

µ(E) := c1(E).H
rk E

Definition
E is called (semi)stable if for every proper subsheaf N ⊂ E of smaller rank
we have

µ(N)(≤)µ(E).

Otherwise, we say E is unstable.

Fact
If ρ(g, r, d) < 0, then EC,A is not stable.
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Filtrations

Suppose we knew the following fact:

Dream Theorem
If EC,A is not stable, then it has a sub-line bundle so that EC,A/N is
torsion-free.

That may not always be true. But:

Roughly True
If EC,A is not stable, it has a filtration

0 ⊆ E1 ⊆ E2 ⊆ · · · ⊆ Er+1 = EC,A

such that Ei+1/Ei is torsion free.

So what kind of filtrations does EC,A have?
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Filtrations

Roughly True
If EC,A is not stable, it has a filtration

0 ⊆ E1 ⊆ E2 ⊆ · · · ⊆ Er+1 = EC,A

such that Ei+1/Ei is torsion free.

So what kind of filtrations does EC,A have fi A is a g3
d?

Since r = 3, rk EC,A = 4.
1 ⊂ 4
2 ⊂ 4, 3 ⊂ 4,
1 ⊂ 2 ⊂ 4, 1 ⊂ 3 ⊂ 4, 2 ⊂ 3 ⊂ 4,
1 ⊂ 2 ⊂ 3 ⊂ 4

We want to eliminate all options except 1 ⊂ 4.

R. Haburcak (Dartmouth) Brill–Noether theory via K3s 33 / 36



Lift off!

Let EC,A be the Lazarsfeld–Mukai bundle associated to a Brill–Noether
special line bundle A ∈ Pic(C) of type g3

d.

Theorem (H.)
Let (S, H) be a polarized K3 surface of genus g ̸= 2, 3, 4, 8, and C ∈ |H| a
smooth irreducible curve of Clifford index γ. Let

m :=
{

D2 | D ∈ Pic(S), D2 ≥ 0, D is effective
}

,

µ := min
{

µ(D) | D ∈ Pic(S), D2 ≥ 0, µ(D) > 0
}

.

If d < min
{5γ

4 + µ + m + 9
2 ,

5γ

4 + m + 10
2 ,

3γ

2 + 5,
γ + g − 1

2 + 4
}

,

then EC,A only has a 1 ⊂ 4 filtration.
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Thank You!

Questions?
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