Brill-Noether theory via K3 surfaces

Richard Haburcak
Advisor: Asher Auel

Dartmouth College
PhD Defense
April 27 ${ }^{\text {th }}, 2023$

SPOILER ALERT!

SPOILER ALERT!

Theorem (Crucial Result)

There are no solutions to $4 y^{2} \equiv 2(\bmod 13)$.

Algebraic Geometry

In algebraic geometry, we study varieties, which are spaces defined as the solutions to polynomial equations.

Algebraic Geometry

But what if you don't have equations? Can you still talk about varieties?

Algebraic Geometry

But what if you don't have equations? Can you still talk about varieties?

- Are there any constraints on what those polynomial equations can be?
- What controls those constraints?
- How can we find them?

Curves

Brill-Noether theory studies the ways that curves can be defined by polynomials.

Definition

A curve C is a (smooth projective) variety of dimension 1 (over \mathbb{C}).

Curves

Brill-Noether theory studies the ways that curves can be defined by polynomials.

Definition

A curve C is a (smooth projective) variety of dimension 1 (over \mathbb{C}).

Definition

A divisor on C is a formal \mathbb{Z}-linear combination of points of C.
If $D=a_{1} p_{1}+a_{2} p_{2}+\cdots+a_{n} p_{n}$, we say D has degree $d=\sum_{i=1}^{n} a_{i}$.
A divisor is associated to a line bundle $\mathcal{O}(D)$ which tells us the functions with poles or zeros along D.

Riemann-Roch

Riemann-Roch Problem

How many functions on C have certain poles and zeros?

$$
\begin{gathered}
H^{0}(C, D)=\{f: C \rightarrow \mathbb{C} \mid f \text { has poles and zeros dictated by } D\} \\
h^{0}(C, D)=\operatorname{dim} H^{0}(C, D)
\end{gathered}
$$

How does $\operatorname{deg}(D)$ influence $h^{0}(C, D)$?

Riemann-Roch

Riemann-Roch Problem

How many functions on C have certain poles and zeros?

$$
\begin{gathered}
H^{0}(C, D)=\{f: C \rightarrow \mathbb{C} \mid f \text { has poles and zeros dictated by } D\} \\
h^{0}(C, D)=\operatorname{dim} H^{0}(C, D)
\end{gathered}
$$

How does $\operatorname{deg}(D)$ influence $h^{0}(C, D)$?
Theorem (Riemann-Roch Theorem)

$$
h^{0}(C, D)-h^{1}(C, D)=d-g(C)+1
$$

The genus $g(C)$ tells us a lot about the geometry of C.

The Nicest Curve

The set of lines through the origin in \mathbb{C}^{2} actually makes a curve, called \mathbb{P}^{1}.

The Nicest Curve

The set of lines through the origin in \mathbb{C}^{2} actually makes a curve, called \mathbb{P}^{1}.
\mathbb{P}^{1} has points with coordinates $[x: y]$, where $[x: y]=[\lambda x: \lambda y]$.

The Nicest Curve

The set of lines through the origin in \mathbb{C}^{2} actually makes a curve, called \mathbb{P}^{1}.
\mathbb{P}^{1} has points with coordinates $[x: y]$, where $[x: y]=[\lambda x: \lambda y]$.
Take the point $[0: 1] \in \mathbb{P}^{1}$, and make a divisor $D=3[0: 1]$.
$H^{0}\left(\mathbb{P}^{1}, D\right)$ is generated (over $\left.\mathbb{C}[x, y]\right)$ by the functions $\left\{\frac{x^{3}}{x^{3}}, \frac{x^{2} y}{x^{3}}, \frac{x y^{2}}{x^{3}}, \frac{y^{3}}{x^{3}}\right\}$.

The Nicest Curve

The set of lines through the origin in \mathbb{C}^{2} actually makes a curve, called \mathbb{P}^{1}.
\mathbb{P}^{1} has points with coordinates $[x: y]$, where $[x: y]=[\lambda x: \lambda y]$.
Take the point $[0: 1] \in \mathbb{P}^{1}$, and make a divisor $D=3[0: 1]$.
$H^{0}\left(\mathbb{P}^{1}, D\right)$ is generated (over $\left.\mathbb{C}[x, y]\right)$ by the functions $\left\{\frac{x^{3}}{x^{3}}, \frac{x^{2} y}{x^{3}}, \frac{x y^{2}}{x^{3}}, \frac{y^{3}}{x^{3}}\right\}$. We'll think of these as the functions $x^{3}, x^{2} y, x y^{2}, y^{3}$. (Which is what we get after we multiply by x^{3})

Maps to \mathbb{P}^{r}

On \mathbb{P}^{1}, we can consider the cubic forms $x^{3}, x^{2} y, x y^{2}, y^{3}$, which give us a map

$$
\mathbb{P}^{1} \rightarrow \mathbb{P}^{3},[x: y] \mapsto\left[x^{3}: x^{2} y: x y^{2}: y^{3}\right] .
$$

Maps to \mathbb{P}^{r}

On \mathbb{P}^{1}, we can consider the cubic forms $x^{3}, x^{2} y, x y^{2}, y^{3}$, which give us a map

$$
\mathbb{P}^{1} \rightarrow \mathbb{P}^{3},[x: y] \mapsto\left[x^{3}: x^{2} y: x y^{2}: y^{3}\right] .
$$

We can use the functions in $H^{0}(C, D)$ to cook up maps to \mathbb{P}^{r}.
Say $f_{0}, f_{1}, \ldots, f_{r} \in H^{0}(C, D)$ have no common zeros.
We define a map $C \rightarrow \mathbb{P}^{r}$ that is given by

$$
\varphi_{\left\{f_{i}\right\}}: C \rightarrow \mathbb{P}^{r}, p \rightarrow\left[f_{0}(p): f_{1}(p): \cdots: f_{r}(p)\right]
$$

Maps to \mathbb{P}^{r}

On \mathbb{P}^{1}, we can consider the cubic forms $x^{3}, x^{2} y, x y^{2}, y^{3}$, which give us a map

$$
\mathbb{P}^{1} \rightarrow \mathbb{P}^{3},[x: y] \mapsto\left[x^{3}: x^{2} y: x y^{2}: y^{3}\right] .
$$

We can use the functions in $H^{0}(C, D)$ to cook up maps to \mathbb{P}^{r}.
Say $f_{0}, f_{1}, \ldots, f_{r} \in H^{0}(C, D)$ have no common zeros.
We define a map $C \rightarrow \mathbb{P}^{r}$ that is given by

$$
\varphi_{\left\{f_{i}\right\}}: C \rightarrow \mathbb{P}^{r}, p \rightarrow\left[f_{0}(p): f_{1}(p): \cdots: f_{r}(p)\right]
$$

Definition

A (complete) linear series on C is a basis of $H^{0}(C, D)$.
We say it is of type g_{d}^{r} if $h^{0}(C, D)=r+1$ and $\operatorname{deg}(D)=d$.

What embeddings do I have?

Brill-Noether Theory

Brill-Noether theory studies the ways curves can map to projective space. So it studies linear series on curves.

Recall that a linear system is a g_{d}^{r} if it gives a map $C \rightarrow \mathbb{P}^{r}$ of degree d.

Brill-Noether Theory

Brill-Noether theory studies the ways curves can map to projective space. So it studies linear series on curves.

Recall that a linear system is a g_{d}^{r} if it gives a map $C \rightarrow \mathbb{P}^{r}$ of degree d.

Questions

If C has genus g,

- what g_{d}^{r} 's does it have?
- what is the minimal k such that C has a g_{k}^{1} ?

The minimal k is called the gonality of C, it measures how $\operatorname{far} C$ is from being \mathbb{P}^{1}.

- and has a g_{d}^{r}, what other g_{e}^{s} does it have/not have?

Smooth Plane curves

The kinds of linear systems a curve has is constrained by its geometry.
Theorem (Genus-Degree Formula)
Let C be a smooth plane curve of degree d (the zero set of a polynomial $f(x, y)$ of degree $d)$. Then

$$
g(C)=\frac{(d-1)(d-2)}{2}
$$

Example

In particular, a smooth plane cubic (degree 3) has genus $\frac{(2)(1)}{2}=1$.

Clifford index

Theorem (Clifford's Theorem)
Let D be a g_{d}^{r} with $r \geq 0$ and $g-d+r \geq 1$, then

$$
\gamma(D):=d-2 r \geq 0
$$

Equality holds if and only if $D=0$ or C has a g_{2}^{1} and D is a multiple of it.

Clifford index

Theorem (Clifford's Theorem)
Let D be a g_{d}^{r} with $r \geq 0$ and $g-d+r \geq 1$, then

$$
\gamma(D):=d-2 r \geq 0
$$

Equality holds if and only if $D=0$ or C has a g_{2}^{1} and D is a multiple of it.

Definition

The Clifford index of a curve C is the integer

$$
\min \left\{\gamma(D) \mid h^{0}(C, D), h^{1}(C, D) \geq 2\right\}
$$

Theorem (Clifford's Theorem)

$\gamma(C) \geq 0$ with equality if and only if C has a g_{2}^{1}.

Moduli space of curves

Curves of genus g can be packaged together into a parameter space \mathcal{M}_{g} of dimension $3 g-3$.

What do the curves in \mathcal{M}_{g} with a g_{d}^{r} look like?

Brill-Noether loci

Definition

$$
\mathcal{M}_{g, d}^{r}:=\left\{C \in \mathcal{M}_{g} \mid C \text { has a } g_{d}^{r}\right\}
$$

is called a Brill-Noether locus.

Questions

- Is $\mathcal{M}_{g, d}^{r}$ non-empty?
- What's the geometry of $\mathcal{M}_{g, d}^{r}$?
- How do different Brill-Noether loci overlap?

Deep Sea Diving

Brill-Noether theorem

Definition

The Brill-Noether number is

$$
\rho(g, r, d)=\underbrace{g}_{\operatorname{genus}(C)}-\underbrace{(r+1)}_{h^{0}(C, D)} \underbrace{(g-d+r)}_{h^{1}(C, D)} .
$$

Theorem (Brill-Noether theorem)
If C is a general curve in \mathcal{M}_{g} and $\rho(g, r, d) \geq 0$, then C has a g_{d}^{r}. If $\rho(g, r, d)<0$, then C has no g_{d}^{r}.

So for $\rho(g, r, d)<0, \mathcal{M}_{g, d}^{r} \subsetneq \mathcal{M}_{g}$, and such curves are called Brill-Noether special. We focus on these.

In fact, the expected codimension of $\mathcal{M}_{g, d}^{r}$ is $-\rho$.

Trivial Containments

Question

How do $\mathcal{M}_{g, d}^{r}$ and $\mathcal{M}_{g, e}^{s}$ overlap?

- $\mathcal{M}_{g, d}^{r} \subseteq \mathcal{M}_{g, d+1}^{r}$
- $\mathcal{M}_{g, d}^{r} \subseteq \mathcal{M}_{g, d-1}^{r-1}$

Maximal Brill-Noether loci

Definition

We say that $\mathcal{M}_{g, d}^{r}$ is expected maximal if $\rho(g, r, d)<0$ and it is not trivially contained in another Brill-Noether locus.

Maximal Brill-Noether loci conjecture

For $g \geq 3$, the expected maximal Brill-Noether loci are maximal (not contained in each other), except for genus $7,8,9$.

Maximal Brill-Noether loci

Definition

We say that $\mathcal{M}_{g, d}^{r}$ is expected maximal if $\rho(g, r, d)<0$ and it is not trivially contained in another Brill-Noether locus.

Maximal Brill-Noether loci conjecture

For $g \geq 3$, the expected maximal Brill-Noether loci are maximal (not contained in each other), except for genus $7,8,9$.

Theorem (Auel-H.)
The Maximal Brill-Noether loci conjecture holds in genus 3-19, 22, 23.
For example, in genus 14 , the expected maximal loci are $\mathcal{M}_{14,7}^{1}, \mathcal{M}_{14,11}^{2}$, and $\mathcal{M}_{14,13}^{3}$

Let's prove it!

We want to show each of the loci $\mathcal{M}_{14,7}^{1}, \mathcal{M}_{14,11}^{2}, \mathcal{M}_{14,13}^{3}$ are not contained in one another.

Let's prove it!

We want to show each of the loci $\mathcal{M}_{14,7}^{1}, \mathcal{M}_{14,11}^{2}, \mathcal{M}_{14,13}^{3}$ are not contained in one another.

- $\rho(14,1,7)=-2$, so $\operatorname{dim} \mathcal{M}_{14,7}^{1}=37$
- $\rho(14,2,11)=-1$, so $\operatorname{dim} \mathcal{M}_{14,11}^{2}=38$
- $\rho(14,3,13)=-2$, so $\operatorname{dim} \mathcal{M}_{14,13}^{3}=37$

So we have $\mathcal{M}_{14,11}^{2} \nsubseteq \mathcal{M}_{14,7}^{1}$ and $\mathcal{M}_{14,11}^{2} \nsubseteq \mathcal{M}_{14,13}^{3}$.

Let's prove it!

We want to show each of the loci $\mathcal{M}_{14,7}^{1}, \mathcal{M}_{14,11}^{2}, \mathcal{M}_{14,13}^{3}$ are not contained in one another.

- $\rho(14,1,7)=-2$, so $\operatorname{dim} \mathcal{M}_{14,7}^{1}=37$
- $\rho(14,2,11)=-1$, so $\operatorname{dim} \mathcal{M}_{14,11}^{2}=38$
- $\rho(14,3,13)=-2$, so $\operatorname{dim} \mathcal{M}_{14,13}^{3}=37$

So we have $\mathcal{M}_{14,11}^{2} \nsubseteq \mathcal{M}_{14,7}^{1}$ and $\mathcal{M}_{14,11}^{2} \nsubseteq \mathcal{M}_{14,13}^{3}$.

We can find $C \in \mathcal{M}_{14,13}^{3}$ with gonality 8 , hence $\mathcal{M}_{14,13}^{3} \nsubseteq \mathcal{M}_{14,7}^{1}$.

Let's prove it!

In recent years, there has been a surge of results concerning the Brill-Noether theory for curves of fixed gonality.

Theorem (Coppens-Martens, Pflueger, Jensen-Ranganathan, Larson, Vogt,. . .)
Let C be a general curve of gonality k, and $r^{\prime}=\min \{r, g-d+r-1\}$, then

$$
\operatorname{dim}\left\{g_{d}^{r} \text { 's on } C\right\}=\rho_{k}(g, r, d):=\max _{\ell \in\left\{0, \ldots, r^{\prime}\right\}} \rho(g, r-\ell, d)-\ell k
$$

By considering curves $C \in \mathcal{M}_{14,7}^{1}$ with gonality 7 , we can show $\mathcal{M}_{14,7}^{1} \nsubseteq \mathcal{M}_{14,11}^{2}$ and $\mathcal{M}_{14,7}^{1} \nsubseteq \mathcal{M}_{14,13}^{3}$.

Last one!

It remains to show that $\mathcal{M}_{14,13}^{3} \nsubseteq \mathcal{M}_{14,11}^{2}$.

Last one!

It remains to show that $\mathcal{M}_{14,13}^{3} \nsubseteq \mathcal{M}_{14,11}^{2}$. We just need to find one curve!

We'll find a genus 14 curve with a g_{13}^{3} but no g_{11}^{2}.

K3 surfaces

A K3 surface is a (sm. proj.) variety S of dimension 2 with $K_{S}=0$ and $H^{1}(S, \mathcal{O})=0$.
For us, the important fact will be that $\operatorname{Pic}(S)$ is a lattice.

K3 surfaces

A K3 surface is a (sm. proj.) variety S of dimension 2 with $K_{S}=0$ and $H^{1}(S, \mathcal{O})=0$.
For us, the important fact will be that $\operatorname{Pic}(S)$ is a lattice.

$$
\operatorname{Pic}(S)=\begin{array}{c|cc}
& H & L \\
\cline { 2 - 3 } \\
L & 26 & 13 \\
13 & 4
\end{array}
$$

For $C \in|H| \operatorname{genus}(C)=\frac{H^{2}+2}{2},\left.\operatorname{deg} L\right|_{C}=L . H$, and $h^{0}\left(C,\left.L\right|_{C}\right)-1=\frac{L^{2}+2}{2}$.

So C has genus 14 and $\left.L\right|_{C}$ is a g_{13}^{3} !
What happens if C has a g_{11}^{2} ?

Donagi-Morrison conjecture

If $C \subset S$ has a Brill-Noether special line bundle, is it the restriction of a line bundle on S ?

Conjecture (Donagi-Morrison, Lelli-Chiesa)
Let (S, H) be a polarized K 3 surface and $C \in|H|$ a smooth irreducible curve of genus $g \geq 2$. Suppose A is a basepoint free g_{d}^{r} on C such that $d \leq g-1$ and $\rho(g, r, d)<0$. Then there exists a line bundle $M \in \operatorname{Pic}(S)$ adapted to $|H|$ such that $|A|$ is contained in the restriction of $|M|$ to C and $\gamma\left(\left.M\right|_{C}\right) \leq \gamma(A)$.

We call M a Donagi-Morrison lift of A.

This turns out to be false in general. In fact there is a counterexample to lifting g_{d}^{33} 's in genus 19 !

Donagi-Morrison conjecture

So what could be true?

Bounded Donagi-Morrison conjecture
There is a bound β depending on S and C, such that if $d \leq \beta$, then the Donagi-Morrison conjecture holds.

Donagi-Morrison conjecture

What is known?

Theorem

The (bounded) Donagi-Morrison conjecture holds when:

- $r=1$ (Saint-Donat, Reid, Donagi-Morrison)
- $r=2$ (Lelli-Chiesa)
- $\gamma(A)=\gamma(C)$ (Green-Lazarsfeld, Lelli-Chiesa)

Theorem (H.)

The bounded Donagi-Morrison conjecture holds when $r=3$, and the bounds are explicit.

Back to $\mathcal{M}_{14,13}^{3} \nsubseteq \mathcal{M}_{14,11}^{2}$

Let (S, H) be a polarized K 3 surface with

$$
\operatorname{Pic}(S)=\begin{array}{c|cc}
& H & L \\
H & 26 & 13 \\
L & 13 & 4
\end{array}
$$

Then $\left.L\right|_{C}$ is a g_{13}^{3}. So $C \in \mathcal{M}_{14,13}^{3}$.
If C had a g_{11}^{2}

Back to $\mathcal{M}_{14,13}^{3} \nsubseteq \mathcal{M}_{14,11}^{2}$

Let (S, H) be a polarized K3 surface with

$$
\operatorname{Pic}(S)=\begin{gathered}
\\
H \\
L
\end{gathered} \begin{array}{cc}
H & L \\
\hline & 13
\end{array} \quad 4
$$

Then $\left.L\right|_{C}$ is a g_{13}^{3}. So $C \in \mathcal{M}_{14,13}^{3}$.
If C had a g_{11}^{2}, then we obtain a Donagi-Morrison lift $M \in \operatorname{Pic}(S)$.

Back to $\mathcal{M}_{14,13}^{3} \nsubseteq \mathcal{M}_{14,11}^{2}$

Let (S, H) be a polarized K3 surface with

$$
\operatorname{Pic}(S)=\begin{gathered}
\\
H \\
L
\end{gathered} \begin{array}{cc}
H & L \\
\hline & 13
\end{array} \quad 4
$$

Then $\left.L\right|_{C}$ is a g_{13}^{3}. So $C \in \mathcal{M}_{14,13}^{3}$.
If C had a g_{11}^{2}, then we obtain a Donagi-Morrison lift $M \in \operatorname{Pic}(S)$.
We must have $M^{2}=2$.

Back to $\mathcal{M}_{14,13}^{3} \nsubseteq \mathcal{M}_{14,11}^{2}$

Let (S, H) be a polarized K 3 surface with

$$
\operatorname{Pic}(S)=\begin{gathered}
\\
H \\
L
\end{gathered} \begin{array}{cc}
H & L \\
\hline & 13
\end{array} \quad 4
$$

Then $\left.L\right|_{C}$ is a g_{13}^{3}. So $C \in \mathcal{M}_{14,13}^{3}$.
If C had a g_{11}^{2}, then we obtain a Donagi-Morrison lift $M \in \operatorname{Pic}(S)$.
We must have $M^{2}=2$.
If $M=x H+y L \in \operatorname{Pic}(S)$, then $26 x^{2}+26 x y+4 y^{2}=2$.

Back to $\mathcal{M}_{14,13}^{3} \nsubseteq \mathcal{M}_{14,11}^{2}$

Let (S, H) be a polarized K 3 surface with

$$
\operatorname{Pic}(S)=\begin{array}{c|cc}
& H & L \\
H & 26 & 13 \\
L & 13 & 4
\end{array}
$$

Then $\left.L\right|_{C}$ is a g_{13}^{3}. So $C \in \mathcal{M}_{14,13}^{3}$.
If C had a g_{11}^{2}, then we obtain a Donagi-Morrison lift $M \in \operatorname{Pic}(S)$.
We must have $M^{2}=2$.
If $M=x H+y L \in \operatorname{Pic}(S)$, then $26 x^{2}+26 x y+4 y^{2}=2$.

Theorem (Crucial Result)

There are no solutions to $4 y^{2} \equiv 2(\bmod 13)$.

How do we find lifts?

The ideas go back to Lazarsfeld's proof of the Brill-Noether theorem using K3 surfaces.
Let A be a g_{d}^{r} on C.
Construction of Lazarsfeld-Mukai Bundles

$$
H^{0}(C, A) \otimes \mathcal{O}_{S} \longrightarrow A \longrightarrow 0
$$

How do we find lifts?

The ideas go back to Lazarsfeld's proof of the Brill-Noether theorem using K3 surfaces.
Let A be a g_{d}^{r} on C.
Construction of Lazarsfeld-Mukai Bundles

$$
0 \longrightarrow F_{C, A} \longrightarrow H^{0}(C, A) \otimes \mathcal{O}_{S} \longrightarrow A \longrightarrow 0
$$

How do we find lifts?

The ideas go back to Lazarsfeld's proof of the Brill-Noether theorem using K3 surfaces.
Let A be a g_{d}^{r} on C.

Construction of Lazarsfeld-Mukai Bundles

$$
0 \longrightarrow F_{C, A} \longrightarrow H^{0}(C, A) \otimes \mathcal{O}_{S} \longrightarrow A \longrightarrow 0
$$

$\{$ dualize and remember $\mathcal{E} x t$

How do we find lifts?

The ideas go back to Lazarsfeld's proof of the Brill-Noether theorem using K3 surfaces.
Let A be a g_{d}^{r} on C.

Construction of Lazarsfeld-Mukai Bundles

$$
\begin{align*}
& 0 \longrightarrow F_{C, A} \longrightarrow H^{0}(C, A) \otimes \mathcal{O}_{S} \longrightarrow 0 \\
& \text { \{dualize and remember } \mathcal{E} x t \\
& 0 \longrightarrow H^{0}(C, A)^{\vee} \otimes \mathcal{O}_{S} \longrightarrow E_{C, A} \\
& >\omega_{C} \otimes A^{\vee}
\end{align*}
$$

Lazasfeld-Mukai Bundles

The bundle $E_{C, A}$ is a vector bundle on S called the Lazarsfeld-Mukai bundle associated to (C, A).

Properties of $E_{C, A}$

- $\operatorname{rk} E_{C, A}=h^{0}(C, A)=r+1$
- $c_{1}\left(E_{C, A}\right)=[C]=H$
- $c_{2}\left(E_{C, A}\right)=\operatorname{deg} A=d$
- $2-2 \rho(g, r, d)=2 h^{0}\left(S, \mathcal{E} n d\left(E_{C, A}\right)\right)-h^{1}\left(S, \mathcal{E} n d\left(E_{C, A}\right)\right)$

Proposition

If there is a globally generated line bundle $N \subset E_{C, A}$ such that $E_{C, A} / N$ is torsion-free, then $M=\operatorname{det}\left(E_{C, A} / N\right)$ is a Donagi-Morrison lift of A.

The trouble is finding N.

Stability of sheaves on K3 surfaces

Let (S, H) be a polarized K 3 surface, and E a vector bundle on S.

Definition

The slope of E is

$$
\mu(E):=\frac{c_{1}(E) \cdot H}{\operatorname{rk} E}
$$

Definition

E is called (semi)stable if for every proper subsheaf $N \subset E$ of smaller rank we have

$$
\mu(N)(\leq) \mu(E)
$$

Otherwise, we say E is unstable.

```
Fact
If }\rho(g,r,d)<0\mathrm{ , then }\mp@subsup{E}{C,A}{}\mathrm{ is not stable.
```


Filtrations

Suppose we knew the following fact:

Dream Theorem

If $E_{C, A}$ is not stable, then it has a sub-line bundle so that $E_{C, A} / N$ is torsion-free.

That may not always be true. But:
Roughly True
If $E_{C, A}$ is not stable, it has a filtration

$$
0 \subseteq E_{1} \subseteq E_{2} \subseteq \cdots \subseteq E_{r+1}=E_{C, A}
$$

such that E_{i+1} / E_{i} is torsion free.
So what kind of filtrations does $E_{C, A}$ have?

Filtrations

Roughly True

If $E_{C, A}$ is not stable, it has a filtration

$$
0 \subseteq E_{1} \subseteq E_{2} \subseteq \cdots \subseteq E_{r+1}=E_{C, A}
$$

such that E_{i+1} / E_{i} is torsion free.
So what kind of filtrations does $E_{C, A}$ have fi A is a g_{d}^{3} ?
Since $r=3, \operatorname{rk} E_{C, A}=4$.

- $1 \subset 4$
- $2 \subset 4, \quad 3 \subset 4$, $1 \subset 2 \subset 4, \quad 1 \subset 3 \subset 4, \quad 2 \subset 3 \subset 4$, $1 \subset 2 \subset 3 \subset 4$

We want to eliminate all options except $1 \subset 4$.

Lift off!

Let $E_{C, A}$ be the Lazarsfeld-Mukai bundle associated to a Brill-Noether special line bundle $A \in \operatorname{Pic}(C)$ of type g_{d}^{3}.

Theorem (H.)

Let (S, H) be a polarized K3 surface of genus $g \neq 2,3,4,8$, and $C \in|H|$ a smooth irreducible curve of Clifford index γ. Let

$$
\begin{gathered}
m:=\left\{D^{2} \mid D \in \operatorname{Pic}(S), D^{2} \geq 0, D \text { is effective }\right\} \\
\mu:=\min \left\{\mu(D) \mid D \in \operatorname{Pic}(S), D^{2} \geq 0, \mu(D)>0\right\} \\
\text { If } d<\min \left\{\frac{5 \gamma}{4}+\frac{\mu+m+9}{2}, \frac{5 \gamma}{4}+\frac{m+10}{2}, \frac{3 \gamma}{2}+5, \frac{\gamma+g-1}{2}+4\right\},
\end{gathered}
$$

then $E_{C, A}$ only has a $1 \subset 4$ filtration.

Acknowledgements

- Asher Auel
- Committee: Asher Auel, Andreas Knutsen, John Voight, David Webb
- Lizzie Buchanan, Juanita Duque Rosero, Steve Fan, Grant Molnar, Alex Wilson
- Dartmouth Grad students, DANTS, and Faculty
- Asher Auel, Gavril Farkas, Nathan Pflueger, Dave Jensen, Andreas Knutsen, Hannah Larson, Margherita Lelli-Chiesa, Isabel Vogt, John Voight
- Family and friends
- All of you!

Thank You!

Questions?

