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Abstract

Brill–Noether theory studies the different projective embeddings that an algebraic

curve admits. For a curve with a given projective embedding, we study the question

of what other projective embeddings the curve can admit. Our techniques use curves

on K3 surfaces. Lazarsfeld’s proof of the Gieseker–Petri theorem solidified the role of

K3 surfaces in the Brill–Noether theory of curves. In this thesis, we further the study

of the Brill–Noether theory of curves on K3 surfaces.

We prove results concerning lifting line bundles from curves to K3 surfaces. Via an

analysis of the stability of Lazarsfeld–Mukai bundles, we deduce a bounded version of

a conjecture of Donagi–Morrison concerning when a Brill–Noether special line bundle

of rank 3 on a curve on a polarized K3 surface lifts to a line bundle on the K3

surface. In joint work with Asher Auel, we also present a strategy for distinguishing

Brill–Noether loci by studying the lifting of linear systems on curves in polarized

K3 surfaces, which motivates a conjecture identifying the maximal Brill–Noether

loci. Using our new lifting results, we prove cases of the maximal Brill–Noether loci

conjecture. We also investigate the Brill–Noether theory of K3 surfaces and verify

cases of a conjecture of Knutsen and Mukai concerning the Picard groups of K3

surfaces with Brill–Noether special curves.
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Chapter 1

Introduction

Algebraic geometry is the study of the set of solutions to a system of polynomial

equations, called a variety. Varieties of dimension 1, algebraic curves, already exhibit

a range of interesting behavior. For example, genus 0 curves are the projective line

P1 and smooth conics, and genus 1 curves are elliptic curves, which have been central

objects of study in number theory and algebraic geometry. The geometry of higher

genus curves becomes more intricate, and moduli spaces of curves of higher genus

have fascinated mathematicians since the 19th century. In particular, writing down

an explicit curve of high genus is quite difficult, unless the curve belongs to very

special families. The moduli space Mg of genus g curves is an object of great interest

in topology and geometry, and special families of curves inside the moduli space can

shed light on the geometry of Mg.

Classical Brill–Noether theory concerns the study of linear systems on curves,

which roughly speaking, correspond to embeddings of the curve in projective space.

Given a linear system on a curve C, we say it is of type grd if the linear system induces

a morphism C → Pr of degree d. The presence of these linear systems provide

information about geometric and arithmetic properties of the curve. Brill–Noether

theory is in some sense studying how the geometry of curves constrains the way
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Introduction Introduction

they can be represented by equations. Classically, questions of interest are describing

the space Gr
d(C) of all grds on a curve C, how the genus of the curve affects these

spaces, and how the presence of linear systems affects the geometry of curves. The

Brill–Noether theorem, recalled in Theorem 2.49, states that when the Brill–Noether

number ρ(g, r, d) = g− (r+1)(g−d+ r) is non-negative, the general curve of genus g

has a grd, that is, G
r
d(C) is nonempty. Moreover, much is known about the geometry

of Gr
d(C) [4]. However, when ρ(g, r, d) < 0, Gr

d(C) is empty for a general curve. This

means that in Mg, the curves which do admit a grd with ρ(g, r, d) < 0 form a proper

subvariety called a Brill–Noether locus, denotedMr
g,d. Such curves and linear systems

are called Brill–Noether special.

Lazarsfeld’s proof of the Brill–Noether–Petri theorem using smooth curves on K3

surfaces solidified the role of K3 surfaces in Brill–Noether theory. The proof also

introduced Lazarsfeld–Mukai bundles, which are vector bundles on the K3 surface

associated to linear systems on curves, and highlighted the utility of restricting to

curves on K3 surfaces to answer questions about curves in general.

The study of special divisors on curves was considered by Saint-Donat, Reid, and

others [21, 32, 44, 46, 56, 57, 61, 75, 77]. Following classical work on linear systems of

type g1d, Harris and Mumford conjectured that the gonality of curves on K3 surfaces

should remain constant in a linear system. More generally, the propagation of special

divisors in linear systems on K3 surfaces was of interest. A counterexample by Donagi

and Morrison showed that this could not hold in general. The conjecture was modified

by Green, who conjectured that the Clifford index of curves should remain constant in

a linear system on a K3 surface. This was proven by Green and Lazarsfeld [32] where

they expanded the use of Lazarsfeld–Mukai bundles to study curves on K3 surfaces.

The study of curves on K3 surfaces via Lazarsfeld–Mukai bundles has a rich history,

including work by Farkas, Hoff, Lelli-Chiesa, Knutsen, and others [3, 39, 55, 56, 57].

2



Introduction Introduction

These results were later improved by Lelli-Chiesa [57] where they also prove that the

Clifford index is computed by the restriction to C of a line bundle on the K3 surface.

Classically, there are results of Saint-Donat [77] and Reid [75] concerning when a

linear system of type g1d on a curve C on a polarized K3 surface is the restriction of a

line bundle to C. These were extended by Donagi and Morrison [21], and they con-

jectured that any Brill–Noether special linear system on such curves is the restriction

of a linear system on the K3 surface, see Section 4.2 for relevant definitions.

Conjecture 1.1 (Donagi–Morrison Conjecture, [57] Conjecture 1.3). Let (S,H) be a

polarized K3 surface and C ∈ |H| be a smooth irreducible curve of genus ≥ 2. Suppose

A is a complete basepoint free grd on C such that d ≤ g − 1 and ρ(g, r, d) < 0. Then

there exists a line bundle M ∈ Pic(S) adapted to |H| such that |A| is contained in the

restriction of |M | to C and γ(M |C) ≤ γ(A).

In [21], Donagi and Morrison proved Conjecture 1.1 for linear systems of rank 1.

Via an analysis of the stability of Lazarsfeld–Mukai bundles of rank 3, Lelli-Chiesa

gave a proof for linear systems of rank 2 [56]. Building on these ideas, we give a result

for linear systems of rank 3 [6], see Section 5.2 for more details.

Theorem 1.2 ([6]). Let (S,H) be a polarized K3 surface of genus g ̸= 2, 3, 4, 8,

C ∈ |H| a smooth irreducible curve of Clifford index γ, and A a g3d on C. Let

m := min{D2 | D ∈ Pic(S), D2 ≥ 0, and D is effective}

(in particular, there are no curves of genus less than m+2
2

on S), and let

µ := min{D.H | D ∈ Pic(S), D2 ≥ 0, and D.H > 0}.
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If

d < min

{
5
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γ +

µ

2
+

m

2
+

9

2
,
5

4
γ +

m

2
+ 5,

3

2
γ + 5,

γ

2
+

g − 1

2
+ 4

}
then there is a line bundle M ∈ Pic(S) adapted to |H| such that |A| ⊆ |M ⊗OC | and

γ(M ⊗OC) ≤ γ(A). Moreover, one has c1(M).C ≤ 3g−3
2

.

One could hope for a cleaner statement without bounds, however, as we recall

in Example 4.20, the Donagi–Morrison conjecture is false for r ≥ 3. We explain in

Remark 6.39 that our bounds are in some sense optimal, at least in a particular case.

We state a new bounded version of the Donagi–Morrison conjecture in Section 4.4.

Studying linear systems on curves can also shed light on the geometry of Mg.

The Brill–Noether loci stratify Mg in an intricate way, and the geometry of the Brill–

Noether loci is complicated. There are various containments among the Brill–Noether

loci, and a question of interest is to determine the maximal loci. This has been crucial

in understanding the moduli space of genus 23 curves in work of Eisenbud, Harris, and

Farkas on the Kodaira dimension of M23 [24, 26]. Modulo some trivial containments

among Brill–Noether loci, we define the expected maximal Brill–Noether loci and

together with Auel [6], we conjecture that the expected maximal Brill–Noether loci

are distinct.

Conjecture 1.3 (Maximal Brill–Noether Loci Conjecture [6]). In every genus g, the

maximal Brill–Noether loci are the expected ones, except when g = 7, 8, 9.

Our main result is a verification of the conjecture for certain genus.

Theorem 1.4 ([6]). The maximal Brill–Noether loci conjecture holds in genus g ≤ 19

and g = 22, 23.

In Section 6.3 we give the proof, explain the exceptional cases of genus 7–9, and

outline what remains in genus 20 and 21. We also show how our techniques could be

extended by progress on the Donagi–Morrison conjecture.
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In the other direction, K3 surfaces can also be studied by understanding the curves

they contain. In particular, syzygies of a K3 surface with respect to the morphism

induced by the line bundle associated to a curve are in some sense determined by

the Clifford index of the curve [1, 81, 82], which builds on a conjecture of Green on

the syzygies of canonically embedded curves [33]. The geometry of K3 surfaces, in

particular their Picard groups, has been investigated by Knutsen [46, 48, 49, 47, 44].

In particular, the Brill–Noether theory K3 surfaces, as defined by Mukai [62], is closely

tied to the Brill–Noether theory of its hyperplane sections. Specifically, a question of

interest is whether a polarized K3 surface (S,H) is Brill–Noether special if and only

if a curve C ∈ |H| is Brill–Noether special. We give results concerning Brill–Noether

special K3 surfaces using results on the Donagi–Morrison conjecture.

Theorem 1.5. In genus g with 2 ≤ g ≤ 19, a polarized K3 surface (S,H) is Brill–

Noether special if and only if a smooth irreducible curve C ∈ |H| is Brill–Noether

special.

Outline

� In Chapter 2, we give background on lattices, algebraic surfaces, K3 surfaces,

the Brill–Noether theory of curves, and stability of sheaves on K3 surfaces.

� In Chapter 3, we give historical background on the role of K3 surfaces in Brill–

Noether theory and recall (generalized) Lazarsfeld–Mukai bundles on K3 sur-

faces, as well as outline Lazarsfeld’s proof of the Brill–Noether–Petri theorem.

We conclude by giving some useful properties of generalized Lazarsfeld–Mukai

bundles.

� In Chapter 4, we summarize Lazarsfeld–Mukai bundle techniques in the work of

Green–Lazarsfeld, Donagi–Morrison, and Lelli-Chiesa on the Donagi–Morrison

5
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conjecture. We end with a discussion of a new bounded version of the Donagi–

Morrison conjecture.

� In Chapter 5, we give our proof of a bounded version of the Donagi–Morrison

conjecture for linear systems of rank 3. We study the stability of Lazarsfeld–

Mukai bundles of rank 4 and we first reduce the problem to finding a bound

on the second Chern class of the Lazarsfeld–Mukai bundle for each terminal

filtration. After obtaining bounds for each terminal filtration, we give a proof

of our result. This is taken from [6].

� In Chapter 6, we outline the maximal Brill–Noether Loci Conjecture and how

results on the Donagi–Morrison conjecture can answer cases of the Maximal

Brill–Noether Loci Conjecture. We verify the conjecture in genus g ≤ 19 and

g = 22, 23. This is taken from [6].

� In Chapter 7, we present new results on a conjecture of Mukai and Knutsen on

the Brill–Noether theory of K3 surfaces. This is joint work with Auel.

6



Chapter 2

Preliminaries

In this chapter, we provide some background on lattices in Section 2.1, algebraic

surfaces in Section 2.2, K3 surfaces in Section 2.3, the Brill–Noether theory of curves

in Section 2.4, and the stability of sheaves on K3 surfaces in Section 2.5.

Section 2.1

Lattices

We briefly introduce notation and recall standard definitions concerning integral bi-

linear forms following [41, Chapter 14].

Definition 2.1. A lattice is a free, finite-rank Z-module Λ equipped with a non-

degenerate, symmetric, integral bilinear form

Λ× Λ → Z, (a, b) 7→ (a.b)Λ,

which we call the intersection form on Λ. We generally write a.b = (a.b)Λ when the

lattice Λ is understood. We write a2 := a.a, called the self-intersection of a.

Recall that the intersection form is nondegenerate if for every a ∈ Λ \ {0}, there

exists b ∈ Λ such that a.b ̸= 0.

7



2.1 Lattices Preliminaries

We recall some standard notions for lattices.

� Choosing a basis {ai} for Λ, the Gram matrix, or intersection matrix, is given

by GΛ = (ai.aj)i,j. The determinant of GΛ is the discriminant of Λ, disc(Λ).

� A lattice Λ is even if for every a ∈ Λ, we have a2 ∈ 2Z.

� The signature (n+, n−) of Λ is the signature of the natural extension of the

intersection form to ΛR := Λ ⊗Z R. A lattice is definite if either n+ = 0 or

n− = 0. Otherwise, it is called indefinite.

� The hyperbolic plane is the lattice U of rank 2 with intersection matrix given

by 0 1

1 0

 .

� A morphism between lattices φ : Λ1 → Λ2 is a Z-linear map that respects

the bilinear forms: (φ(a).φ(b))Λ2 = (a.b)Λ1 for all a, b ∈ Λ1. We say that

φ : Λ1 → Λ2 is of finite index if φ(Λ1) ⊂ Λ2 has finite index as abelian groups.

� For a lattice Λ, the dual lattice is defined by

Λ∗ := HomZ(Λ,Z),

whose Gran matrix is G−1
Λ . Alternatively, one sees that

Λ∗ ∼= {x ∈ ΛQ | x.b ∈ Z for all b ∈ Λ ⊆ ΛQ},

where ΛQ := Λ⊗Z Q.

8



2.1 Lattices Preliminaries

� There is an injection of finite index

iΛ : Λ ↪→ Λ∗, x 7→ (y 7→ x.y) .

The cokernel of iΛ is called the discriminant group of Λ, denoted

AΛ := Λ∗/Λ.

� The discriminant group AΛ is a finite group of order | disc(Λ)|. A lattice is

called unimodular if disc(Λ) = ±1.

� The length of Λ, denoted ℓ(Λ), is the minimal number of generators of AΛ as

an abelian group.

� An injective morphism of lattices φ : Λ1 ↪→ Λ2 is called primitive if Λ2/φ(Λ1)

is torsion free.

� If Λ1 ↪→ Λ2 is an embedding such that Λ2/Λ1 is a finite group, the index of Λ1

in Λ2, denoted [Λ2 : Λ2] is the order of Λ2/Λ1.

� Let Λ1 ↪→ Λ2 be a finite index embedding. From the inclusions

Λ1 ↪→ Λ2 ↪→ Λ∗
2 ↪→ Λ∗

1,

it follows that

disc(Λ1) = disc(Λ2) · (Λ2 : Λ1)
2.

� For a lattice Λ and m ∈ Z, we denote by Λ(m) the lattice obtained from Λ by

multiplying the intersection form by m: that is, (a.b)Λ(m) := m(a.b)Λ.

9



2.2 Algebraic surfaces Preliminaries

� There is a unique even, unimodular, positive definite lattice of rank 8 up to

isomorphism, called the E8 lattice. The Gram matrix of E8 is given by



2 −1

−1 2 −1

−1 2 −1 −1

−1 2 0

−1 0 2 −1

−1 2 −1

−1 2 −1

−1 2



.

� The K3 lattice is defined to be ΛK3 := U⊕3 ⊕ E8(−1)⊕2.

Remark 2.2. A result of Milnor states that if Λ is an even indefinite unimodular

lattice, then Λ ∼= U⊕x ⊕ E8(−1)⊕y for some x, y ∈ Z≥0. Thus the K3 lattice is the

unique even unimodular lattice of signature (3, 19).

We recall a theorem of Nikulin [67, Theorem 1.14.4] on the uniqueness of embed-

dings of lattices.

Theorem 2.3. Let Λ be an even unimodular lattice of signature (n+, n−) and let Λ1

be an even lattice of signature (m+,m−). If m+ < n+, m− < n−, and ℓ(Λ1) + 2 ≤

n++n−−m+−m−, then there exists a primitive embedding Λ1 ↪→ Λ which is unique

up to post composing by an automorphism of Λ.

Section 2.2

Algebraic surfaces

We briefly recall facts about algebraic surfaces following [38, 41, 73].

10



2.2 Algebraic surfaces Preliminaries

Unless otherwise specified, we let k be an algebraically closed field of characteristic

0. By a variety over k, we mean a separated, integral scheme of finite type over k. By

a surface over k, we mean a smooth algebraic surface, that is, a projective, connected,

nonsingular variety over k of dimension 2.

Let S be a surface over k. For a coherent sheaf F on S, if the surface is understood,

we write hi(F ) := hi(S, F ). The Euler characteristic of F is χ(F ) =
∑

i≥0 h
i(F ). We

note that

χ(OS) = 1− q + pg,

where q = h1(OS) is the irregularity of S and pg = h2(OS) is the geometric genus

of S.

Let Pic(S) be the group of line bundles on S modulo isomorphism. We shall

denote linear equivalence by ∼ or = if we are only considering divisors up to linear

equivalence. The Néron–Severi group of S is

NS(S) := Pic(S)/Pic0(S),

the quotient of Pic(S) by the subgroup Pic0(S) of line bundles in Pic(S) algebraically

equivalent to OS.

If the base field k is understood, we write ΩS instead of ΩS/k for the sheaf of

differentials. We also write KS or ωS = detΩS for the canonical divisor or canonical

line bundle, respectively. For L ∈ Pic(S), we denote its dual, HomOS
(OS, L) by −L,

L∗, or L∨. (The three ways of writing the same thing is so we can match other authors

who use one of these.)

The Picard group has a symmetric bilinear form Pic(S)× Pic(S) → Z given by

L1.L2 := χ(OS)− χ(L∗
1)− χ(L∗

2) + χ(L∗
1 ⊗OS

L∗
2).

11



2.2 Algebraic surfaces Preliminaries

Thus NS(S)/NS(S)tor is a lattice.

We say a line bundle L is numerically trivial if L.L′ = 0 for all line bundles

L′, where L.L′ denotes the intersection form on Pic(S). Elements of Pic0(S) are

numerically trivial. We say L and L′ and numerically equivalent, denoted by L ≡ L′

if L − L′ is numerically trivial. Let Picτ (S) be the subgroup of numerically trivial

line bundles. The quotient

Num(S) := Pic(S)/Picτ (S)

is a quotient of NS(S). One can also write Num(S) as the group of Weil divisors on

S modulo numerical equivalence.

Proposition 2.4 (Severi’s “theorem of the base”, Lefschetz (1, 1) Theorem). The

groups NS(S) and Num(S) are finitely generated, and ρ(S) := rkNS(S) = rkNum(S).

Definition 2.5. We call ρ(S) the Picard number of S.

We recall some facts about the intersection pairing on surfaces.

� If L1 = OS(C) for an integral curve C ⊂ S, then L1.L2 = deg(L2|C) if L1 and

L2 intersect transversely.

� If L is ample, then L.OS(C) > 0.

� The intersection form restricted to Num(S) is nondegenerate.

Theorem 2.6 (Hirzebruch–Riemann–Roch). Let L be a line bundle on S. Then

χ(L) = χ(OS) +
L.(L−KS)

2
.
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2.2 Algebraic surfaces Preliminaries

More generally, for a coherent sheaf F on S, one has

χ(F ) =

∫
S

ch(F ). td(S) = [ch(F ). td(S)]2,

where

ch(F ) = rk(F ) + c1(F ) +
c1(F )2 − 2c2(F )

2

is the Chern character of F ,

td(S) = 1− c1(ΩS) +
c1(ΩS)

2 + c2(ΩS)

12

is the Todd class of Ω∗
S, and [x]2 is the degree 2 piece of x in the Chow ring of S after

identifying it with Z.

Corollary 2.7. For a vector bundle F on S,

χ(F ) = rk(F ) · χ(OS) +
c1(F ).(c1(F )−KS)

2
− c2(F ).

Let C be a reduced curve on S. Recall that the arithmetic genus of a curve C is

pa(C) := 1− χ(C,OC).

Theorem 2.8. Let C be an irreducible curve on S. Then

ωC = (OS(C)⊗ ωS) |C .

In particular, one has 2pa(C)− 2 = C2 + C.KS for any reduced curve C.

We now recall the Hodge index theorem and useful corollaries. Let H be an ample

divisor on S, and let h be the image of H in Num(S)R. Let

h⊥ := {x ∈ Num(S)R | x.h = 0}.

13
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Theorem 2.9 (Hodge index theorem). The restriction of the intersection form on

Num(S)R is negative definite on h⊥.

Since h2 > 0, the intersection form is positive definite on ⟨h⟩ ⊆ Num(S)R. Thus

the Hodge index theorem says that the signature of the intersection form on Num(S)R

is (1, ρ(S)− 1).

We can rephrase this using divisors.

Corollary 2.10. If D is a divisor such that D.H < 0, then either D2 < 0 or D ≡ 0.

Corollary 2.11 ([41, Chapter 2, Remark 2.2]). If L1 and L2 are line bundles such

that L2
1 > 0, then

L2
1 · L2

2 ≤ (L1.L2)
2.

Moreover, if L2 is not numerically trivial, then equality holds if and only if L1 and

L2 are linearly dependent in Num(S)Q.

Proof. To prove the first statement, notice that L2
1L2 − (L1.L2)L1 ∈ L⊥

1 and apply

the Hodge index theorem.

To prove the second statement, consider the sublattice ⟨L1, L2⟩ ⊆ Num(S) gener-

ated by L1 and L2. Equality is equivalent to the matrix

 L2
1 L1.L2

L1.L2 L2
2


having determinant 0, which is equivalent to L1 and L2 being dependent over R, in the

sense that ⟨L1, L2⟩R ⊆ Num(S)R is 1-dimensional. Since Li ∈ Num(S)Q ⊆ Num(S)R,

linear dependence over R actually gives linear dependence over Q.

Corollary 2.12. Let L1 satisfy L2
1 > 0. If L2 ∈ L⊥

1 , then either L2
2 < 0 or L2 is

numerically trivial.

14
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Proof. By the above, we must have L2
2 ≤ 0. If L2 is not numerically trivial, assume

for contradiction that L2
2 = 0. Since we have equality in the corollary above, we have

mL2 = nL1. Furthermore, since L2
1 > 0, we must have n = 0, so mL2 ≡ 0 ∈ Num(S).

However, since Num(S) is torsion free, m = 0.

We recall a few facts about divisors on surfaces, some of which we will return to

in the following section, when we focus on K3 surfaces. We follow the exposition in

[38, 41, 73], other references are [7, 54].

Recall the universal property of projective space.

Proposition 2.13. Let R be a commutative ring and X a scheme over R. Then the

scheme Pn
R represents the functor SchR → Set given by

X 7→ {rank 1 locally free quotients of On+1
X }.

More concretely, there is a functorial bijection

HomR(X,Pn
R) ↔ {invertible sheaves L on X globally generated by n+ 1 sections}.

Thus if L is globally generated, we obtain a morphism φ|L| : S → Ph0(S,L)−1 in-

duced by the global sections of |L|. Recall that L is very ample if φ|L| is an embedding,

and L is ample if there is a positive integer m such that φ|mL| gives an embedding.

A divisor D is called (very) ample if the same is true of OS(D).

However, if L is not globally generated, we may still obtain a rational map

to Pn. To every line bundle L on S, one associates the complete linear system

|L| := P(H0(S, L)); equivalently, this is the space of all effective divisors D lin-

early equivalent to L. The base locus Bs |L| of |L| is the maximal closed subscheme

of S contained in all effective divisors D ∈ |L|, concretely Bs |L| =
⋂

s∈H0(S,L) Z(s).

15
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If h0(S, L) ≥ 2, then the map induced by |L| on S \ Bs |L| gives a rational map

φ|L| : S 99K Ph0(S,L)−1 induced by the global sections of |L|.

Since S is a surface, the base locus of L can have components of dimension zero

and one. The one dimensional parts of Bs |L| are called the fixed part, denoted by F .

The natural inclusion L(−F ) ↪→ L yields an isomorphism H0(S, L) ∼= H0(S, L(−F )),

and we can view φ|L| as φ|L(−F )|. We can extend φ|L(−F )| to a morphism S\{xi} → Pn,

where {xi} are the zero dimensional base components of L(−F ), which contains the

zero dimensional locus of Bs |L|. We write M := L(−F ), and call it the mobile part

of L.

We now turn to how properties of line bundles are captured numerically using the

intersection form on NS(S).

Definition 2.14. A line bundle L on S is called nef if L.C ≥ 0 for all closed curves

C ⊂ S. L is called big and nef if L2 > 0 and L is nef. We do not define the notion

of big here, we note that it does not mean L2 > 0.

Theorem 2.15 (Kodaira–Ramanujam). If L is a big and nef line bundle, then

H i(S, L⊗ ωS) = 0 for i > 0.

Definition 2.16. The positive cone CS ⊆ NS(S)R is the connected component of the

set {x ∈ NS(S)R | x2 > 0} that contains an ample class. Note that CS contains all

the ample classes.

The ample cone Amp(S) ⊂ NS(S)R is the set of R>0-linear combinations of ample

classes.

The nef cone is the set

Nef(S) := {x ∈ NS(S)R | x.C ≥ 0 for all curves C ⊂ S}.

Remark 2.17. Note that the positive, ample, and nef cones are all convex cones. It

16
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is not in general true that the nef cone is the convex cone spanned by all nef line

bundles, though the closure of this does give Nef(S), see [41, Chapter 8].

The following result relates numerical conditions to the ampleness of line bundles.

Theorem 2.18 (Nakai–Moishezon–Kleiman). A line bundle L on S is ample if and

only if

L2 > 0 and L.C > 0

for all curves C ⊂ S.

At least numerically, there are obvious relations among the ample and nef cones,

reflected in the following proposition.

Proposition 2.19. Amp(S) is open in CS and Nef(S) is closed in CS . Moreover,

Amp(S) ⊂ InteriorNef(S) ⊂ Nef(S) = Amp(S).

Corollary 2.20. For every class x in the boundary ∂ Nef(S) of the nef cone, either

x2 = 0 or x.C = 0 for an irreducible curve C ⊂ S.

We see then that a divisor D is nef if D.C ≥ 0 for any irreducible curve C ⊂ S.

Equivalently, D.E ≥ 0 for every effective divisor E on S.

A useful numerical outcome of nef-ness is the following.

Proposition 2.21 (Kleiman). If L is a nef line bundle, then L2 ≥ 0.

The study of various cones in Num(S)R is a vast and rich topic. We will focus on

K3 surfaces, and will give further results that can be more explicit once S is assumed

to be a K3 surface.

17
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Section 2.3

K3 surfaces

We begin with general notions of K3 surfaces, curves on K3 surfaces, and the moduli

of K3 surfaces. We then give more precise cases numerical criteria for ampleness and

nefness on K3 surfaces. For those interested in learning more, we recommend [41].

Definition 2.22. A K3 surface over k is a complete non-singular variety S of dimen-

sion 2 such that

Ω2
S
∼= OS and H1(S,OS) = 0.

We now assume, unless otherwise specified that k = C.

Example 2.23. We give a few examples of K3 surfaces.

� A smooth quartic S ⊂ P3 is a K3 surface, by adjunction and the Lefschetz

hyperplane theorem.

� A smooth complete intersection S of type (d1, . . . , dn) in Pn+2 is a K3 surface

if and only if
∑n

i=1 di = n + 3 (as then KS is trivial, again by adjunction).

Under the assumption that all di > 1, there are in fact only 3 cases: a smooth

quartic in P3, the intersection of a quadric and a cubic in P4 (n = 2 and d1 = 2,

d2 = 3), or the intersection of 3 quadrics in P5 (n = 3 and di = 2). These yield

K3 surfaces of degree 4, 6, and 8, respectively. Here by degree we mean that the

pull back of OPn(1) to S gives a line bundle of the given degree. We give more

details on degree when we define polarized K3 surfaces, see Definition 2.24.

� A smooth surface with a degree 2 map π : S → P2 branched along a smooth

sextic curve. This gives a K3 surface of degree 2 (which can be seen by com-

puting ωS via the Riemann–Hurwitz theorem for surfaces), and is called a K3

double plane. This example will be useful in Chapter 4.
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Recall the Hodge numbers hp,q := dimHq(S,Ωp
S), and the Hodge decomposition

Hk(S,C) =
⊕

p+q=k

Hq(S,Ωp
S).

For a K3 surface, the algebraic classes in H2(S,C) coincide with Hodge classes

H1,1(S): that is, Pic(S) ∼= H2(S,Z) ∩ H1,1(S). To see this, note that the cycle

class map

Pic(S) → H2(S,Z) ∩H1,1(S)

is surjective by the Lefschetz (1, 1)-theorem (the Hodge theorem in codimension 1)

for K3 surfaces. The kernel of the cycle class map is H1(S,OS)/H
1(S,Z) by the

exponential exact sequence, hence is trivial for K3 surfaces. For more details on

Hodge structures, see [41, Chapter 3].

We recall some basic and some nontrivial facts about K3 surfaces.

� KS = 0.

� S has geometric genus pg = h0(S, ωS) = 1.

� χ(OS) = 2, hence by Theorem 2.6, χ(L) = 2 + L2

2
.

� For a coherent sheaf F on S, by Theorem 2.6 we have

χ(F ) = 2 rk(F ) + ch2(F ) = 2 rk(F ) +
c1(F ).(c1(F )−KS)

2
− c2(F ).

� There are isomorphisms Pic(S) ∼= NS(S) ∼= Num(S).

� Pic(S) is torsion free. Indeed, if L were a torsion line bundle, then L2 = 0 so we

have χ(L) = 2, hence L of −L is effective. But a nonzero section of ±L would

give a nonzero section of ±mL. Thus if mL is trivial, so is L.
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� The algebraic fundamental group π1(S) is trivial, which follows from the fact

that H1(S,Z) = 0.

� The intersection form on Pic(S) is even, non-degenerate, and of signature (1, ρ−

1).

� h1(S, ωS) = h1(S,OS) = 0, which is crucial in the relation between K3 surfaces

and curves.

� h0(S, ωS) = h2(S,OS) = 1, i.e. H2,0(S) = H0(S,Ω2
S) = kωS.

� By the Hodge decomposition and Theorem 2.6, we have 2h0(S,ΩS)−h1(S,ΩS) =

ch2(ΩS) + 4 = 4− c2(ΩS) = −20. Since h0(S,ΩS) = 0, we have h1(S,ΩS) = 20.

� The Hodge diamond

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2
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of a K3 surface is

1

0 0

1 20 1

0 0

1

� H2(S,Z) together with the cup product is an even unimodular lattice of signa-

ture (3, 19), hence isomorphic to the K3 lattice ΛK3, see Remark 2.2.

� Since Pic(S) = H2(S,Z) ∩H1,1(S), we have ρ(S) ≤ dimC H
1,1(S) = 20.

Definition 2.24. By a polarized K3 surface (S,H) we mean a K3 surface S together

with an ample line bundle H. We say (S,H) is of degree d if H2 = d.

Note that for any line bundle L, the self-intersection L2 is even, and thus we can

always write H2 = d = 2g − 2. Because the arithmetic genus of any smooth curve in

|H| is g.

Definition 2.25. We say (S,H) is a polarized K3 surface of genus g whenH2 = 2g−2.

Remark 2.26. There is a more general notion of lattice polarized K3 surfaces, defined

as follows. Let Λ be an even nondegenerate lattice of signature (1, ρ−1), and let H be

a distinguished class positive norm. Then a Λ-polarized K3 surface is a polarized K3

surface (S,H) together with a primitive isometric embedding Λ ↪→ Pic(S) preserving

H. For more on the moduli of lattice polarized K3 surfaces, see [20].

The moduli space of K3 surfaces becomes better behaved once one chooses a

polarization. In particular, the moduli space of K3 surfaces of degree d is a quasipro-

jective variety of dimension 19. Moreover, there is a Torelli-type theorem for algebraic
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K3 surfaces due to Bogomolov, Kulivok, Piatetskii-Shapiro, Shafarevich, and Tjurin

[11, 10, 50, 72, 76, 83] which we briefly recall following notes by Várilly-Alvarado [80,

Section 1.9].

Definition 2.27. A marking on a complex K3 surface S is an isometry of lattices

Φ : H2(S,Z) → ΛK3. By a marked K3 surface, we mean a pair (S,Φ). We can extend

Φ to a map ΦC : H2(S,C) → ΛK3 ⊗ C.

Let

Ω := {x ∈ P(ΛK3 ⊗ C) | (x.x) = 0, (x.x) > 0},

where (, ) denotes the intersection form on ΛK3 ⊗C. We call Ω the period domain of

complex K3 surfaces.

We call ΦC(CωS) ∈ P(ΛK3 ⊗ C) the period point of (S,Φ).

It is easy to see that Ω is an open set (in the complex topology) of a quadric in

P(ΛK3 ⊗ C).

Theorem 2.28 (Weak Torelli Theorem). Two complex K3 surfaces S and S ′ are

isomorphic if and only if there are markings

H2(S,Z)
Φ

%%
ΛK3

H2(S ′,Z)
Φ′

99

whose period points in Ω coincide.

Theorem 2.29 (Strong Torelli Theorem). Let (S,Φ) and (S ′,Φ′) be marked complex

K3 surfaces whose period points in Ω coincide. Suppose that

f ∗ = (Φ′)−1 ◦ Φ : H2(S,Z) → H2(S ′,Z)
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satisfies f ∗(CS) ⊆ CS′ and induces a bijection on effective classes. Then there is a

unique isomorphism f : S ′ → S inducing f ∗.

We would like to deal more explicitly with the Picard lattices of K3 surfaces, hence

we recall the key theorems which tell us that the geometry of a K3 surface is in some

way determined by its Picard lattice. We follow [80, Section 1.10]. Ideally, we would

like a K3 surface to be determined by its Picard lattice, which is not the case. So

we would like to at least know that there is a K3 surface with a particular lattice

we are interested in. This is true; in fact, given a Picard group of rank ρ, there is a

20− ρ dimensional space of K3 surfaces with that Picard group. In particular, a very

general algebraic K3 surface has Picard rank 1, i.e., Pic(S) = Z[H].

By definition, a point x ∈ P(ΛK3⊗C) gives a 1-dimensional subspace in ΛK3⊗C.

From x, we want to construct a Hodge decomposition

H2,0 ⊕H1,1 ⊕H0,2

of ΛK3⊗C that would be the Hodge decomposition if we started with a K3 surface. Let

the 1-dimensional subspace associated to x be H2,0 ⊂ ΛK3⊗C, let H0,2 = H2,0 be the

conjugate linear subspace, and let H1,1 be the orthogonal complement of H2,0 ⊕H0,2

in ΛK3 ⊗ C with the induced bilinear form. We say that

H2,0 ⊕H1,1 ⊕H0,2

is a decomposition of K3 type for ΛK3 ⊗ C.

Theorem 2.30 (Surjectivity of the period map). Let x ∈ Ω be a point inducing a

decomposition

ΛK3 ⊗ C = H2,0 ⊕H1,1 ⊕H0,2
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of K3 type, then there exists a complex K3 surface S and a marking Φ : H2(S,Z) →

ΛK3 such that ΦC preserves the Hodge decomposition.

Recall that Pic(S) = H2(S,Z)∩H1,1(S). Thus we are interested in which lattices

we can embed into H2(S,Z) ∼= ΛK3.

Theorem 2.31 ([67, Corollary 1.12.3]). There exists a primitive embedding Λ ↪→ ΛK3

of an even lattice Λ of rank r and signature (p, r − p) into ΛK3 if p ≤ 3, r − p ≤ 19,

and ℓ(Λ) ≤ 22− r.

In particular, if Λ is an even lattice of rank 2 whose Gram matrix has negative

discriminant, then there is a K3 surface with Pic(S) = Λ.

We conclude this section by recalling that the moduli spaces of polarized K3

surfaces are nice.

Theorem 2.32. For each d > 0, the moduli space of polarized complex K3 surfaces

of degree 2d is an irreducible quasi-projective variety of dimension 19.

Let (S,H) be a polarized K3 surface of genus g. In the moduli space K◦
g of

polarized K3 surfaces of genus g, the Noether–Lefschetz (NL) locus parameterizes

K3 surfaces with Picard rank > 1. We will mostly be interested in K3 surfaces of

Picard rank 2. In particular, we define the rank 2 lattice Λr
g,d to be the lattice with

intersection matrix

Λr
g,d :=

H L

H 2g − 2 d

L d 2r − 2

.

By Hodge theory, the NL locus is a union of countably many irreducible divisors,

which we call NL divisors. We define the NL divisor Kr
g,d to be the locus of polarized

K3 surfaces (S,H) ∈ Kg such that admits a primitive embedding of Λr
g,d in Pic(S)

preserving H. We note that the Kr
g,d are each irreducible by [68].
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2.3.1. Curves on K3 surfaces

We now turn to the main focus of this thesis, curves on K3 surfaces. We briefly recall

some basic facts about curves on K3 surfaces, and then return to numerical criteria

for ampleness and other properties of line bundles on K3 surfaces.

Proposition 2.33. Let C ⊂ S be an irreducible curve. Then the following statements

hold.

(i) ωC = OS(C)|C.

(ii) C2 = 2pa(C)− 2 hence C2 ≥ −2.

(iii) C2 = −2 if and only if C is a smooth rational curve.

(iv) C2 = 0 if and only if pa(C) = 1.

(v) If pa(C) ≥ 2, then C is big and nef.

Proof. Since S is a K3 surface, we have KS = 0, thus the adjunction formula reads

ωC
∼= OS(C)|C ,

and taking degrees gives 2pa(C)−2 = C2. This proves (i)-(iv). To prove (v), we note

that if pa(C) ≥ 2, then C2 > 0 and for any other irreducible curve C ′ ⊂ S, C.C ′ > 0

as C ′ cannot be a component of the irreducible curve C. Thus C is big and nef if

pa(C) ≥ 2.

Definition 2.34. By a (−2)-curve on a K3 surface, we mean an irreducible curve C

with C2 = −2.

Note that a (−2)-curve is in fact integral. Thus for a (−2)-curve C, the above

implies that pa(C) = 0, and pg(C) = 0, hence C is smooth. Therefore C is rational.

We recall a few consequences of the Riemann–Roch theorem on K3 surfaces.
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Proposition 2.35 ([41, Chapter 2, Section 1.4]). Let L be a line bundle on S.

(i) If L2 ≥ −2, then H0(S, L) ̸= 0 or H0(S,−L) ̸= 0. The converse does not hold.

(ii) If L2 ≥ 0, then either L ∼= OS or h0(S, L) ≥ 2 or h0(S,−L) ≥ 2.

(iii) If h0(S, L) = 1 and D ⊂ S is the effective divisor defined by the unique section

of L, then every curve C ⊆ D satisfies C2 ≤ −2, and if C is integral, then

C2 = −2, whereby C is rational.

Proof. Straightforward computations with the Riemann–Roch theorem prove (i) and

(ii). To prove (iii), write D =
∑

aiCi. Since h
0(S,D) = 1, we have h0(S,Ci) = 1 for

any integral component Ci of D. Thus Riemann–Roch gives C2
i = −2.

Corollary 2.36 ([41, Chapter 2, Corollary 1.3]). The fixed part F of a line bundle L

on a K3 surface is a linear combination of smooth rational curves, i.e., F =
∑

aiCi

with ai ≥ 0 and Ci rational.

Proof. Write L = M +F , where F is the fixed part of L and M is the mobile part of

L. Then h0(S, F ) = 1 since F is fixed. The result follows from (iii) of the previous

proposition.

Using this, we can improve the Nakai–Moishezon–Kleiman characterization of the

ample cone, Theorem 2.18, in the case of K3 surfaces.

Proposition 2.37. The closure of the ample cone Amp(S) is

Nef(S) = {x ∈ CS | x.C ≥ 0 for all (−2)-curves C }.

That is, a line bundle L on S is ample if and only if L.C > 0 for every smooth

rational curve C ⊂ S.
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Corollary 2.38. Let L be a line bundle on S satisfying L2 ≥ 0 and L.C ≥ 0 for all

smooth rational curves C ⊂ S. Then L is nef unless S has no smooth rational curves,

in which case L or −L is nef.

In summary, the ampleness and nefness of a line bundle can be checked numeri-

cally.

Proposition 2.39. Let L be a line bundle on a K3 surface S.

(i) L is ample if and only if L ∈ CS (L is in the positive cone of X) and L.C > 0

for all smooth rational curves C on S.

(ii) If L is effective and L2 ≥ 0, then L is nef if and only if L.C ≥ 0 for all smooth

rational curves C on S.

We now look more closely at smooth curves on K3 surfaces, and state an important

result of Saint-Donat.

Recall that if C ⊂ S is a smooth curve of genus g, then C2 = 2g − 2. Moreover,

from the short exact sequence for the divisor C, we have

0 → H0(S,OS) → H0(S,OS(C)) → H0(C,OS(C)|C) → H1(S,OS) = 0,

whereby h0(S,OS(C)) = g+1. Clearly, since C is effective, h2(S,C) = h0(S,−C) = 0.

Moreover, since χ(OS(S)) = g + 1, we have h1(S,OS(C)) = 0.

For an irreducible curve C with C2 > 0, we have that OS(C) is big and nef. We’ve

just seen that h1(S,OS(C)) = 0 as well. In fact this holds for any big and nef line

bundle on S.

Proposition 2.40 ([41, Chapter 2, Proposition 3.1]). Let L be a big and nef line

bundle on S. Then H1(S, L) = 0.
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Proof. Since L is big and nef, Riemann–Roch gives h0(S, L) ≥ 3. Thus there is some

(potentially reducible) curve C ∈ |L|, and L = OS(C). We want to show that C is

integral, in which case the result would follow from the discussion above.

Pick a maximal integral component C1 ⊂ C with h0(C1,OC1) = 1. We claim

C = C1. If not, then C1.(C−C1) ≥ 1, since C is 1-connected [41, Chapter 2, Remark

1.7]. Thus there is an integral component C2 of C − C1 such that C1.C2 ≥ 1, hence

H0(S,OC2(−C1)) = 0. Thus considering the short exact sequence

0 → H0(S,OC2(−C1)) → H0(S,OC1+C2) → H0(S,OC1),

shows that C1 + C2 also satisfies h0(S,OC1+C2) = 1, contradicting the maximality of

C1. Hence L = OS(C) for an integral curve, and the result follows.

We summarize a classical result of Saint-Donat from [77].

Theorem 2.41 ([57, Theorem 1.5]). Let L be a line bundle on a K3 surface S such

that h0(S, L) > 0. Then, |L| has no base points outside its fixed components. More-

over, if |L| has no basepoints, then either

(i) L2 > 0, and h1(S, L) = 0 and a general element in |L| is a smooth, irreducible

curve of genus g = 1 + L2

2
; or,

(ii) L2 = 0, and L = OS(rE) for an irreducible curve E with pa(E) = 1 and r ≥ 1.

In this case, one has h0(S, L) = r + 1, h1(S, L) = r − 1 and every element in

|L| can be written as a sum E1 + · · ·+ Er with Ei ∈ |E|.
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Section 2.4

Brill–Noether theory for curves

In this section, we recall facts about the Brill–Noether theory of curves, and highlight

important theorems in the subject. For an introduction to Brill–Noether theory, we

highly recommend reading [35] for an overview of classical Brill–Noether theory and

[4] for detailed constructions and proofs.

In brief, “Brill–Noether theory” is the study of how a curve C of genus g can be

embedded in projective space Pn. Specifically, by Proposition 2.13, this is equivalent

to studying linear systems on C. One is then interested in many kinds of questions

including: Does C admit a map of degree d to Pn? If so, how many? If not, how

special is the curve?

Throughout this section, let C be a smooth algebraic curve of genus g.

Definition 2.42. A linear system of type grd on C is a pair (A, V ) of a line bundle A of

degree d on C and V a (r+1)-dimensional subspace ofH0(C,A). When V = H0(S,A),

we say that the linear system is complete.

We see that maps C → Pr of degree d correspond to linear systems (A, V ) of type

grd with no basepoints.

Definition 2.43. Given a line bundle A on C, we say A has rank r if r = rk(A) :=

h0(C,A) − 1, and A has degree d if A ∈ Picd(C). We say that A is a line bundle of

type grd if rk(A) = r and deg(A) = d, i.e. the complete linear system of A is a grd as

above.

Theorem 2.44. Let A be a line bundle of type grd on a curve C of genus g. Then

χ(C,L) = h0(C,A)− h1(C,A) = r + 1− h1(C,A) = d− g + 1.
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If F is a vector bundle on a curve of genus g, then

χ(C,F ) = h0(C,F )− h1(C,F ) = c1(F ) + rk(F )(1− g),

where c1(F ) = deg(F ) is the degree of the line bundle det(F ) on C.

Definition 2.45. A line bundle A on C is called special if h1(C,A) > 0.

We denote by Mg the coarse moduli space of smooth curves of genus g ≥ 2.

Deligne and Mumford proved in [19] thatMg is an irreducible, quasi-projective variety

of dimension 3g−3 over k. We shall say that a property of a curve is an open property

if it holds for curves inside a nonempty (Zariski) open set of Mg.By a general curve,

or a property holding on a general curve, we mean that there is some nonempty

(Zariski) open set of Mg of such curves.

We now turn to the central objects of study in Brill–Noether theory.

Definition 2.46. Let C be a curve. The space

Gr
d(C) := {(A, V ) | (A, V ) is a grd on C}

parameterizes the linear systems on C of degree d and rank r.

The space W r
d (C) := {A ∈ Picd(C) | rk(A) ≥ r} is the image of Gr

d(C) in Pic(C)

under tha natural map

Gr
d(C) → Pic(C)

(A, V ) 7→ A

.

For details on how the schemes Gr
d(C) can be defined and constructed, see [4].

30



2.4 Brill–Noether theory for curves Preliminaries

These spaces also admit global versions, namely moduli spaces Gr
g,d and Wr

g,d with

maps to Mg. That is,

Gr
g,d := {(C, (A, V )) | [C] ∈ Mg, (A, V ) ∈ Gr

d(C)}

which has a map to Mg with fiber Gr
d(C) over [C] ∈ Mg. Similarly, we define

Wr
g,d := {(C,A) | C ∈ Mg, A ∈ W r

d (C)}

with a similar map to Mg. In Sections 6.2 and 6.3, we focus on the Brill–Noether

loci Mr
g,d, namely the image of Gr

g,d → Mg for some r and d. The Brill–Noether loci

can also be defined as the degeneracy loci of maps of vector bundles on Mg [79], and

in the cases we consider are a proper subvariety of Mg.

Results in Brill–Noether theory concern the dimensions and geometric properties

of these spaces. Namely, the Brill–Noether theorem answers the questions of how

many maps of degree d to Pn curves admit.

Definition 2.47. Let g, r, d be positive integers. The Brill–Noether number is

ρ(g, r, d) := g − (r + 1)(g − d+ r).

If A is a line bundle of type grd on a curve C of genus g, we write ρ(C,A), or ρ(A), if

C is understood for ρ(g, r, d).

Remark 2.48. For a line bundle A of type grd on a curve of genus g, by Riemann–Roch

(Theorem 2.44) we have

ρ(C,A) = g − h0(C,A) · h1(C,A).
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We now state various theorems that are sometimes all together known as “The

Brill–Noether Theorem”, parts of which were proved by Gieseker, Grittiths, Harris,

Fulton, Kempf, and Lazarsfeld.

Theorem 2.49 (Brill–Noether Theorem). Let g, r, d be positive integers. Then the

following statements hold.

(i) If ρ(g, r, d) ≥ 0, then W r
d (C) ̸= ∅ for all [C] ∈ Mg. Furthermore, if

g−d+ r ≥ 0, then each irreducible component of W r
d (C) has dimension at least

ρ(g, r, d).

(ii) If ρ(g, r, d) ≥ 0, then Gr
d(C) ̸= ∅ for any C ∈ Mg.

(iii) If ρ(g, r, d) < 0, a general curve in Mg admits no grd.

(iv) For a general curve C ∈ Mg, dimGr
d(C) = ρ(g, r, d) and the variety Gr

d(C) is

smooth.

(v) For a general curve C ∈ Mg, if ρ(g, r, d) > 0, then the variety Gr
d(C) is irre-

ducible.

(vi) Gr
g,d has a unique irreducible component that surjects onto Mg if and only if

ρ(g, r, d) ≥ 0, and that component has relative dimension exactly ρ(g, r, d).

(vii) Specifically, when ρ(g, r, d) = 0, a general curve C ∈ Mg has a finite number of

grd’s, given by

#W r
d (C) = g!

r∏
i=0

i!

(g − d+ r + i)!
.

(viii) For C ∈ Mg general, and any (A, V ) ∈ Gr
d(C), the Petri map (given by multi-

plication of sections)

µ0 : H
0(C,A)⊗H0(C, ωC ⊗ A∗) → H0(C, ωC)
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is injective.

For the proofs and additional context, see [4, 35, 36].

We elaborate on (viii) following the exposition in [73].

For a line bundle A of type grd on C, there is a multiplication map

µ0 : H
0(C,A)⊗H0(C, ωC ⊗ A∗) → H0(C, ωC),

which is called the Petri map associated to A on C. Note that the domain of µ0

has dimension (r + 1) · (g − d + r), while the target has dimension g. Therefore the

image of µ0 has codimension at least ρ(g, r, d), potentially higher if µ0 is not injective.

In particular, µ0 is injective if and only if imµ0 has codimension exactly ρ(g, r, d).

Dualizing µ0 and applying Serre duality gives

µ∨
0 : H1(C,OC) → H0(C,A)∨ ⊗H1(C,A).

Thus µ0 is injective if and only if dim kerµ∨
0 = ρ(g, r, d), as the kernel of µ∨

0 is the

cokernel of µ0.

The geometric properties of W r
d (C) are closely related to µ0.

Proposition 2.50 ([4, Chapter 4, Proposition 4.2]). Let A ∈ W r
d (C) \ W r+1

d (C).

Then the following hold.

(i) The tangent space to W r
d (C) at A is isomorphic to kerµ∨

0 .

(ii) The tangent space to W r
d (C) at a point B ∈ W r+1

d (C) is the whole tangent space

TB Picd(C). In particular, if W r
d (C) has dimension ρ(g, r, d) and g− d+ r > 0,

then B is a singular point of W r
d (C).
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Therefore, for A ∈ W r
d (C) \W r+1

d (C), we have

ρ(g, r, d) ≤ dimA W r
d (C) ≤ dimkerµ∨

0 .

Together with the discussion of the injectivity of µ0, we have the following.

Corollary 2.51. W r
d (C) is smooth of dimension ρ(g, r, d) at a point A ∈ W r

d (C) \

W r+1
d (C) if and only if µ0 is injective.

Petri conjectured that for a general curve C in Mg, all line bundles have injective

Petri map µ0. This is an open condition in Mg, hence it suffices to find a single

example (for each genus) of a curve satisfying Petri’s condition, namely that all Petri

maps on C are injective. An explicit example was recently constructed in [3]. The

conjecture that the Petri map is injective for general curves was proven by Gieseker.

Theorem 2.52 (Brill–Noether–Petri Theorem, [31]). For a general curve C, all line

bundles on C have injective Petri map µ0.

Gieseker’s proof uses a degeneration argument to stable curves, we do not give

details of this proof. A different proof was found later by Lazarsfeld [53]. In partic-

ular, Lazarsfeld’s proof uses K3 surfaces to find smooth curves which satisfy Petri’s

condition. Our results, and many other results in Brill–Noether theory of curves and

K3 surfaces, use the techniques developed by Lazarsfeld, so we recall the proof after

introducing the relevant objects, see Chapter 3.

The question “If C does admit a grd, but ρ(g, r, d) < 0, how special is C?” is still

left unanswered. That is, one would like to know if ρ(g, r, d) < 0, how many curves

have a grd, or what constraints exist on curves with a grd. A coarse answer would be

to give the codimension of the locus of such curves. In general, this is quite difficult,

though there has been by progress by Cook-Powell–Jensen, Edidin, Eisenbud–Harris,

Pflueger, and others [14, 14, 12, 17, 22, 24, 45, 71].
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Definition 2.53. A line bundle A of type grd on a curve C of genus g is called Brill–

Noether special if ρ(C,A) < 0. A curve C is called Brill–Noether special if it admits a

Brill–Noether special line bundle. When ρ(g, r, d) < 0, the Brill–Noether locus Mr
g,d

is the subvariety of Mg parameterizing curves admitting a line bundle of type grd.

While the Brill–Noether locus Mr
g,d has expected codimension −ρ in Mg, the ge-

ometry of Brill–Noether loci is complicated by the existence of multiple components

with some that may be non-reduced and not of the expected dimension. The codi-

mension of components of Mr
g,d is bounded above by −ρ when ρ < 0, see [28], but

the actual codimensions could be lower and known examples exist when −ρ > g − 3,

see [71]. On the other hand, when ρ(g, r, d) = −1, Eisenbud and Harris [24] show

that Mr
g,d is irreducible of codimension 1. More generally, when −3 ≤ ρ ≤ −1, any

component of Mr
g,d has codimension −ρ, see [22, 24, 78].

A question of interest is then to determine the stratification of Mg by Brill–

Noether loci and, in particular, to identify those loci that are maximal with respect to

containment. For Brill–Noether divisors, this is equivalent to having distinct support,

a property that is crucially used by Eisenbud and Harris [23], and further developed

by Farkas [26], to give lower bounds on the Kodaira dimension of M23. We will return

to the question of distinguishing Brill–Noether loci and identifying maximal loci in

Chapter 6.

We conclude this chapter by recalling two further important notions which capture

how “special” a curve is.

Definition 2.54. The gonality gon(C) of a curve C is

gon(C) := min{d | C has a g1d}.

The gonality measures of how far C is from being rational. Indeed, if gon(C) = 1,

35



2.4 Brill–Noether theory for curves Preliminaries

then C is rational. The idea of how far a curve is from being rational has been

extended to varieties and has become a quickly growing topic of research, going under

the name “degree of irrationality”.

A curve of genus ≥ 2 is called hyperelliptic if C admits a finite map C → P1 of

degree 2. In particular, C is hyperelliptic if and only if gon(C) = 2.

By the Brill–Noether theorem, we see that the gonality of curves can depend on

the genus. In particular, the general curve of genus g has g1d if and only if ρ(g, 1, d) =

2d − g − 3 ≥ 0. Solving for d, we see that a general curve of genus g admits a

g1d if and only if d ≥ ⌊g+3
2
⌋. In particular, every curve of genus g has a g1⌊ g+3

2
⌋ by

Theorem 2.49(ii), hence gon(C) ≤ ⌊g+3
2
⌋, with equality for a general curve in Mg.

We call ⌊g+3
2
⌋ the maximal or general gonality of a curve of genus g.

The study of the Brill–Noether theory of curves of a fixed gonality has been very

fruitful and uses many techniques from degeneration to chains of elliptic curves to

tropical geometry, see [16, 27, 43, 51, 52, 69, 70].

Generalizing this to higher rank, one can prove a more general result.

Lemma 2.55. For x ∈ R>0, we have

⌈x⌉ − 1 =


⌊x⌋ x /∈ Z>0

x− 1 x ∈ Z>0

.

Thus ⌈x⌉ − 1 is the smallest integer strictly less than x.

Proposition 2.56. Let g, r, d be positive integers. For fixed g and fixed r, the maximal

d such that ρ(g, r, d) < 0 is d = ⌈r + rg
r+1

⌉ − 1.

Proof. Simply rearranging ρ(g, r, d) = g− (r+1)(g−d+r) < 0 gives d < r+ rg
r+1

.

Another invariant for curves which we focus on is the Clifford index.
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Definition 2.57. The Clifford index of a line bundle A on C is the integer

γ(A) = deg(A)− 2 rk(A)

where r(A) = h0(C,A)− 1 is the rank of A.

We say that a line bundle A on C contributes to the Clifford index of C if

h0(C,A) ≥ 2 and h1(C,A) ≥ 2.

The Clifford index of C is defined by

γ(C) := min{γ(A) | h0(C,A) ≥ 2 and h1(C,A) ≥ 2}.

We say that a line bundle A on C computes the Clifford index of C if γ(A) = γ(C).

Remark 2.58. In the definition of the Clifford index, we assume h1(C,A) ≥ 2 to the

trivial and canonical line bundle, which always have h1 = 1 and Clifford index 0.

Note that by the Riemann–Roch theorem, we have γ(A) = γ(ωC ⊗ A∗). In par-

ticular, if A contributes to the Clifford index, then deg(A) ≤ 2g − 2.

Remark 2.59. If C is hyperelliptic, then γ(C) = 0, and the converse follows from

Clifford’s theorem, below.

Clifford’s theorem, below, is in some sense a classical theorem in Brill–Noether

theory. While it does not directly say anything about varieties we have introduced,

it does give bounds on what line bundles curves can carry.

Theorem 2.60 (Clifford’s Theorem). If A is an effective line bundle of degree d on

C with d < 2g − 2, then r(A) ≤ d
2
. Moreover, if r(A) = d

2
, then either L is trivial, L

is the canonical line bundle, or C is hyperelliptic and L is a multiple of a g12 on C.

Thus we have γ(C) ≥ 0, with equality if and only if C is hyperelliptic. Similarly,

one can prove that if γ(C) = 1, then C is either trigonal or a plane cubic. Moreover,
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since a g1d has Clifford index d− 2, γ(C) ≤ gon(C)− 2, we immediately obtain

γ(C) ≤
⌊
g − 1

2

⌋
,

and by the Brill–Noether theorem equality holds for general curves in Mg. Hence we

call ⌊g−1
2
⌋ the general Clifford index.

There is a relation between the gonality and Clifford index of a curve. Namely,

one has, as in [18],

γ(C) + 2 ≤ gon(C) ≤ γ(C) + 3,

with gon(C) = γ(C) + 2 if and only if γ(C) is computed by a g1gon(C).

Definition 2.61. The Clifford dimension of a curve C is the integer

Cliffdim(C) := min{r(A) | A computes γ(C)}.

We also note that curves with gon(C) = γ(C) + 3 are called exceptional and are

conjectured to be extremely rare [25]. The existence of such curves on K3 surfaces

was proven in [25]. Exceptional curves lying on K3 surfaces have been classified by

Knutsen, see [49].

Section 2.5

Stability of sheaves on K3 surfaces

In this section, we recall the notions of slope stability (µ-stability, or Mumford-

Takemoto stability) and (Gieseker) stability of coherent sheaves. We then focus on

these notions on K3 surfaces. Standard references are [42], as well as [41].

We briefly recall standard results on coherent sheaves on a smooth surface S.

� A coherent sheaf F on S is torsion free if for every affine open U ⊂ S, F (U) is
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a torsion free OS(U)-module.

� If F is torsion free, then F is locally free away from a finite set of closed points.

� The dual, F∨ := Hom(F,OS) of a coherent sheaf F is locally free.

� The double dual F∨∨ := Hom(F∨,OS) is called the reflexive hull of F . There

is a natural morphism F → F∨∨ which is injective if and only if F is torsion

free. The cokernel of this map is a sheaf with support in dimension zero.

� The rank of a coherent sheaf is the defined to be the rank of F∨.

� Any torsion free sheaf of rank 1 is isomorphic to a sheaf M⊗Iζ withM ∈ Pic(S)

and Iζ the ideal sheaf of a subscheme ζ ⊂ S of dimension zero.

Before we can define the notion of stability, we recall some facts about Hilbert

polynomials.

For an arbitrary projective schemeX with an ample line bundleOX(1), the Hilbert

polynomial of a sheaf F is

P (F,m) := χ(F (m)) =
d∑

i=0

αi(F )
mi

i!
,

where d is the dimension of the support of F , and αi ∈ Z. For a sheaf F of rank

r with support of dimension 2 and Chern classes c1, and c2 on a smooth projective

surface S with ample line bundle H, this becomes

P (F,m) =

∫
S

ch(F )

(
1 +mH +

m2H2

2

)
td(S)

=
rH2

2
m2 +m (H.c1 + rH.c1(X)) + α0(F ).

Remark 2.62. Note that αdim(X)(OX) is the degree ofX with respect to the embedding

given by OX(1).
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Note also that for a sheaf F whose support has maximal dimension d = dim(X),

the rank of F is rk(F ) = αd(F )
αd(OX)

. Some authors, e.g., [42], prefer to define the rank of

a coherent sheaf in this way.

For sheaves of smaller dimensional support, e.g. torsion sheaves or skyscraper

sheaves, the role of torsion-free sheaves is played by pure sheaves.

Definition 2.63. A coherent sheaf F of dimension d is called pure (of dimension d)

if every non-trivial subsheaf E ⊂ F also has dimension d. In particular, a sheaf of

maximal dimension d = dim(X) is pure if and only if it is torsion free.

Definition 2.64. The reduced Hilbert polynomial p(F,m) (sometimes just p(F )) of

a coherent sheaf F of dimension d is

p(F,m) :=
P (F,m)

αd(F )
.

The notion of stability is defined in terms of reduced Hilbert polynomials. In

particular, it aims to capture how many sections a sheaf has. While it may seem

unmotivated, the notion of stability is crucial to the construction of moduli spaces of

sheaves on a given variety. See [41, Chapter 10, Examples 1.1, 1.2] for a discussion of

why stability (not just fixing numerical invariants or a Hilbert polynomial) is needed

for moduli spaces of sheaves to be well-behaved, in particular to be of finite type and

separated.

Recall that polynomials have a natural lexicographic order given by their coeffi-

cients. Explicitly, given two polynomials f and g, we say f ≤ g if f(m) ≤ g(m) for

m ≫ 0. Similarly, we say f < g if f(m) < g(m) for m ≫ 0.

Definition 2.65. It will be handy to introduce a bit of short-hand notation. If we

write (semi)something followed by f(≤)g, we mean that f ≤ g for semisomething’s,

whereas f < g for something’s.
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Definition 2.66 ((Giesker) stability). Let F be a pure sheaf. F is called (semi)stable

if for all proper non-trivial subsheaves E ⊂ F , one has

p(E)(≤)p(F ).

Definition 2.67. We say that a sheaf F is properly semistable if F is semistable but

not stable.

Remark 2.68. If we wish to avoid the need for F to be a pure sheaf, we could define a

coherent sheaf of dimension d to be (semi)stable if for all proper subsheaves E ⊂ F ,

one has

αd(F )P (E)(≤)αd(E)P (F ).

This is however equivalent, see [42, Section 1.2]

Example 2.69. Line bundles are stable. However, a direct sum of two line bundles of

different degree is not even semistable.

We recall some standard facts about (semi)stable sheaves.

Proposition 2.70. Let F be a coherent sheaf of pure dimension d. Then the following

are equivalent.

(i) F is (semi)stable.

(ii) For all proper saturated subsheaves E ⊂ F , one has p(E)(≤)p(F ).

(iii) For all proper quotient sheaves E ↠ G with αd(G) > 0, one has p(E)(≤)p(G).

(iv) For all proper quotients of pure dimension d, F ↠ G, one has p(F )(≤)p(G).

Proposition 2.71. Let F and G be semistable coherent sheaves of pure dimension

d.
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(i) If p(F ) > p(G), then Hom(F,G) = 0.

(ii) If p(F ) = p(G), and f ∈ Hom(F,G) is nontrivial, then f is injective if F is

stable and surjective if G is stable.

(iii) If G or F is stable, p(F ) = p(G), and αd(F ) = αd(G), then any nontrivial

f ∈ Hom(F,G) is an isomorphism.

Corollary 2.72. If F is a stable sheaf, then End(F ) = Hom(F, F ) is a finite di-

mensional division algebra over k. In particular, if k is algebraically closed, then

k ∼= End(F ).

Definition 2.73. We say a sheaf F is simple if End(F ) is a division algebra.

Thus a stable sheaf is simple. The converse is not true. To see a good example,

see [42, Example 1.2.10].

For a surface S, the notions of the reduced Hilbert polynomial can be simplified

a little. Namely, if F is a pure sheaf of dimension 2 on a smooth projective surface

S, then

p(F,m) =
m2

2
+m

(
H.c1(F )

rk(F )H2
+

H.c1(S)

H2

)
+

α0(F )

rk(F )H2
.

In particular, since the degree 2 term is always the same, and the remaining terms

all have H2 in the denominator, we can normalize the reduced Hilbert polynomial.

Remark 2.74. For a K3 surface, c1(S) = 0, and so for a coherent sheaf F on a polarized

K3 surface (S,H), we have

p(F,m) =
m2

2
+m

H.c1(F )

rk(F )H2
+

α0(F )

rk(F )H2
.

Definition 2.75. Let F be a coherent sheaf on a polarized K3 surface (S,H). We
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define the normalized Hilbert polynomial of F to be

p(F, n) :=
χ(F ⊗Hn)

rk(F )
=

H2

2!
n2 + µ(F )n+

χ(F )

rk(F )

where µ(F ) = H.c1(F )/ rk(F ).

Remark 2.76. Going forward, when we consider sheaves on surfaces, we may take

the reduced or the normalized Hilbert polynomials and obtain the same notion of

stability. Thus we generally take the normalized Hilbert polynomial for surfaces.

However, so that we match the conventions taken in [41, 42], we will take the reduced

Hilbert polynomial when we consider arbitrary varieties unless otherwise specified.

Historically, the notion of stability of sheaves first appeared in the study of vector

bundles on curves [65]. For a smooth projective curve C of genus g and a locally free

sheaf E of rank r on C, the Riemann–Roch theorem states that

χ(E) = deg(E) + r(1− g).

Thus the Hilbert polynomial is

P (E,m) = r deg(C)m+ deg(E) + r(1− g) = r (deg(C)m+ µ(E) + (1− g)) ,

where µ(E) := deg(E)/r is called the slope of E. A notion of stability, see below,

can be defined by using the slope instead of Hilbert polynomials, it is called slope

stability. For further reading on vector bundles on curves, we recommend the classic

paper by Atiyah which classifies vector bundles on elliptic curves [5] and the excellent

book [66].

The notion of slope stability remains important for varieties of dimension ≥ 2,

however, the notions of stability and slope stability differ. For curves, however, the
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notions of stability coincide, and it may have been more natural to define slope

stability first.

Definition 2.77. Let X be a smooth projective variety of dimension d with ample

divisor H and F be a coherent sheaf of dimension d. The degree of F is

deg(F ) := c1(F ).Hd−1.

The slope of F is defined as

µH(F ) :=
deg(F )

rk(F )
.

When the choice of H is clear or unnecessary, we omit it from the notation.

Note that the degree, and hence the slope depends on the choice of an ample divisor

H. In general, there are many notions of stability, and we direct the interested reader

to read [9, 59, 60].

Definition 2.78. A torsion-free sheaf F is called µ-(semi)stable or slope (semi)stable

if for all subsheaves E ⊂ F with 0 < rk(E) < rk(F ) one has

µ(E)(≤)µ(F ).

Example 2.79. As with stability, line bundles are slope stable. The direct sum F1⊕F2

of two slope stable sheaves Fi is never slop stable, but is slope semistable if and only

if µ(F1) = µ(F2).

Remark 2.80. As with stability, one obtains equivalent conditions for slope stability

or semistability as in Proposition 2.71 and Corollary 2.72.

A question jumps out, what is the relationship between stability and slope stabil-

ity, which the following theorem answers.
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Theorem 2.81. Let X be a variety and E be a pure coherent sheaf on X with support

of maximal dimension, then one has the following implications

µ-stable =⇒ stable =⇒ semistable =⇒ µ-semistable.

As one would hope, simple objects are the building blocks on larger objects. For

sheaves, semistable sheaves are the building blocks for pure sheaves.

Definition 2.82. Let F be a non-trivial pure sheaf of maximum dimension. A

Harder–Narasimhan filtration for F is an increasing filtration

0 = HN0(F ) ⊂ HN1(F ) ⊂ · · · ⊂ HNℓ(F ) = F

such that the factors grHN
i (F ) = HNi(E)/HNi−1(F ) for i = 1, . . . , ℓ are torsion free

semistable sheaves with reduced Hilbert polynomials pi = p(grHN
i (F ), n) satisfying

pmax(F ) = p1 > · · · > pℓ = pmin(F ).

In particular, for surfaces, we see that µ(grHN
1 (F )) > µ(grHN

2 (F )) > · · · >

µ(grHN
ℓ (F )). Additionally, on surfaces, if F is a vector bundle then the sheaves

HNi(F ) are locally free. We also have µ(HN1(F )) > µ(HN2(F )) > · · · > µ(F ).

Theorem 2.83. Every pure sheaf has a unique Harder–Narasimhan filtration.

Theorem 2.84. Let F be a pure sheaf. There is a subsheaf E ⊂ F such that for all

subsheaves G ⊂ F , one has p(E) ≥ p(G), and equality holds when G ⊂ E. Moreover,

the sheaf E is uniquely determined and semistable.

Definition 2.85. The subsheaf E in the theorem is called the maximal destabilizing

subsheaf of F .
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The uniqueness of the Harder–Narasimhan filtration implies that the polynomials

pmax(F ) and pmin(F ) are well defined.

Example 2.86. F is semistable if and only if F is pure and pmax(F ) = pmin(F ).

The minimum and maximum reduced Hilbert polynomials play a similar role to

the Hilbert polynomials.

Proposition 2.87. If F and G are pure sheaves with pmin(F ) > pmax(G), then

Hom(F,G) = 0.

Just as semistable objects are building blocks for pure sheaves, we may break

down the semistable sheaves into stable pieces, though this may not be unique. This

is similar to the Jordan–Hölder decomposition of a group, hence the name.

Definition 2.88. Let F be a semistable sheaf. A Jordan–Hölder filtration of F is an

increasing filtration

0 = JH0(F ) ⊂ JH1(F ) ⊂ · · · ⊂ JHℓ(F ) = F,

such that the factors grJHi (F ) = JHi(F )/JHi−1(F ) for i = 1, . . . , ℓ are torsion free

stable sheaves with reduced Hilbert polynomial p(F,m).

Note that the sheaves JHi(F ) are also semistable with reduced Hilbert polynomial

p(F,m). In particular, µ(F ) = µ(grJHi (F )) for all i.

The Jordan–Hölder filtration is not uniquely determined, as can be seen by taking

the direct sum of two line bundles with the same degree.

Theorem 2.89. Jordan–Hölder filtrations always exist. Moreover, the associated

graded object grJH(F ) =
⊕
i

grJHi (F ) is uniquely determined by F .

Definition 2.90. We say that two semistable sheaves are S-equivalent if the associ-

ated graded objects of their Jordan–Hölder filtrations are isomorphic.
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We now take a brief detour through some definitions for coherent sheaves on K3

surfaces before stating results on the moduli spaces of sheaves on K3 surfaces.

Recall from the Hirzebruch–Riemann–Roch theorem, Theorem 2.6, that

χ(F ) =

∫
S

ch(F ) td(S).

We can generalize this to an expression for a quadratic form, the Euler pairing.

Definition 2.91. For E and F two coherent sheaves, let

χ(E,F ) :=
∑
i≥0

(−1)i dimExti(E,F ).

By Serre duality, we have χ(E,F ) = χ(F,E), and if E is locally free, then

χ(E,F ) = χ(E∨ ⊗ F ). In particular, one can see that χ(OS, F ) = χ(F ). We would

like to view χ(E,F ) as an intersection, so we want the expression to be somewhat

symmetric. The only non-symmetric part is td(S), so we simply split it into two

pieces,
√
td(S) = 1 + c2(S)

24
. Then Theorem 2.6 generalizes to

χ(E,F ) =

∫
S

ch∗(E) ch(F ) td(S) =

∫
S

(
ch∗(E)

√
td(S)

)(
ch(F )

√
td(S)

)
,

where ch∗ is defined by

ch∗
i := (−1)i chi

which yields

ch∗(E) = ch(E∨)

for a locally free sheaf E.

Definition 2.92. For a sheaf E on a polarized K3 surface (S,H), the Mukai vector
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is given by

v(E) := ch(E)
√

td(S)

= (rk(E), c1(E), ch2(E) + rk(E))

= (rk(E), c1(E), χ(E)− rk(E)) ,

considered as an element in H∗(S,Z) = H0(S,Z)⊕H2(S,Z)⊕H4(S,Z).

Remark 2.93. The Mukai vector can also be considered in étale, singular, crystalline,

or de Rham cohomology; in the Chow ring; or in the numerical Grothendieck group.

Definition 2.94. The Mukai pairing is given by

⟨v(E), v(F )⟩ := −χ(E,F ) = −
∑
i

(−1)i Exti(E,F ) = −
∫
S

v(E)∗ ∧ v(F ),

where for v(E) = v0 + v2 + v4 ∈ H∗(S,Z) with vi ∈ H i(S,Z), we write v(E)∗ :=

v0 − v2 + v4.

Remark 2.95. Note that the Mukai pairing differs from the usual intersection form

on H∗(S,Z) by a sign on H0 ⊕H4.

Proposition 2.96. For a simple sheaf F , we have χ(F, F ) = 2−dimExt1(F, F ) ≤ 2.

In particular, ⟨v(F ), v(F )⟩ ≥ −2.

Proof. Indeed, since F is simple, we have Ext0(F, F ) = Hom(F, F ) ∼= k, and

Ext2(F, F ) ∼= Hom(F, F )∨ ∼= k.

Theorem 2.97. For fixed Hilbert polynomial P , the functor taking a k-scheme X of

finite type to the set of families of semistable flat sheaves on S with Hilbert polynomial
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P parameterized by X,

M : (Sch/k)fin → (Sets)

X 7→ {E ∈ Coh(X × S) | E is X-flat , P (Ex) = P,Ex is semistable}/ ∼,

is corepresented by a projective k-scheme M , where E ∼ E⊗π∗
1L for π1 : X×S → X

is projection onto X and L ∈ Pic(X) is any line bundle. That is, M has a moduli

space M . Moreover, the closed points of M parameterize the S-equivalence classes of

semistable sheaves with Hilbert polynomial P .

Proposition 2.98. Let M be the moduli space of M and let t ∈ M be a point

corresponding to a stable sheaf F ∈ M(k). Then there is a natural isomorphism

TtM ∼= Ext1(F, F ).

Since P (F,m) = χ(F (m)) = −⟨v(F ), v(OS(−m))⟩, the Mukai vector determines

the Hilbert polynomial.

Conversely, if E is a sheaf on X × S with X connected, such that Ex is flat over

Sx for every x ∈ X; that is, E is a X-flat family of sheaves Ex on S parameterized

by X, then v(Ex) is constant. Indeed, χ(Ex, F ) is constant for all coherent sheaves

F on S.

Thus, when we consider moduli spaces of sheaves on K3 surfaces, instead of fixing

the Hilbert polynomial, it is more convenient to fix a Mukai vector. So let v be

a Mukai vector, and consider the moduli functor M(v) is semistable sheaves with

Mukai vector v, and its moduli space M(v). Since the Mukai vector depends on

the polarization H, we write MH(v) if we wish to specify the polarization. There

is a (possibly empty) subscheme M s(v) ⊂ M(v) parameterizing stable sheaves with

Mukai vector v.

Theorem 2.99. At a point t ∈ M s(v) corresponding to a sheaf F , the moduli space
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M s(v) is smooth of dimension

dimM s(v) = dimExt1(F, F ).

Corollary 2.100. Either M s(v) is empty, or it is a smooth quasi-projective variety

of dimension 2 + ⟨v, v⟩.

For more details and examples, we suggest [42] and [41, Chapters 9-10].
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Chapter 3

Brill–Noether theory with K3

surfaces

In this chapter, we give historical background of the main results in Brill–Noether the-

ory on K3 surfaces, and highlight the major contributions of K3 surfaces to the study

of Brill–Noether theory of curves. In Section 3.2, we recall properties of Lazarsfeld–

Mukai bundles and outline Lazarsfeld’s proof of the Brill–Noether–Petri theorem. In

Section 3.3, we review Lelli-Chiesa’s generalized Lazarsfeld–Mukai bundles.

Section 3.1

Background

Many results in Brill–Noether theory are proved using degeneration techniques, see

Section 2.4. For instance, Gieseker’s proof of the Brill–Noether–Petri theorem used

a careful consideration of degenerations to stable curves, as well as elaborate com-

binatorial arguments. Techniques developed by Lazarsfeld and Green–Lazarsfeld in-

troduced Lazarsfeld–Mukai bundles on K3 surfaces as incredibly useful objects to

study linear systems on curves on K3 surfaces. Before defining and stating proper-
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ties of Lazarsfeld–Mukai bundles, we recall some theorems which were proved using

these techniques. We conclude this chapter by recalling the notion of generalized

Lazarsfeld–Mukai bundles introduced by Lelli-Chiesa.

We restate Theorem 2.52 for convenience.

Theorem 3.1 (Brill–Noether–Petri Theorem, [31]). For a general curve C, all line

bundles on C have injective Petri map µ0.

Lazarsfeld proved a slightly different theorem, with an added assumption on the

linear system of the curve on a K3 surface.

Theorem 3.2 ([53]). Let S be a complex projective K3 surface, and let C0 ⊂ S be

a smooth connected curve. If every divisor in the linear system |C0| is reduced and

irreducible, then the general curve C ∈ |C0| satisfies Petri’s condition.

The hypothesis is satisfied, in particular, if Pic(S) has rank 1 and is generated by

[C0] (written Pic(S) = Z[C0]) and in some cases when S has Picard rank 2, see [2].

Since for any genus g ≥ 2, there exists a K3 surface of genus g with Pic(S) = Z[C0]

for some C0 ⊂ S, Lazarsfeld’s theorem implies the Brill–Noether–Petri theorem since

by semicontinuity, only a single curve in each genus suffices to prove the theorem

in general. In the course of Lazarsfeld’s proof, it is also shown that Brill–Noether

general curves are readily found on K3 surfaces, providing a new proof of a special

case of the Brill–Noether theorem.

Theorem 3.3 ([53, Corollary 1.4]). If every member of the linear series |C0| is reduced

and irreducible, then ρ(C,A) ≥ 0 for every smooth curve C ∈ |C0| and every line

bundle A on C.

The study of special divisors on curves on K3 surfaces was considered by Saint-

Donat, Reid, and others [21, 32, 44, 46, 56, 57, 61, 75, 77]. Following classical work on
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linear systems of type g1d, Harris and Mumford conjectured that the gonality of curves

on K3 surfaces should remain constant in a linear system. After a counterexample

was constructed by Donagi and Morrison, the conjecture was modified by Green, to a

statement that the Clifford index of curves should remain constant in a linear system

on a K3 surface. We discuss this in more detail in Chapter 4.

Recall that the Clifford index of a curve is the integer

γ(C) = min{γ(grd) = d− 2r | C admits a grd with r ≥ 1, g − d+ r ≥ 2},

which is roughly a measure of the gonality−2, see Section 2.4 for more details.

That the Clifford index is constant in linear systems on K3 surfaces was proven

by Green and Lazarsfeld using Lazarsfeld–Mukai bundles on K3 surfaces.

Theorem 3.4 (Green-Lazarsfeld [32]). Let S be a K3 surface and C ⊂ S a smooth

irreducible curve of genus g ≥ 2. Then γ(C ′) = γ(C) for any smooth curve C ′ ∈ |C|.

Moreover, if γ(C) < ⌊g−1
2
⌋, then there is a line bundle L ∈ Pic(S) such that L|C′

computes γ(C ′).

The second conclusion concerning the restriction of line bundles on K3 surfaces to

line bundles on curves has been an area of interest as well. Saint-Donat [77] and Reid

[75] investigated when a linear system of type g1d on a curve C ∈ |H| on a polarized

K3 surface (S,H) is the restriction of a line bundle L ∈ Pic(S) to C. Donagi and

Morrison proved a more general result for g1d’s [21], and made a conjecture regarding

the general situation, see Section 4.2. Lelli-Chiesa has provided a proof in the case

r = 2 [56], and when A computes the Clifford index of C [57] improving the theorem

by Green–Lazarsfeld. More recently, we have provided results concerning the case

r = 3 [6], see Theorem 5.15. We explore these results more in Chapter 4.
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Section 3.2

Lazarsfeld–Mukai bundles

In this section, we introduce Lazarsfeld–Mukai bundles and establish some of their

basic properties. We also outline Lazarsfeld’s proof of Theorem 3.3. We follow [6, 56,

73], other references include [53, 32, 41].

Let S be a K3 surface and ι : C ↪→ S be a smooth irreducible curve of genus g.

Any basepoint free linear series A ∈ W r
d (C)\W r+1

d (C) can be considered as a globally

generated sheaf ι∗(A) on S. Therefore, the evaluation map

H0(C,A)⊗OS → ι∗(A)

is surjective, and the kernel is a Lazarsfeld–Mukai bundle. Some authors refer to the

kernel of the evaluation map as a kernel bundle.

Definition 3.5. The Lazarsfeld–Mukai bundle FC,A on S associated to C and A is

defined by

FC,A := ker
(
H0(C,A)⊗OS → ι∗(A)

)
.

0 → FC,A → H0(C,A)⊗OS → ι∗(A) → 0.

Its dual, EC,A := F∨
C,A is also called a Lazarsfeld–Mukai (LM) bundle.

We focus mainly on the LM bundle EC,A, and we say that EC,A is the LM bundle

associated with the pair (C,A), or the LM bundle associated to A on C. Before we

establish basic properties of EC,A, we need a quick lemma.

Lemma 3.6 ([73, Lemma 2.5]). Let D be a Cartier divisor on a smooth variety X.

Then

Ext1(OD,OX) ∼= OD(D).
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Proof. Since D is a divisor, OD is a torsion sheaf on X, thus O∨
D = 0. Consider the

exact sequence for the divisor D,

0 → OX(−D) → OX → OD → 0,

and dualize (apply Hom(·,OX)) to get

0 → Hom(OD,OX)︸ ︷︷ ︸
0

→ OX → Hom(OX(−D),OX)︸ ︷︷ ︸
OX(D)

→ Ext1(OD,OX) → Ext1(OX ,OX)︸ ︷︷ ︸
0

.

Tensoring the short exact sequence for D with OX(D), we obtain

0 → OX → OX(D) → OD(D) → 0.

Comparing the last two short exact sequences thus shows Ext1(OD,OX) ∼= OD(D).

Lemma 3.7 ([73, Lemma 2.6]). The LM bundle FC,A is a vector bundle on S of rank

r + 1 = h0(C,A). The LM bundle EC,A sits in a short exact sequence

0 → H0(C,A)∨ ⊗OS → EC,A → ι∗(ωC ⊗ A∨) → 0.

Proof. Since A is a torsion sheaf on S, we immediately see rk(FC,A) = r+1 from the

short exact sequence defining FC,A.

Since (ι∗A)
∨ = 0 and Ext1(H0(C,A)⊗OS

,OS) = 0, dualizing the short exact

sequence defining FC,A, we obtain

0 → H0(C,A)∨ ⊗OS → EC,A → Ext1(ι∗A,OS) → 0,
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as in the previous lemma. Finally, we see that

Ext1(ι∗(A),OS) ∼= Ext1(OC ,OS)⊗ ι∗(A
∨)

by a similar argument as in [38, Chapter III, Proposition 6.7], and Ext1(OC ,OS) ∼=

ι∗(OC(C)) ∼= ι∗(ωC) by the lemma above and adjunction. Thus Ext1(A,OS) ∼=

ι∗(ωC ⊗ A∨), as desired.

The most important properties of FC,A and EC,A can now be read off from the

short exact sequences.

Proposition 3.8. Let C be a smooth irreducible curve of genus g and let A ∈ Pic(C)

be of type grd. Let EC,A be the LM bundle associated to (C,A). Then

(i) rk(EC,A) = r + 1;

(ii) det(EC,A) = OS(C), i.e. c1(EC,A) = C, and c2(EC,A) = deg(A);

(iii) EC,A is globally generated off the base locus of ωC ⊗ A∨ (a finite set);

(iv) H0(S,EC,A) = h0(C,A) + h0(C, ωC ⊗ A∨) = r + 1 + g − d+ r;

(v) h1(S,EC,A) = h1(S, FC,A) = 0;

(vi) h2(S,EC,A) = h0(S, FC,A) = 0;

(vii) χ(S, End(EC,A)) = 2 − 2ρ(g, r, d) = 2h0(S,EC,A ⊗ FC,A) − h1(S,EC,A ⊗ FC,A);

and

(viii) if ρ(g, r, d) < 0, then h0(S, End(EC,A)) > 1 (EC,A is not simple), hence EC,A is

not stable.

Proof. To prove (i) we use the fact that FC,A has rank r + 1.
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The remaining properties of EC,A follow by applying the Whitney formula to the

short exact sequence

0 → H0(C,A)∨ ⊗OS → EC,A → ι∗(ωC ⊗ A∨) → 0,

or by taking cohomology and using the fact that H1(S,OS) = 0.

The Chern classes of ι∗(ωC ⊗ A∨) are readily computed by following [30, Lemma

1, page 30]. We have c1(ι∗(ωC ⊗ A∨)) = C, and

c2(ι∗(ωC ⊗ A∨)) = C2 − deg(ωC ⊗ A∨) = deg(A).

Applying Whitney’s formula, we see that

1 + c1(EC,A) + c2(EC,A) = 1 · (1 + c1(ι∗(ωC ⊗ A∨)) + c2(ι∗(ωC ⊗ A∨))),

and the rest follows.

To prove (iii), we take cohomology and see that we have a surjection

H0(S,EC,A) ↠ H0(S, ι∗(ωC ⊗ A∨)).

Thus every section of ι∗(ωC ⊗ A∨) lifts to a section of EC,A, proving (iii).

Similarly, (iv) and (v) are proven by taking cohomology and noting

h1(S, ι∗(ωC ⊗ A∨)) = h2(S, ι∗(ωC ⊗ A∨)) = h1(S,OS) = 0,

and applying Serre duality to see h1(S,EC,A) = h1(S, FC,A).

To prove (vi), we first note that H0(S, FC,A) = 0 which can be seen by taking
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cohomology in the short exact sequence defining FC,A and recalling that

H0(S, ι∗(A)) = H0(C,A).

Applying Serre duality to FC,A shows that

0 = H0(S, FC,A) = H2(S,EC,A)
∨.

To prove (vii), we compute using the Mukai pairing, to obtain

χ(S, End(EC,A)) = χ(S,EC,A ⊗ FC,A)

= rc1(EC,A)
2 − 2(r + 1)c2(EC,A) + 2(r + 1)2

= 2− 2ρ(g, r, d),

and since End(EC,A) is self-dual Serre duality gives h
0(S, End(EC,A)) = h2(S, End(EC,A)),

from which the last equality follows.

Finally, to see (viii), we see from (vii) that if ρ(g, r, d) < 0, then χ(S, End(EC,A)) >

2, hence h0(S, End(EC,A)) = dimEnd(EC,A) > 1, which over an algebraically closed

field shows that EC,A is not simple.

We are now ready to outline a proof of Theorem 3.3. We follow a few statements

in [41, Chapter 9, Section 2]. For the remainder of the section, let C be a smooth

curve on a K3 surface S, and A a basepoint free (globally generated) line bundle on

C unless otherwise specified.

Proposition 3.9 ([41, Section 9.2, Proposition 2.2]). Assume that ωC⊗A∨ is globally

generated and that every curve in the linear system |C| is reduced and irreducible.

Then FC,A is locally free and simple.
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Proof. Clearly FC,A is simple if and only if its dual, EC,A, is simple. Since ωC ⊗ A∨

is globally generated, it is basepoint free, hence EC,A is globally generated.

If EC,A is not simple, then there exists a non-trivial endomorphism φ ∈ End(EC,A)

with non-trivial kernel. Let K = imφ, which sits in a short exact sequence

0 → K → EC,A → EC,A/K → 0,

hence K is torsion free of rank 0 < rk(K) < r + 1 since φ is not trivial.

Since EC,A is globally generated, and K and EC,A/K are both quotients of EC,A,

their determinants are globally generated and hence det(K) ∼= OS(C1) and det(EC,A/K) ∼=

OS(C2) for some effective curves C1, C2 ⊂ S. We claim that OS(C1) and OS(C2) are

both nontrivial.

We first prove thatOS(C1) is not trivial. Indeed, it is easy to see that Hom(K,OS) =

0 and K is globally generated since K is a quotient of EC,A. The restriction of K to a

generic ample curve D is locally free and globally generated. Thus, there is an exact

sequence

0 → (K|D)∗ → Ork(K)+1
D → det(K)|D → 0

of vector bundles on D, see [42, Chapter 5]. For sufficiently positive D, the restriction

map Hom(K,OS) → Hom(K|D,OD) is surjective whereby Hom(K|D,OD) = 0 and

thus

H0(D, (K|D)∗) = H0(K|D,OD) = 0.

Hence h0(D, det(K)|D) ≥ rk(K)+1, thus deg(K|D) > 0, and thus deg(det(K)|D) > 0,

whereby det(K) = OS(C1) is not trivial.

To prove thatOS(C2) is not trivial, apply the same argument to (EC,A/K)/Tors(EC,A/K),

since EC,A/K is not necessarily torsion free.
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Now, since det(EC,A) ∼= OS(C), we have

OS(C1 + C2) ∼= det(K)⊗ det(EC,A/K) ∼= OS(C),

thus C1 + C2 ∈ |C|, which contradicts the assumption that every curve in |C| is

reduced and irreducible. Thus FC,A and EC,A must be simple.

Remark 3.10. It turns out that in this case EC,A is in fact µ-stable, which we prove

in Corollary 3.13.

Corollary 3.11 ([41, section 9.2, Corollary 2.4]). Assume that every curve in |C| is

reduced and irreducible, then every line bundle A ∈ Pic(S) satisfies ρ(C,A) ≥ 0.

Proof. First assume that A and ωC⊗A∨ are both globally generated. From part (vii)

of Proposition 3.8, we see that if FC,A is simple, then ρ(C,A) ≥ 0.

Thus it remains to reduce to the case that A and ωC ⊗A∨ are globally generated.

If h0(C,A) = 0 or h1(C,A) = 0, then

ρ(C,A) = g − h0(C,A)h1(C,A) = g ≥ 0,

and the result follows. Suppose that A is not globally generated, but h0(C,A) ̸= 0,

and let D be the fixed locus of A. Hence A(−D) is globally generated (basepoint

free), h0(C,A) = h0(C,A(−D)), and

h1(C,A) = h0(C, ωC ⊗ A∨) ≤ h0(C, ωC ⊗ A∨(D)) = h1(C,A(−D)).

Therefore, ρ(C,A) ≥ ρ(C,A(−D)). Thus we may assume thatA is globally generated.

Likewise, we may assume that ωC ⊗ A∨ is globally generated and in removing the

basepoints of ωC ⊗A∨ we do not introduce basepoints for A, otherwise ωC would not

be globally generated.
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Corollary 3.12 ([41, section 9.2, Corollary 2.5]). Assume that every curve in |C| is

reduced and irreducible. If ρ(g, r, d) < 0, then W r
d (C) = ∅.

Proof. We prove the contrapositive. Suppose A ∈ W r
d (C). Then h0(C,A) ≥ r + 1

and deg(A) = d. Thus by Theorem 2.44, we have h1(C,A) ≥ g − d + r, and thus

ρ(g, r, d) = ρ(C,A) ≥ 0 by the previous corollary.

Corollary 3.13 ([41, Section 9.3, Corollary 3.3]). If OS(C) generates Pic(S) and

ωC ⊗ A∨ is basepoint free, then FC,A (and hence EC,A) is µ-stable.

Proof. If F ⊂ FC,A is a locally free subsheaf of rank s, then

det(F ) ⊂
s∧
FC,A ⊂

s∧
Or+1

S = On
S.

Thus OS ⊂ det(F )∨, so h0(S, det(F )∨) > 0. As in the proof of Proposition 3.9 since

EC,A is globally generated, we have that det(F )∨ ∼= OS(C1) with OS(C1) nontrivial.

With the additional assumption that Pic(S) is generated byOS(C), the line bundle

OS(C) is automatically ample and the slope µH is taken with respect to H = C. Thus

if F ⊂ FC,A is a locally free sheaf of strictly smaller rank, then det(F )∨ ∼= OS(kC) for

some k > 0, as det(F )∨ has global sections. Hence deg(F ) = k deg(FC,A) < 0, thus

−kC2

s
= µ(F ) < µ(FC,A) =

−C2

r + 1

as s < r + 1.

Section 3.3

Generalized Lazarsfeld–Mukai bundles

In [57], Lelli-Chiesa introduces generalized LM bundles and shows their utility in

studying the Brill–Noether theory of curves on K3 surfaces. In particular, the proof
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of Lelli-Chiesa’s strengthening of Theorem 3.4, [57, Theorem 4.2], relies on studying

destabilizing subsheaves of generalized Lazarsfeld–Mukai bundles. We recall the def-

inition and basic properties, and return to Lelli-Chiesa’s theorem in the next chapter

once we introduce more context.

Definition 3.14. Let C be a curve and A ∈ Pic(C). The linear system |A| is called

primitive if both A and ωC ⊗ A∨ are basepoint free.

Definition 3.15 ([57] Definition 1). A torsion free coherent sheaf E on S with

h2(S,E) = 0 is called a generalized Lazarsfeld–Mukai bundle (gLM bundle) of type

(I) or (II), respectively, if

(I) E is locally free and generated by global sections off a finite set;

or

(II) E is globally generated.

Remark 3.16 ([57] Remark 1). If conditions (I) and (II) of Definition 3.15 are both

satisfied, then E is the LM bundle associated with a smooth irreducible curve C ⊂ S

and a primitive linear series (A, V ) on C, i.e. E = EC,(A,V ), where EC,(A,V ) is the dual

of the kernel of the evaluation map V ⊗OS → A. Furthermore, V = H0(C,A) if and

only if h1(S,E) = 0, in which case E is just the LM bundle associated to A.

Definition 3.17. Let E be a gLM bundle. The Clifford index of E is:

γ(E) := c2(E)− 2(rk(E)− 1).

Remark 3.18. For the LM bundle EC,A for a smooth curve C ⊂ S and A a grd on C,

one has γ(EC,A) = γ(A) by Proposition 3.8.

Remark 3.19. If E is a gLM bundle of type (I), then there is a short exact sequence

0 → Ẽ → E → τ → 0
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where Ẽ is a globally generated subsheaf of E satisfying H0(S, Ẽ) = H0(S,E) and τ

is a 0-dimensional sheaf supported on the points at which E is not globally generated.

If E is a gLM bundle of type (II), then there is a short exact sequence

0 → E → E∨∨ → κ → 0,

where κ is a 0-dimensional sheaf on S such that H0(S,E) generates E off the support

of κ.

Proposition 3.20 ([57, Proposition 2.4]). Let E be a gLM bundle such that c1(E)2 >

0. If E is of type (I), then the following inequality is satisfied:

Cliff(E) ≥ 2h1(E) + l(τ),

where ℓ(τ) is the length of the 0-dimensional sheaf τ appearing in Remark 3.19. If

instead E is of type (II), we have:

Cliff(E) ≥ Cliff(E∨∨) + l(κ),

where κ is the 0-dimensional sheaf appearing in Remark 3.19.

Lemma 3.21 ([57] Corollary 2.5). Let E be a gLM bundle of rank r and c1(E)2 > 0.

Then, γ(E) ≥ 0. Furthermore, γ(E) = 0 only in the following cases:

(i) r = 1 and E is a globally generated line bundle;

(ii) E = EC,ωC
for some smooth irreducible curve C ⊂ S of genus g = r ≥ 2;

(iii) r > 1 and E = EC,(r−1)g12
for some smooth hyperelliptic curve C ⊂ S of genus

g > r.
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Regarding part (iii) of Corollary Lemma 3.21, the classification of hyperelliptic

linear systems on S due to Saint-Donat ([77, Theorem 5.2]) is helpful.

Theorem 3.22 ([57, Theorem 2.6]). Let C ⊂ S be a smooth hyperelliptic curve of

genus g ≥ 2 and set L := OS(C). Then, one of the following occurs:

� The equality c1(L)
2 = 2 holds.

� There is a smooth, irreducible curve B ⊂ S of genus 2 satisfying L ≃ OS(2B).

� There exists an irreducible elliptic curve Σ ⊂ S such that c1(L) · Σ = 2.

This finishes the basic facts about gLM bundles with c21 > 0. The case of gLM

bundles with c21 = 0 is simpler.

Proposition 3.23 ([57, Proposition 2.7]). Let E be a gLM bundle such that c1(E)2 = 0.

Then, E is both locally free and globally generated and satisfies c2(E) = 0. Further-

more, if h1(E) = 0, then E = OS(Σ)
⊕ rk(E) for an irreducible elliptic curve Σ ⊂ S.

We conclude this chapter with a few useful facts about gLM bundles.

Lemma 3.24. Let N ∈ Pic(S) be nontrivial and globally generated with h0(S,N) ̸= 0.

Let E = EC,A and suppose we have a short exact sequence

0 // N // E // E/N // 0

with E/N torsion free. Then E/N satisfies h1(S,E/N) = h2(S,E/N) = 0. If A is

primitive, then E/N is a gLM bundle of type (II). If we further assume that E/N is

locally free, then it is a LM bundle for a smooth irreducible curve D ∈ |H −N |. If A

is not primitive and E/N is assumed locally free, then E/N is a gLM bundle of type

(I). In any of the above cases, we have

� c1(E/N) = H −N ;
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� c2(E/N) = d+N2 −H.N ;

� γ(E/N) = γ(EC,A) +N2 −H.N + 2.

Proof. If A is primitive, we see that E/N is globally generated as E is globally

generated. From the long exact sequence in cohomology, and noting that h2(S,N) =

h1(S,E) = h2(S,E) = 0, we see that h1(S,E/N) = h2(S,E/N) = 0. Thus E/N is a

gLM bundle of type (II). If E/N is assumed to be locally free, then as in Remark 3.16,

E/N = ED,B is the LM bundle associated to a smooth irreducible curve D ⊂ S and

a line bundle B on D. Finally, if A is not primitive, then E/N is globally generated

off a finite set as it is the quotient of E, which is also globally generated off a finite

subset. Thus E/N is a gLM of type (I).

Applying Whitney’s formula to the exact sequence, we see that

1 + c1(E) + c2(E) = (1 + c1(E/N) + c2(E/N)) (1 +N) ,

hence c1(E/N) = H − N and c2(E/N) = d + N2 − H.N . Finally, as γ(E/N) =

c2(E/N) − 2(rk(E/N) − 1) and rk(E/N) = rk(E) − 1 = (r + 1) − 1 = r, it follows

that

γ(E/N) = d+N2−H.N −2(r−1) = d−2r+N2−H.N +2 = γ(E)+N2−H.N +2.

Remark 3.25. If A is of type grd and L = H −N is a lift of A with L2 = 2r − 2, then

the last equality gives γ(E/N) = γ(A) + (2r − 2)− d+ 2 = 0.

Remark 3.26. The same argument as above shows that if A is primitive andM ⊂ E =

EC,A is a subsheaf such that E/M is torsion free (e.g. obtained through a Harder–

Narasimhan filtration), then E/M is a gLM bundle of type (II). Moreover, by [57,
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Proposition 2.7], if c1(E/M)2 = 0, then c2(E/M) = 0. In the following sections, we

will use the contrapositive of this when c2(E/M) > 0.

We give a brief summary of gLM bundles of low Clifford index. Such a character-

ization can be useful in eliminating certain types of filtrations of Lazarsfeld–Mukai

bundles, see Section 6.3.6.

Proposition 3.27. Let E = EC,A be a LM bundle associated to a primitive linear

system A on C ⊂ S. Suppose there is a globally generated saturated line bundle

N ⊂ E with h0(S,N) ≥ 2 and γ(E/N) ≤ 2. Then either c1(E/N)2 = 0 in which case

E/N = OS(Σ)
⊕r(A) for an irreducible elliptic curve Σ ⊂ S, or c1(E/N)2 > 0 and one

of the following holds:

(i) γ(E/N) = 0, hence E/N is a LM bundle;

(ii) (E/N)∨∨ is a LM bundle of Clifford index 0;

(iii) E/N or (E/N)∨∨ is a LM bundle of Clifford index 1;

(iv) E/N is a LM bundle of Clifford index 2.

Proof. By Lemma 3.24, we see that E/N is a gLM bundle of type (II). If c1(E/N)2 =

0, [57, Proposition 2.7] gives E/N = OC(Σ)
⊕r(A), as stated.

We now assume c1(E/N)2 > 0.

If γ(E/N) = 0, we are in case (i). The fact that E/N is a LM bundle follows

from Proposition 3.20, as then E/N is globally generated as τ = ∅.

If γ(E/N) = 1 and E/N is locally free, we are in case (iii). If E/N is not locally

free, then [57, Proposition 2.4] shows that (E/N)∨∨ has Clifford index 0, and we are

in case (ii).

If γ(E/N) = 2 and E/N is locally free, we are in case (iv). If (E/N) is not locally

free, then [57, Proposition 2.4] again shows that (E/N)∨∨ has Clifford index 0 or 1,

and we are in case (ii) or (iii), respectively.
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Remark 3.28. Furthermore, in case (iv) above, fixing the rank of A narrows the

possibilities for the classification of E/N . For example, when A has rank 3 and E/N

has Clifford index 2, then E/N = ED,g26
for a g26 on a smooth curve D in the linear

system of det(E/N).

Likewise, restricting the Clifford index of a LM bundle E similarly restricts to

which linear system E corresponds. For example, if E is a LM bundle and γ(E) = 1

or γ(E) = 2, then a smooth irreducible curve D ∈ | det(E)| has γ(D) ≤ 2 and is thus

either hyperelliptic (when γ(D) = 0), trigonal or a plane quintic (when γ(D) = 1),

or a plane sextic (when γ(D) = 2 and rk(E) = 3).

One could similarly characterize gLM bundles of type (II) of higher Clifford index,

using [57, Proposition 2.4] repeatedly as in Proposition 3.27, and then fixing the rank

as above.
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Chapter 4

Lifting Linear Systems from curves

to K3 surfaces

The study of linear systems on curves on K3 surfaces has a rich history. In particular,

the linear systems are well behaved as the curve varies in its linear equivalence class on

the K3. For instance, Saint-Donat proved in [77] that for a curve C ⊂ S, C admits a

g12 or a g13 if and only if every smooth curve C ′ ∈ |C| does as well. Following this, Reid

[75] found that there are similar results for other line bundles of type g1d. However,

Donagi and Morrison give conterexamples to the propogation of g1d’s. The general

question of persisting grd’s in linear systems arose out of work of Harris and Mumford

[37] where they used the existence of certain divisors in Mg to give bounds on the

Kodaira dimension. These techniques have been extended by Farkas [26, 27, 28] and

others to give better bounds on the Kodaira dimension of Mg, in particular to show

that M23 is of general type.

In this chapter, we summarize techniques and the work of Green–Lazarsfeld,

Donagi–Morrison, and Lelli-Chiesa [21, 32, 56, 57] on the question of extending linear

systems from a curve to every curve in its linear system. In Section 4.2 we give a

statement of the Donagi–Morrison conjecture, Conjecture 4.6, and results by Donagi–
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Morrison and Lelli-Chiesa. We then highlight Lazarsfeld–Mukai bundle techniques

used to prove cases of Conjecture 4.6. We conclude with a discussion of when Con-

jecture 4.6 fails and give a new bounded version.

Throughout this chapter, let S be a K3 surface. Unless otherwise specified, we

will generally assume C ⊂ S is a smooth curve.

Section 4.1

Constancy of the Clifford index in linear systems

on K3 surfaces

In this section we give a brief historical account of the study of special linear systems

on curves on K3 surfaces.

One could wish that if a curve C ⊂ S has a grd, then every curve in its linear

system would also have a grd. In fact, this was conjectured by Harris and Mumford

for g1d’s. A counterexample by Donagi [32] showed that this is not the case if S is a

genus 2 K3 surface, i.e. a double cover of P2 branched along a smooth sextic. The

example is written in detail in [21, Section 2.2], where Donagi and Morrison show

that that if π : S → P2 is the double cover and E ⊂ P2 is a non-singular cubic, then

C = π−1(E) has a g14 (since E has a g12). However, the general smooth curve C ′ ⊂ |C|

has no g14’s, but does have a unique g26. In fact, the general smooth curve C ′ ∈ |C| is

isomorphic to a plane sextic and thus has gonality 5. Later, Ciliberto–Pareschi [15]

proved that this is the only counterexample to curves having non-constant gonality

in linear systems on K3 surfaces with ample polarization, Knutsen later relaxed this

to only globally generated polarization [49]. Thus in general one cannot hope that

the gonality remains constant in a linear system.

Notice however, that γ(g14) = 2 = γ(g26), and the Clifford index of curves in |C|

remains constant. This motivated Green to modify the conjecture to the constancy
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of the Clifford index in linear systems on K3 surfaces. This was proved by Green–

Lazarsfeld using Lazarsfeld–Mukai bundles on K3 surfaces. Let us recall Theorem 3.4.

Theorem 4.1 (Green-Lazarsfeld [32]). Let S be a K3 surface and C ⊂ S a smooth

irreducible curve of genus g ≥ 2. Then γ(C ′) = γ(C) for any smooth curve C ′ ∈ |C|.

Moreover, if γ(C) < ⌊g−1
2
⌋, then there is a line bundle L ∈ Pic(S) such that L|C′

computes γ(C ′).

The main technical aspect of the proof is to prove that there is non-trivial line

bundle N ⊂ E, where E is a reduction of the Lazarsfeld–Mukai bundle EC,A. We will

not give details on what a reduction is, except to say that the reduction E behaves

numerically and cohomologically as EC1,A1 for some curve C1 ∈ |C| and A1 ∈ Pic(C1)

such that γ(A1) ≤ γ(A) and r(A1) ≤ r(A). In particular, detE = detEC,A = OS(C).

Once a line bundle N ⊂ E is obtained, one checks that h0(C,N |C), h1(C,N |C) ≥

2, and so N |C contributes to the Clifford index γ(C) of C. Finally, it remains to show

that γ(N |C) ≤ γ(C). In particular, one can ask whether N (or as we’ll see det(E/N))

gives a linear system on every smooth curve C ′ ∈ |C| which computes the Clifford

index of C ′.

Another example by Donagi and Morrison shows that there may be grd’s which

do propogate to curves C ′ ∈ |C|, but that are not of the form L|C′ for a line bundle

L ∈ Pic(S). Taking the double plane K3 surface again, taking H = π∗OP2(4),

Donagi and Morrison show that generic curves C ∈ |H| have four g16’s which are not

contained in the restriction of a linear system, and a line bundle of type g28 that is

the restriction of a line bundle on the K3 surface. They observe that in this case, the

g16’s are contained in a g28, that is on the curve C ′, each effective divisor in the linear

system of the g14’s is contained in an effective divisor in the linear system of the g28.

Donagi and Morrison conjecture that this is a general phenomenon, which we discuss

in the next section.
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Section 4.2

Donagi–Morrison conjecture

Donagi and Morrison conjectured that linear systems on a curve on a K3 surface

should extend to every linearly equivalent curve, or at least be contained in a linear

system that is induced from the K3. That is, they conjectured that their counterex-

amples are the worst that can happen.

We require a few definitions.

Definition 4.2. We say |A| is contained in the restriction of |M | to C, if for every

A0 ∈ |A|, there is a divisor M0 ∈ |M | such that A0 ⊂ M0 ∩ C. We note that if

H0(S,M) ∼= H0(C,M |C), then this is equivalent to there being a non-trivial map

A → M |C as sheaves on C (i.e. h0(C,A∨ ⊗M |C) > 0).

Definition 4.3. A line bundle M ∈ Pic(S) is adapted to |C| if

(i) h0(S,M) ≥ 2 and h0(S,OS(C)⊗M∨) ≥ 2, and

(ii) h0(C ′,M |C′) is independent of the smooth curve C ′ ∈ |C|. In particular,

γ(M |C′) is independent of C ′.

Lemma 4.4 ([21, Lemma 5.2]). M is adapted to |C| if

(i) h0(S,M) ≥ 2 and h0(S,OS(C)⊗M∨) ≥ 2, and

(ii) either h1(S,M) = 0 or h1(S,OS(C)⊗M∨) = 0.

Conjecture 4.5 (Original Donagi–Morrison Conjecture [21, Conjecture 1.2]). Let S

be a K3 surface, C a smooth curve on S with genus g ≥ 2, and A a complete basepoint

free grd on C such that r ≥ 1, d ≤ g − 1, and ρ(C,A) = ρ(g, r, d) < 0. Then there

exists a line bundle M ∈ Pic(S) such that |A| is contained in the restriction of |M |

to C with

c1(M).C ≤ g − 1 and γ(M |C) ≤ γ(A).

71



4.2 Donagi–Morrison conjecture Lifting Linear Systems

Conjecture 4.5, however, turns out to be false in general. Indeed, Lelli-Chiesa gives

a counterexample, again with S a double cover of P2 branches along a smooth sextic.

In [57, Counterexample 1], Lelli-Chiesa shows that the condition c1(M).C ≤ g − 1

can be violated, however, the counterexample does not preclude the existence of a

line bundle M ∈ Pic(S) such that |A| is contained in the restriction of |A| to C.

Thus, Lelli-Chiesa suggests replacing this condition with the requirement that M is

adapted to |C|.

Conjecture 4.6 (Donagi–Morrison Conjecture, [57] Conjecture 1.3). Let (S,H) be a

polarized K3 surface and C ∈ |H| be a smooth irreducible curve of genus ≥ 2. Suppose

A is a complete basepoint free grd on C such that d ≤ g − 1 and ρ(g, r, d) < 0. Then

there exists a line bundle M ∈ Pic(S) adapted to |H| such that |A| is contained in the

restriction of |M | to C and γ(M |C) ≤ γ(A).

Definition 4.7. Let (S,H) be a polarized K3 surface and C ∈ |H| be a smooth

irreducible curve of genus ≥ 2. Suppose A is a complete basepoint free grd on C such

that d ≤ g−1 and ρ(g, r, d) < 0. We call a line bundleM ∈ Pic(S) a Donagi–Morrison

lift of A if M satisfies the conditions in Conjecture 4.6: namely,

� M is adapted to |H|,

� |A| is contained in the restriction of |M | to C, and

� γ(M |C) ≤ γ(A).

We call a line bundleM a potential Donagi–Morrison lift of A ifM satisfies γ(M |C) ≤

γ(A) and d(M |C) ≥ d(A). Note that a Donagi–Morrison lift is a potential Donagi–

Morrison lift. We say a (potential) Donagi–Morrison lift is of type gse if M2 = 2s− 2

and M.H = e.

Donagi and Morrison prove Conjecture 4.6 in the case that r = 1, extending

results of Reid [75].
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Theorem 4.8 ([21, Theorem 5.1’]). Let C be a smooth non-hyperelliptic curve on a

K3 surface S and suppose A is a complete basepoint free g1d on C with ρ(C,A) < 0.

Then there is a line bundle M ∈ Pic(S) adapted to |C| such that

� γ(M |C) ≤ γ(A).

� |A| is contained in the restriction of |M | to C.

Following this, Lelli-Chiesa proved Conjecture 4.6 in the case r = 2 under mild

hypotheses on the curve C. We discuss this result in more detail in Section 4.4.

Theorem 4.9. Let S be a K3 surface and H ∈ Pic(S) be an ample line bundle such

that a general curve C ∈ |H| has genus g, Clifford dimension 1 and maximal Clifford

index γ(C) = g−1
2
. Let A be a complete basepoint free g2d on a smooth irreducible

curve C ∈ |H| such that ρ(C,A) < 0. Then Conjecture 4.6 holds for A. Moreover,

one has c1(M).C ≤ 4g−4
3

.

We prove in [6], also Section 5.2, a bounded version of Conjecture 4.6 holds in the

case r = 3. Currently, there are no known general results concerning Conjecture 4.6

when r ≥ 4.

However, if we add an additional assumption, namely that we have control over

the Clifford index of the line bundle, then Lelli-Chiesa’s theorem extends Green and

Lazarsfeld’s theorem.

Theorem 4.10 ([57, Theorem 4.2]). Let A be a complete grd on a non-hyperelliptic

and non-trigonal curve C ⊂ S such that d ≤ g − 1, ρ(g, r, d) < 0 and γ(A) = γ(C).

Assume H := OS(C) is ample and the following condition is satisfied:

(∗) there is no irreducible elliptic curve Σ ⊂ S such that Σ·C = 4 and no irreducible

genus 2 curve B ⊂ S such that B · C = 6.

Then, one of the following occurs:
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(i) There exists a line bundle M ∈ Pic(S) adapted to |H| such that A ≃ M |C.

(ii) The line bundle A satisfies h0(C,A) = 2 (i.e., r = 1); furthermore, there exists

a line bundle M ∈ Pic(S) adapted to |H| such that |A| is contained in the

restriction of |M | to C.

If condition (*) is not satisfied, then the following cases may also occur:

(iii) There exists an irreducible curve B of genus 2 such that C ∼ 3B and A is either

a complete g26 or a complete g38; in both cases |A| is contained in |OC(2B)|.

(iv) There exist an irreducible curve B of genus 2 and an irreducible elliptic curve

Σ such that B · Σ = 2 and C ∼ 2B + Σ; furthermore, A is of type either g26 or

g38 and |A| is contained in |OC(B + Σ)|.

(v) One has C ∼ Σ+Σ′+Σ′′ for three irreducible elliptic curves Σ, Σ′, Σ′′ pairwise

intersecting in two points, and A is of type g26; moreover, the linear system |A|

is contained in |OC(Σ + Σ′′)|.

(vi) There exist two irreducible elliptic curves Σ, Σ′ and a divisor D on S satisfying

D2 = −4, and D · Σ′ = 0, and D · Σ = Σ · Σ′ = 2 such that C ∼ D + 2Σ + Σ′;

furthermore, A is of type g26 and |A| is contained in |OC(Σ + Σ′)|.

(vii) There are two elliptic curves Σ, Σ′ and a divisor D such that C ∼ D+2Σ+Σ′

with D2 = −2, and D · Σ′ = 0, and D · Σ = Σ · Σ′ = 2; furthermore, A is of

type g26 and |A| is contained in |OC(Σ + Σ′)|.

(viii) There is an irreducible elliptic curve Σ and a divisor D such that C ∼ 2D+3Σ,

and D2 = −2 and D ·Σ = 2; moreover, A is a complete g38 and |A| is contained

in |OC(D + 2Σ)|.
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(ix) There are two irreducible elliptic curves Σ, Σ′ satisfying Σ · Σ′ = 2 and C ∼

2Σ+2Σ′; moreover, either A is of type g26 and |A| is contained in |OC(Σ+Σ′)|,

or A is of type g38 and |A| is contained in |OC(2Σ + Σ′)|.

Notice that in all the cases (iii)–(ix) one has γ(C) = 2 and g ≤ 10. In fact,

condition (∗) is automatically satisfied as soon as γ(C) > 2.

Section 4.3

Lazarsfeld–Mukai bundles and lifting

We highlight how Lazarsfeld–Mukai bundles are used in proofs of specific cases of

Conjecture 4.6.

A crucial technique in the proof of Theorem 4.10 is similar to the technique used

by Green–Lazarsfeld. Namely, Lelli-Chiesa shows that one needs to find a nontrivial

line bundle in the Lazarsfeld–Mukai bundle.

Proposition 4.11 ([57, Proposition 5.1]). Under the hypotheses of Conjecture 4.6, let

A be primitive and assume the existence of a globally generated line bundle N ∈ Pic(S)

such that N is a saturated subsheaf of EC,A.

Then, Conjecture 4.6 holds with M := H ⊗ N∨ if h1(S,N) = 0, and with M :=

H(−Σ) if c1(N) = kΣ for an irreducible elliptic curve Σ ⊂ S and an integer k ≥ 2.

The trouble is, however, that obtaining the line bundle N can be difficult.

The proofs of the results of Donagi–Morrison and Lelli-Chiesa use Lazarsfeld–

Mukai bundles EC,A associated to the pair (C,A), and the fact that when the vector

bundle EC,A has a nontrivial maximal destabalizing sub-line bundle N ∈ Pic(S), then

|A| is contained in the restriction of |H ⊗ N∨|. For rank 2 linear systems, a case-

by-case analysis of the Jordan–Hölder and Harder–Narasimhan filtrations of EC,A is

used. This technique becomes much more difficult in higher rank.
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We recall [57, Lemma 4.1] and fill in details for the proof, which shows when a

linear series on a curve C ∈ |H| is the restriction of a line bundle L on S.

Lemma 4.12 ([57] Lemma 4.1). Let N1 ∈ Pic(S) satisfy h0(S,N1) ≥ 2 and h1(S,N1) = 0.

Also assume that the line bundle N2 := H⊗N∨
1 is globally generated and h1(S,N2) = 0.

Let E be a gLM bundle on S. Then, E = EC,N2|C for some smooth irreducible curve

C ∈ |H| if and only if E is an extension of the form

0 // N1
// E // ED,ωD

// 0

for some smooth irreducible curve D ∈ |N2|.

Proof. Suppose first that E = EC,N2|C for a smooth irreducible curve C ∈ |H|.

Since N2 is globally generated and h1(S,N1) = h1(S,N∨
1 ) = 0 we have H0(S,N2) =

H0(S,N2|C). Thus we have an evaluation map

H0(C,N2|C)⊗OS = H0(S,N2) → N2.

We obtain a diagram where the top sequence is the definition of the LM bundle

E∨
C,N2|C and the bottom sequence comes from tensoring the sequence for the divisor

C with N2:

0 // E∨
C,N2|C

//

��

H0(C,N2|C)⊗OS
//

��

N2|C // 0

0 // N∨
1

// N2
// N2|C // 0

.

Thus there is a map E∨
C,N2|C → N∨

1 making the above diagram commute. Letting K∨

be the kernel of the evaluation map H0(C,N2|C) ⊗ OS = H0(S,N2) → N2, and κ

the cokernel of the evaluation map (which in this case is zero as H1(S,N2) = 0), we

obtain an enlarged diagram where equality of the kernels and cokernels follows from
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the snake lemma

0

��

0

��
K∨

��

K∨

��
0 // E∨

C,N2|C
//

��

H0(C,N2|C)⊗OS
//

��

N2|C // 0

0 // N∨
1

//

��

N2

��

// N2|C // 0

κ

��

κ

��
0 0

.

As κ = 0, we can verify that K is a globally generated vector bundle satisfying

h1(S,K) = h2(S,K) = 0, and thusK is a LM bundle. Moreover, from the left vertical

short exact sequence one finds c1(K) = c1(N2) and from the middle vertical sequence

finds c2(K) = c1(N2)
2. Since h1(S,N∨

1 ) = h1(S,N2−H) = 0, Lemma 4.14 shows that

c1(N2)
2 = 2(rk(E) − 2) = 2(rk(K) − 1). Thus Cliff(K) = 0 and Lemma 3.21 yields

K ≃ ED,ωD
for a smooth irreducible curve D ∈ |N2|. Thus the forward direction is

proved.

For the other direction, let E be an extension as above. Then, E is locally free and

globally generated as N1 is globally generated, and ED,ωD
is either globally generated

or at least globally generated off a finite set. Furthermore, via the long exact sequence

in cohomology, we see h1(S,E) = h2(S,E) = 0. Thus E is a gLM bundle of types (I)

and (II), hence is of the form EC,A for a smooth curve C ∈ | det(E)| = |H| and a line
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bundle A ∈ Pic(C) with d = c2(E). Hence E sits in a diagram

0 // H0(C,A)∨ ⊗OS
// E

α // ι∗(ωC ⊗ A∨) // 0.

N1

?�

ϕ

OO

Since h0(N1) ≥ 2, we have Hom(N1,OS) = 0: as otherwise by Serre duality h0(S,N∨
1 ) ̸=

0, thus N1 would be a trivial line bundle with h0(S,N1) = 1. Hence we also have

0 ̸= α ◦ ϕ ∈ Hom(N1, ι∗(ωC ⊗ A∨))

as otherwise ϕ would factor through H0(C,A)∨ ⊗OS. We thus have

Hom(N1, ι∗(ωC ⊗ A∨)) = H0(S, ι∗(A
∨)⊗N2|C) ̸= 0,

as ωC = H|C by adjunction. Hence |A| is contained in |N2|C |. By adjunction we have

ωD = N2|D, and so N2
2 = degD(ωD) = c2(ED,ωD

). Applying Whitney’s formula to the

original extension, we find

1 +H + d =(1 +N1)
(
1 +H −N1 +N2

2

)
=(1 +N1) (1 +H −N + (H −N1)(N2))

= (1 +N1) (1 +H −N +H.N2 −N1(H −N1))

=1 +N1 +H −N1 +H.N1 −N2
1 +H.N2 −H.N1 +N2

1

=1 +H +H.N2

It follows that deg(N2|C) = H.N = d. We see that A∨ ⊗ N2|C is effective as it has

a global section and moreover has degree 0 on C, and hence is the trivial bundle.

Whence A is isomorphic to N2|C .
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Remark 4.13 ([57] Remark 6). The above proof shows that as soon as we have a

nontrivial N ∈ Pic(S) with h0(S,N) ̸= 0 and N ↪→ EC,A, we have

h0(S, ι∗(A)⊗ (H ⊗N∨)|C) = h0(C,A∨ ⊗ (H ⊗N∨)|C) ̸= 0,

i.e., the linear series |A| is contained in |(H⊗N∨)|C |. We also note that if h1(S,N) = 0,

then

H0(C, (H ⊗N∨)|C) = H0(S,H ⊗N∨)|C .

We recall a few lemmas which show when a linear series on a curve C ∈ |H| is the

restriction of a line bundle L on S.

Lemma 4.14. Let (S,H) be a polarized K3 surface of genus g ≥ 2, C ∈ |H| be

a smooth irreducible curve, and L a globally generated line bundle on S such that

L|C is a grd with c1(L).C = d < 2g − 2. Then if h1(S, L) = 0, we have L2 =

2r − 2− 2h1(S, L(−C)).

Proof. Since H is basepoint free and c1(L(−C)).C = d − (2g − 2) < 0, we have

h0(S, L(−C)) = 0, as in the proof of [48, Proposition 2.1]. We now consider the short

exact sequence for a divisor C ⊂ S tensored with L,

0 // L(−C) // L // L|C // 0.

By Riemann–Roch on C we have h1(S, L|C) = h1(C,L|C) = r − d + g, and as

h1(S, L) = h2(S, L) = 0, the long exact sequence in cohomology and Serre dual-

ity give h2(S, L(−C)) = h0(S, L(−C)∨) = r − d + g. By Riemann–Roch on S, we
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have

h0(S, L(−C)∨)− h1(S, L(−C)) = 2 +
c1(L(−C))2

2

= 2 +
c1(L)

2 − 2d+ 2g − 2

2

= 1− d+ g +
c1(L)

2

2

thus c1(L)
2 = 2r − 2− 2h1(S, L(−C)).

Corollary 4.15. Let (S,H) be a polarized K3 surface of genus g ≥ 2, A a complete

grd on a smooth C ∈ |H|. Let N ∈ Pic(S) be a line bundle with h0(S,N) ≥ 2 and

h1(S,N) = 0. Assume H ⊗ N∨ is globally generated, satisfies h1(S,H ⊗ N∨) = 0,

and (H ⊗N∨)|C ∼= A. Then c1(H ⊗N∨)2 = 2r − 2.

Proof. We have h1(S,N) = 0. Hence as N∨ = H ⊗ N∨ ⊗ H∨, Serre duality gives

0 = h1(S,N∨) = h1(S,H ⊗ N∨(−C)). Thus Lemma 4.14 shows that (H − N)2 =

2r − 2.

Lemma 4.16. Let N be a line bundle and 0 → N → E → E/N → 0 be a short

exact sequence of coherent sheaves on a polarized K3 surface (S,H), where E/N is

stable, rk(E) = r + 1, c1(E) = H, c1(E)2 = 2g − 2 ≥ 0. If h0(S,N) < 2, then

c2(E) ≥ g(r−1)
r

+ 2g−2
r(r+1)

+ r − 1
r
.

Proof. Since µ(N) ≥ µ(E) ≥ 0, we have h2(S,N) = 0. Therefore if h0(S,N) < 2 we

have c1(N)2 ≤ −2. Hence

c1(E/N)2 + 2c1(N).c1(E/N) = c1(E)2 − c1(N)2 ≥ 2g − 2 + 2 = 2g

and

c1(E/N).c1(N) = c1(N).(c1(E)− c1(N)) ≥ 2g − 2

r + 1
+ 2,
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where the last inequality comes from the fact that µ(N) ≥ µ(E). Thus c1(E/N)2

2
≥

g − c1(N).c1(E/N).

Furthermore, since E/N is stable of rank r, the dimension of the moduli space

of stable sheaves with Mukai vector ν(E/N), M s
ν(E/N), has non-negative dimension.

Thus 2rc2(E/N)− (r− 1)c1(E/N)2 − 2(r2 − 1) ≥ 0, and we have c2(E/N) ≥ r− 1
r
+(

r−1
2r

)
c1(E/N)2.

We now calculate c2(E) = c1(E/N).c1(N) + c2(E/N) ≥ g(r−1)
r

+ 2g−2
r(r+1)

+ r− 1
r
, as

desired.

We present a version of [56, Proposition 7.4] which motivates our proof strategy

for Conjecture 4.6 when r = 3.

Proposition 4.17. Let (S,H) be a polarized K3 surface and A be a complete basepoint

free grd on a smooth irreducible curve C ∈ |H| with r ≥ 2 and let E = EC,A. Suppose

that E sits in a short exact sequence

0 // N // E // E/N // 0

for some line bundle N and c2(E) = d < g(r−1)
r

+ 2g−2
r(r+1)

+ r − 1
r
. If E/N is stable, or

E/N is semistable and there are no elliptic curves on S, then |A| is contained in the

restriction to C of the linear system |H ⊗ N∨| on S. Moreover, H ⊗ N∨ is adapted

to |H| and γ(H ⊗N∨|C) ≤ d− r − 3.

Proof. By the previous lemma, h0(S,N) ≥ 2. We also have h0(S, detE/N) ≥ 2 from

[56, Lemma 3.3]. We note that (E/N)∨∨ is globally generated off a finite set and

hi(S, (E/N)∨∨) = hi(S,E/N) = 0 for i = 1, 2.

Since detE/N = det(E/N)∨∨ is basepoint free and nontrivial, detE/N is nef, thus
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c1(E/N)2 ≥ 0. If h1(S, detE/N) ̸= 0, then c1(E/N)2 = 0 by Saint-Donat. By [32,

Proposition 1.1], there is a smooth elliptic curve Σ ⊂ S such that (E/N)∨∨ = O(Σ)⊕3.

This contradicts the stability of E/N (or the non-existence of elliptic curves on S),

thus we must have c1(E/N)2 ≥ 2 (hence c2(E/N) ≥ r + 1) and h1(S, detE/N) = 0.

This ensures that h0(C, detE/N |C) = h0(C,H⊗N∨|C) does not depend on the curve

C ∈ |H|s. Hence detE/N = H ⊗N∨ is adapted to |H|. We calculate

γ(detE/N |C) = c1(E/N).c1(E)− 2h0(C, detE/N |C) + 2

= c1(E/N)2 + c1(N).c1(E/N)− 2h0(C, detE/N |C) + 2

≤ c1(E/N)2 − 2h0(S, detE/N) + c1(N).c1(E/N) + 2

= −2h1(S, detE/N)− 4 + c1(N).c1(E/N) + 2

= d− c2(E/N)− 2 ≤ d− r − 3.

The claim that |A| is contained in |H ⊗ N∨|C | is proved in the same way as in [57,

Lemma 4.1].

Remark 4.18. In the above proposition, if A is of type g3d, then γ(H ⊗ N∨|C) ≤

d− r− 3 = γ(A). However, as soon as r ≥ 4, then γ(H ⊗N∨|C) may be bigger than

γ(A).

Section 4.4

Bounded Donagi–Morrison conjecture

In this section, we outline a further modification of Conjecture 4.6 that is already

implicit in Lelli-Chiesa’s theorem verifying Conjecture 4.6 in the case r = 2.

The proofs of cases of Conjecture 4.6 have all used the idea of finding a maximal

destabilizing subline bundle of EC,A, that is Proposition 4.17. Thus one can ask
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whether a stronger version of Conjecture 4.6 holds.

Conjecture 4.19 (Strong Donagi–Morrison Conjecture). Let (S,H) be a polarized

K3 surface and A be a complete basepoint free grd on a smooth irreducible curve C ∈

|H| with r ≥ 2. Then there is a nontrivial line bundle N ↪→ EC,A with h0(S,N) ≥ 2

such that EC,A/N is stable.

As stated, this conjecture is false, see [57, Appendix A]. We give the details for

one example.

Example 4.20. In [57, Appendix A, Remark 12], Knutsen and Lelli-Chiesa construct

examples of K3 surfaces S of Picard rank 2 such that a smooth irreducible curve

C ⊂ S has a Brill–Noether special linear system A of rank 3 with ρ(A) = −1 whose

Lazarseld–Mukai bundle EC,A admits no effective sub-line bundle. That is, Proposi-

tion 4.17 cannot be used to find a Donagi–Morrison lift of A. Here, we give an explicit

example and explain how it relates to our results.

We first recall Knutsen and Lelli-Chiesa’s construction. For even integers a, b ≥ 4

and d = a+b, let S be a K3 surface with Pic(S) = Λb
a,d. That is, Pic(S) = Z[H]⊕Z[D]

with H2 = 2a − 2 ≥ 4, D2 = 2b − 2 ≥ 4, H.D = d, with a, b even and d = a + b.

Suppose that Pic(S) has no classes of self-intersection −2 or 0. There are infinitely

many choices of a and b that satisfy these hypotheses, and such that every element of

the linear systems |H| and |L| are reduced and irreducible; these are examples of the

so-called Knutsen K3 surfaces in [2]. Thus general curves C1 ∈ |H| and C2 ∈ |L| are

smooth of genus a and b, and by Lazarsfeld’s theorem [53], are Brill–Noether general,

in particular, have generic gonality k1 = (a + 2)/2 and k2 = (b + 2)/2, respectively.

Let E1 and E2 be the LM bundles associated to gonality pencils g1k1 on C1 and a g1k2 on

C2. As these pencils are Brill–Noether general, the LM bundles E1 and E2 are simple,

hence admit no injective map from an effective line bundle N . A calculation using

Remark 3.16 shows that the vector bundle E = E1 ⊕ E2 is a LM bundle associated
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to a linear system A of type g3k1+k2+d on a smooth irreducible curve C ∈ |H + L|.

We note that g(C) = 2d − 1, and that ρ(A) = −1. However, since E admits no

injective map N ↪→ E, the linear system A admits no Donagi–Morrison lift, and so

Conjecture 4.6 and even Conjecture 4.19 fail for (C,A).

The first case where such an example shows the failure of Conjecture 4.6 for (C,A)

is genus 19, with a = 6 and b = 4. The corresponding polarized K3 surface (S,H+L)

of genus 19 has Pic(S) = Λ4
19,16 with basis H+L,L. In the proof of Proposition 6.38,

we needed the Donagi–Morrison Conjecture (Conjecture 4.6) for linear systems on

curves on a different lattice polarized K3 surface, showing that our bounded version

(Theorem 5.15) is in some sense tight (at least in genus 19).

However, a bounded version as in [6, 56, 57, 75] may be reasonable.

Conjecture 4.21 (Bounded Strong Donagi–Morrison Conjecture). Let (S,H) be a

polarized K3 surface and A be a complete basepoint free grd on a smooth irreducible

curve C ∈ |H| with r ≥ 2. Then there is a bound β(C, S) depending on C and S such

that if d < β(C, S), then there is a line bundle N ↪→ EC,A with h0(S,N) ≥ 2 such

that EC,A/N is stable.

This is what we prove in the case r = 3 in [6] and Chapter 5.
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Chapter 5

Rank 4 Lazarsfeld–Mukai bundles

In Section 5.1, we first reduce the problem of verifying Conjecture 4.6 in the case

r = 3 to finding a bound for each terminal filtration of the Lazarsfeld–Mukai bundle

associated to the g3d, a filtration obtained by taking the Harder–Narasimhan and

Jordan–Hölder filtrations of the Lazarsfeld–Mukai bundle. We then find a bound on

the degree of the g3d for each filtration. In Section 5.2, after having obtained bounds for

every terminal filtration that does not have a maximal destabilizing sub-line bundle,

we give the proof of Conjecture 4.21 when r = 3. These sections are taken from [6].

Section 5.1

Filtrations of Lazarsfeld–Mukai Bundles of Rank

4

Throughout this chapter, (S,H) is a polarized K3 surface of genus g, C ∈ |H| is a

smooth irreducible curve, A is a line bundle of type g3d on C, and E = EC,A is the

LM bundle corresponding to A. Given E, we can take its JH filtration or take its HN

filtration, further take JH filtrations of the properly semistable factors, lift the JH

factors and expand the HN filtration of E to arrive at a terminal filtration such that
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all quotients are stable sheaves. We enumerate all the possibilities listing a filtration

by the ranks of the terms, i.e., a filtration of type 1 ⊂ 4 is a filtration 0 ⊂ N ⊂ E

where rk(N) = 1.

The terminal filtrations correspond to flags of E where each quotient is stable,

hence the terminal filtrations are

1 ⊂ 4, 2 ⊂ 4, 3 ⊂ 4,

1 ⊂ 2 ⊂ 4, 1 ⊂ 3 ⊂ 4, 2 ⊂ 3 ⊂ 4,

1 ⊂ 2 ⊂ 3 ⊂ 4.

In order to apply Proposition 4.17, we want to show that given the g3d, E must have

a terminal filtration of type 1 ⊂ 4. In all other cases, we want to find a lower bound

on d = c2(E). To this end, we find a bound for c2(E) in terms of the intersections of

the Chern roots of the LM bundle E. We begin by noting a few general bounds, and

then deal with each filtration.

We slightly generalize the proof of [56, Lemma 4.1].

Proposition 5.1. Let E a LM bundle with c1(E) = H and µ(E) = g−1
2

> 0 sitting

in an exact sequence

0 //M // E //M1
// 0

where M and M1 are coherent sheaves. Suppose that the general smooth curve C ∈ |H|

has (constant) Clifford index γ = γ(C). Then one has c1(M).c1(M1) ≥ γ + 2.

Proof. We write µ(F ) = µH(F ). Since M1 is a quotient of E, it is globally generated

off a finite set of points. Moreover, we have h2(S,M1) = 0, thus h0(S, detM1) ≥ 2 by

[56, Lemma 3.3] as the vector bundle M∨∨
1 is globally generated off a finite number
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of points and det(M1) := det(M∨∨
1 ). As in [56, Lemma 3.2], we see that detM1 is

basepoint free and nontrivial, thus µ(detM1) > 0, µ(M) > 0. Hence as µ(detM) ≥

µ(M) > 0, [56, Proposition 3.1] shows that h2(S, detM1) = 0, h2(S, detM) = 0, and

that detM1 is nef whereby c1(M1)
2 ≥ 0.

Furthermore, as

µ(M) =
c1(M).c1(E)

rk(M)
=

c1(M).(c1(M) + c1(M1))

rk(M)
≥ g − 1

2
,

we have c1(M).c1(M1) ≥ rk(M)g−1
2

− c1(M)2. Since h2(S, detM) = 0, we note that

h0(S, detM) ≥ h0(S, detM)− h1(S, detM) = χ(detM) = 2 +
c1(M)2

2
.

Therefore, if 2 > h0(S, detM), then c1(M)2 ≤ −2, and thus

c1(M).c1(M1) ≥ rk(M)
g − 1

2
+ 2 ≥ rk(M)γ + 2 ≥ γ + 2

as rk(M) ≥ 1.

Hence from now on we assume that h0(S, detM) ≥ 2. Since ωC⊗(detM1)
∨⊗OC =

detM ⊗ OC , the line bundle detM1 ⊗ OC contributes to γ(C). Tensoring the short

exact sequence for OC with detM1 gives

0 // detM∨ // detM1
// detM1 ⊗OC

// 0 ,
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which gives h0(C, detM1 ⊗OC) ≥ h0(S, detM1). It follows that

γ(detM1 ⊗OC) = c1(M1).(c1(M) + c1(M1))− 2h0(C, detM1 ⊗OC) + 2

≤ c1(M1)
2 + c1(M).c1(M1)− 2χ(detM1)− 2h1(S, detM1) + 2

= −2 + c1(M).c1(M1)− 2h1(S, detM1).

By assumption, we have γ(detM1 ⊗OC) ≥ γ, thus

c1(M).c1(M1) ≥ γ + 2 + 2h1(S, detM1) ≥ γ + 2,

as desired.

Remark 5.2. It follows from the second half of the proof that ifM andM1 are coherent

sheaves such that c1(M)+c1(M1) = c1(E), detM1⊗OC (hence also detM⊗OC) con-

tributes to γ(C), and h2(S, detM1) = 0 (or h2(S, detM) = 0), then c1(M).c1(M1) ≥

γ(C)+2+2h1(S, detM1) ≥ γ(C)+2 (or c1(M).c1(M1) ≥ γ(C)+2+2h1(S, detM) ≥

γ(C) + 2).

Proposition 5.3. Let (S,H) be a polarized K3 surface, C ∈ |H| a smooth irreducible

curve, A a basepoint free line bundle on A of type g3d, and E = EC,A. Suppose E sits

in an exact sequence

0 //M // E // E/M // 0 ,

where M and E/M are coherent torsion free sheaves on S and µ(M) ≥ µ(E) ≥

µ(E/M). If rk(M) ≥ rk(E/M), then c1(M)2 ≥ c1(E/M)2. And if rk(M) >

rk(E/M), then c1(M)2 > c1(E/M)2. In particular, det(E/M) ⊗ OC contributes to

γ(C).

Proof. As in Proposition 5.1, we see h0(S, detE/M) ≥ 2, µ(E/M) > 0, det(E/M)
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is nef, and h2(S, detM) = 0. Since h0(S, detE/M) ≥ 2, it remains to show that

h0(S, detM) ≥ 2.

We observe that

c1(M)2 + c1(M).c1(E/M) = rk(M)µ(M)

≥ rk(E/M)µ(E/M) = c1(E/M)2 + c1(M).c1(E.M)

whence c1(M)2 ≥ c1(E/M)2 ≥ 0 as det(E/M) is nef.

Since h2(S, detM) = 0, we have h0(S, detM) ≥ χ(detM) = 2 + c1(M)2

2
. Thus as

c1(M)2 ≥ 0, det(E/M)⊗OC contributes to γ(C).

For each terminal filtration not of the form 0 ⊂ 1 ⊂ 4, we find a lower bound

for d = c2(E). That is whenever E does not have a maximal destabilizing sub-line

bundle, we find that d must be large. In effect, c2(E) controls the complexity of its

Harder–Narasimhan and Jordan–Hölder filtrations.

5.1.1. Filtration 2 ⊂ 4

We assume E is unstable with terminal filtration 0 ⊂ M ⊂ E withM andM1 = E/M

stable rank 2 torsion free sheaves. Thus E sits in an exact sequence of the form

0 //M // E //M1
// 0 .

We have

µ(M) ≥ µ(E) =
g − 1

2
≥ µ(M1) (5.1)

d = c2(E) = c1(M).c1(M1) + c2(M) + c2(M1) (5.2)
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Lemma 5.4. Suppose C ∈ |H|s has Clifford index γ = γ(C). Then if E is as above,

we have d ≥ γ
2
+ 4 + g−1

2
.

Proof. From Proposition 5.1 and Proposition 5.3, we see that c1(M).c1(M1) ≥ γ + 2.

Stability of M and M1 give −2 ≤ ⟨ν(M(1)), ν(M(1))⟩ = 4c2(M(1))− c1(M(1))
2−8, thus

c2(M(1)) ≥ 3
2
+

c1(M(1))
2

4
.

We have

c1(M)2 + c1(M1)
2

4
+

c1(M).c1(M1)

2
=

µ(M) + µ(M1)

2

=
(c1(M) + c1(M1))

2

4
= µ(E) =

g − 1

2
.

We now calculate

d = c1(M).c1(M1) + c2(M) + c2(M1)

≥ c1(M).c1(M1) + 3 +
c1(M)2 + c1(M1)

2

4

= c1(M).c1(M1) + 3 +
g − 1

2
− c1(M).c1(M1)

2

≥ γ + 2

2
+ 3 +

g − 1

2
,

as claimed.

5.1.2. Filtration 3 ⊂ 4

We assume E = EC,A is unstable with terminal filtration 0 ⊂ M ⊂ E with M a stable

rank 3 torsion free sheaf. Thus E sits in an extension

0 //M // E // N ⊗ Iξ // 0
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where N is a line bundle and Iξ is the ideal sheaf of a 0-dimensional subscheme ξ ⊂ S

of length l(ξ) = d− c1(M).c1(N). We have

µ(M) ≥ µ(E) =
g − 1

2
≥ µ(N) (5.3)

c1(H) = c1(E) = c1(M) + c1(N) (5.4)

d = c2(E) = c1(N).c1(M) + c2(M) + l(ξ) (5.5)

Lemma 5.5. Suppose C ∈ |H|s has Clifford index γ = γ(C). Then if E is as above,

we have d ≥ 2
3
(γ + 2) + g

2
+ 13

6
.

Proof. From Proposition 5.1 and Proposition 5.3, we see that c1(N).c1(M) ≥ γ + 2.

As M is stable, we have −2 ≤ ⟨ν(M), ν(M)⟩ = 6c2(M) − 2c1(M)2 − 18, thus

c2(M) ≥ 8+c1(M)2

3
. Thus

d = c1(N).c1(M) + c2(M) + l(ξ)

≥ c1(N).c1(M) +
c1(M)2

3
+

8

3

≥ c1(N).c1(M) +
g − 1

2
− c1(N).c1(M)

3
+

8

3

≥ 2

3
(γ + 2) +

g

2
+

13

6
,

as desired.
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5.1.3. Filtration 1 ⊂ 2 ⊂ 4

We assume E has a terminal filtration 0 ⊂ N ⊂ M ⊂ E with rk(N) = 1, rk(M) = 2,

and E/M = M1 a stable torsion free sheaf. Furthermore, we have

µ(N) ≥ µ(M) ≥ µ(E) =
g − 1

2
≥ µ(M1) (5.6)

µ(M) ≥ µ(M/N) ≥ µ(E/N) ≥ µ(M1) (5.7)

d = c2(E) = c2(M) + c2(M1) + c1(M).c1(M1) (5.8)

= c1(N).c1(M/N) + c1(N).c1(M1) + c1(M/N).c1(M1) + c2(M1)

Moreover, as M1 is stable, we have

−2 ≤ ⟨ν(M1), ν(M1)⟩ = c1(M1)
2 − 4χ(M1) + 8 = 4c2(M1)− c1(M1)

2 − 8

thus c2(M1) ≥ 3
2
+ c1(M1)2

4
. Therefore we have

d ≥ 3

2
+

c1(M1)
2

4
+ c1(N).c1(M/N) + c1(N).c1(M1) + c1(M/N).c1(M1). (5.9)

Lemma 5.6. Suppose E is as above. Then detM1⊗OC contributes to γ(C) and one

of the following occurs:

(a) N ⊗OC and (M/N)⊗OC contribute to γ(C);

(b) c1(N).(c1(M1) + c1(M/N)) ≥ g−1
2

+ 2 and either (M/N) ⊗ OC contributes to

γ(C) or

c1(M/N).(c1(N) + c1(M1)) ≥ g ;

(c) N ⊗OC contributes to γ(C) and c1(M/N).(c1(N)+ c1(M1)) ≥ 2+ c1(M).c1(M1)
2

+

c1(M1)2

2
;

(d) c1(N).c1(M/N) ≥ g+3
2
.

92



5.1 Filtrations of LM bundles of rk 4 rk 4 LM bundles

Proof. From Proposition 5.1 and Proposition 5.3, we see that detM1⊗OC contributes

to γ(C).

We have the following four cases:

(i) h0(S,M/N), h0(S,N) ≥ 2

(ii) h0(S,M/N) ≥ 2 and h0(S,N) < 2

(iii) h0(S,M/N) < 2 and h0(S,N) ≥ 2

(iv) h0(S,M/N), h0(S,N) < 2

In case (i), we have h0(S,H ⊗ (M/N)∨) = h0(S, detM1 ⊗N) ≥ 2 and h0(S,H ⊗

N∨) = h0(S, detM1 ⊗M/N) ≥ 2 as detM1 has global sections. Thus we are in case

(a) of the lemma.

In case (ii), we see that χ(N) < 2, hence c1(N)2 ≤ −2, and we calculate

c1(N).(c1(M1).c1(M/N)) = c1(N).(c1(E)− c1(N))

= µ(N)− c1(N)2 ≥ µ(E) + 2 =
g − 1

2
+ 2,

thus the first statement of case (b) is proved. We now observe that

c1(N ⊗ detM1)
2 > c1(M/N)2 which follows from the computation

c1(N ⊗ detM1)
2 − c1(M/N)2 ≥ 2µ(M1) > 0.

If c1(N ⊗ detM1)
2 < 0, then also c1(M/N)2 < 0, and we calculate

2g − 2 = c1(E)2 = (c1(N) + c1(M/N) + c1(M1))
2

= c1(N ⊗ detM1)
2 + 2c1(N ⊗ detM1).c1(M/N) + c1(M/N)2

< 2(c1(N) + c1(M1)).c1(M/N),
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thus c1(M/N).(c1(N) + c1(M1)) ≥ g. Else c1(N ⊗ detM1)
2 ≥ 0 and so h0(S,H ⊗

(M/N)∨) = h0(S,N ⊗ detM1) ≥ 2 and so M/N contributes to γ(C). Thus we are in

case (b).

In case (iii), since detE/N ∼= detM1 ⊗M/N , we have h0(S, detM1 ⊗M/N) ≥ 2.

Thus as h0(S,N) ≥ 2, we see that N ⊗ OC contributes to γ(C). Therefore, as

h0(S,M/N) < 2, we have c1(M/N)2 ≤ −2.

In cases (iii) and (iv), we have c1(M/N)2 ≤ −2. We now calculate

2g − 2 = c1(E)2

= c1(M/N)2 + c1(N)2 + c1(M1)
2

+ 2c1(M/N).c1(N) + 2c1(M/N).c1(M1) + 2c1(N).c1(M1)

≤ c1(N)2 + c1(M1)
2

+ 2c1(M/N).c1(N) + 2c1(M/N).c1(M1) + 2c1(N).c1(M1)− 2

≤ c1(N)2 + g − 3 + 2c1(M/N).c1(N),

thus

c1(N).c1(M/N) ≥ g + 1

2
− c1(N)2

2
. (5.10)

In case (iii), we observe that since

c1(M/N).(c1(N)+ c1(M1))+ c1(M/N)2 = µ(M/N) ≥ µ(E/N) =
(c1(E/N)).(c1(E))

3
,
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we have

c1(M/N).(c1(N) + c1(M1)) ≥− c1(M/N)2 +
c1(M1)

2

3

+
c1(M/N)2

3
+

c1(M).c1(M1)

3

+
c1(M/N).(c1(N) + c1(M1))

3
.

And subtracting c1(M/N).(c1(N) + c1(M1))/3 from both sides and multiplying by

3/2 yields

c1(M/N).(c1(N) + c1(M1)) ≥ −c1(M/N)2 +
c1(M).c1(M1)

2
+

c1(M1)
2

2
.

Noting that c1(M/N)2 ≤ −2 shows we are in case (c).

In case (iv), as h0(S,N), h0(S,M/N) < 2, we have c1(N)2, c1(M/N)2 ≤ −2, thus

Equation (5.10) gives c1(N).c1(M/N) ≥ g+1
2

− c1(N)2

2
≥ g+1

2
+ 1 = g+3

2
, and we are in

case (d).

Lemma 5.7. With E as above, if general curves in |H|s have Clifford index γ = γ(C),

and m = D2 is the minimum self-intersection of an effective classes D ∈ Pic(S) (i.e.

there are no curves of genus g′ < m+2
2

on S), then we have d ≥ 5
4
γ + m

2
+ 5 or

d ≥ 5 + 3
2
γ. Moreover, when A is primitive, then we can assume m ≥ 2.

Proof. We write

2d ≥ 3 +
c1(M1)

2

2
+ c1(N).c1(E/N) + c1(M/N).(c1(N) + c1(M1)) + c1(M).c1(M1),

and apply bounds to each of the terms. From Proposition 5.1, we see that

c1(N).c1(E/N) ≥ γ + 2, and c1(M).c1(M1) ≥ γ + 2. In cases (a), (b), we have

c1(M/N).(c1(N) + c1(M1)) ≥ γ + 2. In case (c), we have d ≥ 5
4
γ + m

2
+ 5. Finally, in
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case (d), we have d ≥ 2 + c1(N).c1(M/N) + c1(M).c1(M1) ≥ 2 + g+13
2

+ γ + 2. And

in any case, we have the desired inequality.

When A is primitive, M1 is a gLM of type (II), and as c1(M1)
2 ≥ 0 we have

c2(M1) > 0, thus we cannot have c1(M1)
2 = 0 by Remark 3.26. Therefore m can be

taken to be at least 2.

5.1.4. Filtration 1 ⊂ 3 ⊂ 4

We assume E has a terminal filtration 0 ⊂ N ⊂ M ⊂ E with rk(N) = 1, rk(M) = 3,

and M/N a stable torsion free sheaf, and we call E/M = N1. Furthermore, we have

µ(N) ≥ µ(M) ≥ µ(E) ≥ µ(E/N) ≥ µ(N1) (5.11)

µ(M) ≥ µ(M/N) ≥ µ(E/N) (5.12)

d = c2(E) = c2(M/N) + c1(M/N).c1(N) + c1(N).c1(N1) + c1(N1).c1(M/N) (5.13)

Moreover, since M/N is stable, we have

−2 ≤ ⟨ν(M/N), ν(M/N)⟩ = c1(M/N)2− 4χ(M/N)+8 = 4c2(M/N)− c1(M/N)2− 8

thus c2(M/N) ≥ 3
2
+ c1(M/N)2

4
.

Lemma 5.8. Suppose E is as above. Then N1 ⊗OC contributes to γ(C), and one of

the following occurs:

(a) N ⊗OC and det(M/N)⊗OC contribute to γ(C);

(b) c1(N).(c1(N1) + c1(M/N)) ≥ g+3
2

≥ γ(C) + 2 and either det(M/N)⊗OC con-

tributes to γ(C) or c1(M/N)2

2
+ c1(M/N).(c1(N) + c1(N1)) ≥ g;

(c) N⊗OC contributes to γ(C) and c1(M/N)2

2
+ c1(M/N).c1(N) ≥ 1

2
c1(N).(c1(N1)+

c1(M/N));
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(d) c1(M/N)2

2
+ c1(M/N).c1(N) ≥ g + 1.

Proof. From Proposition 5.1 and Proposition 5.3, we see that N1 ⊗ OC contributes

to γ(C) and h2(S, detM/N) = h2(S,M/N) = h2(S,N) = 0.

We have the following four cases:

(i) h0(S, detM/N), h0(S,N) ≥ 2

(ii) h0(S, detM/N) ≥ 2 and h0(S,N) < 2

(iii) h0(S, detM/N) < 2 and h0(S,N) ≥ 2

(iv) h0(S, detM/N), h0(S,N) < 2

In case (i), we have h0(S,H ⊗ N∨) = h0(S, detM/N ⊗ N1) ≥ 2, and h0(S,H ⊗

detM/N∨) = h0(S,N ⊗N1) ≥ 2 as detM/N , N , and N1 have global sections. Thus

we are in case (a) of the lemma.

In case (ii), we see that χ(N) < 2, thus c1(N) ≤ −2, and we calculate

c1(N).(c1(N1) + c1(M/N)) =c1(N).(c1(E)− c1(N))

= µ(N)− c1(N)2 ≥ µ(E) + 2 =
g + 3

2
.

� If c1(N ⊗N1)
2, c1(M/N)2 ≥ 0, then detM/N contributes to γ(C) as h0(S,N ⊗

N1) = h0(S,H − detM/N) ≥ 2.

� If c1(N ⊗ N1)
2 ≥ 2 and c1(M/N)2 < 0, then as above detM/N contributes to

γ(C).

� If c1(N⊗N1)
2 < 0 and c1(M/N)2 ≥ 0 then we cannot say if detM/N contributes
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to γ(C) as above. However, we calculate

2g − 2 = c1(E)2 =(c1(M/N) + c1(N ⊗N1))
2

= c1(M/N)2 + 2c1(M/N).(c1(N) + c1(N1)) + c1(N ⊗N1)
2

< c1(M/N)2 + 2c1(M/N).(c1(N) + c1(N1)),

thus c1(M/N)2

2
+ c1(M/N).(c1(N) + c1(N1)) ≥ g.

� If c1(N ⊗ N1)
2, c1(M/N)2 < 0, then the same calculation as above yields

c1(M/N)2

2
+ c1(M/N).(c1(N) + c1(N1)) ≥ g.

Thus we are in case (b) of the lemma.

In case (iii), since detE/N = N1 ⊗ detM/N , [56, Lemma 3.3] implies that

h0(S,N1 ⊗ detM/N) ≥ 2. Thus since h0(S,N) ≥ 2, we see that N ⊗OC contributes

to γ(C). Furthermore, as c1(M/N)2 + c1(M/N).c1(N) ≥ c1(N1)
2 + c1(N1).c1(N) and

c1(N1)
2 ≥ 0 > c1(M/N)2, we have c1(M/N)2+c1(M/N).c1(N) ≥ c1(N1).c1(N). Thus

c1(M/N)2 + c1(M/N).c1(N)− 1

2
(c1(N).(c1(N1) + c1(M/N)))

≥ c1(M/N)2 +
c1(M/N).c1(N)

2
− c1(N).c1(N1)

2

≥ c1(M/N)2

2
,

thus

c1(M/N)2

2
+ c1(M/N).c1(N) ≥ 1

2
c1(N).(c1(N1) + c1(M/N)),

and we are in case (c).
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In case (iv), we see that c1(N)2, c1(M/N)2 ≤ −2. We calculate

2g − 2 = c1(E)2 = (c1(N) + c1(N1) + c1(M/N))2

≤ c1(N1)
2 + c1(M/N)2

+ 2c1(N).c1(N1) + 2c1(N).c1(M/N) + 2c1(N1).c1(M/N)− 2

≤ g − 1 + 2c1(N).c1(M/N) + c1(M/N)2 − 2,

thus c1(M/N)2

2
+ c1(N).c1(M/N) ≥ g + 1, and we are in case (d).

Remark 5.9. From the second half of the proof of Proposition 5.1, we see that in the

situation above, if C ∈ |H|s has Clifford index γ = γ(C), and if detM/N contributes

to γ(C), then we have c1(M/N).(c1(N) + c1(N1)) ≥ γ + 2 + 2h1(S, detM/N).

Lemma 5.10. With E as above, if general curves in |H|s have Clifford index γ =

γ(C), we have d ≥ 3
2
γ + 5.

Proof. We first see that if c1(M/N)2 ≥ 0, then we are in cases (a) or (b) of the above

lemma. Furthermore, we have c2(M/N) ≥ 2. Thus in case (a), we have

2d ≥ 2(c2(M/N) + c1(M/N).c1(N) + c1(N).c1(N1) + c1(N1).c1(M/N))

≥ 4 + 2c1(M/N).c1(N) + 2c1(N).c1(N1) + 2c1(N1).c1(M/N)

= 4 + c1(M/N).(c1(N) + c1(N1)) + c1(N).(c1(N1) + c1(M/N))

+ c1(N1).(c1(M/N) + c1(N))

≥ 4 + 3(γ + 2),

where the last inequality comes from Proposition 5.1. Thus d ≥ 3
2
γ + 5. In case (b),
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we calculate as in case (a) and get d ≥ 3
2
γ + 5 or

2d ≥ 2

(
c1(N).c1(N1) + c1(N).c1(M/N) + c1(N1).c1(M/N) +

c1(M/N)2

4

)
≥ g + c1(N).c1(M/N) + 2c1(N).c1(N1) + c1(N1).c1(M/N)

≥ g + 2(γ + 2),

hence d ≥ γ + 2 + g
2
> 3

2
γ + 5.

If c1(M/N)2 < 0, in case (d), we have

d ≥ 3

2
+

g + 1

2
+

c1(N).c1(M/N)

2
+ c1(M/N).c1(N1) + c1(N).c1(N1)

≥ g + 4

2
+ k +

g + 1

2
− c1(M/N)2

4

≥ γ + 2 + g +
7

2
.

If 0 > c1(M/N)2 ≥ −6, then c2(M/N) ≥ 0, thus χ(detM/N) ≤ 1. Therefore

h1(S, detM/N) + 1 ≥ h0(S, detM/N). Calculating as above, we see that

� in case (a), we have d ≥ 3
2
γ + 5;

� in case (b), we have d ≥ 3
2
γ + 5 or d ≥ γ + 7

2
+ g+2

2
; and,

� in case (c), we have d ≥ 3
2
γ + 5.

If c2(M/N) < 0, then the stability of M/N implies that c1(M/N)2 ≤ −8 and

−2 ≤ ⟨ν(M/N), ν(M/N)⟩ = c1(M/N)2 + 8− 4χ(M/N) ≤ −4χ(M/N),

whereby χ(M/N) ≤ 0. We now consider inequalities associated with various filtra-

tions that lead to the terminal 1 ⊂ 3 ⊂ 4 filtration of E.

If the JH filtration of E is 1 ⊂ 3 ⊂ 4, then we have p(E) = p(M/N), which gives
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an equality of normalized Euler characteristics

χ(M/N)

2
=

χ(E)

4
=

g − γ + 1

4
.

Thus 0 ≥ 2χ(M/N) = g − d+ 7, and hence d ≥ g + 7.

If the HN filtration of E is 0 ⊂ M ⊂ E with rk(M) = 3 andM properly semistable,

then the JH filtration of M is 0 ⊂ N ⊂ M . Hence µ(M/N) = µ(M) and µ(M) >

µ(E). Thus

c1(M/N)2

2
+

c1(M/N).c1(N ⊗N1)

2
= µ(M/N) > µ(E) =

g − 1

2
,

hence

d ≥ 3

2
+

c1(M/N)2

4
+ c1(M/N).c1(N ⊗N1) + c1(N).c1(N1)

≥ 3

2
+

g − 1

2
− c1(M/N)2

4
+

c1(M/N).(c1(N) + c1(N1))

2

≥ 3

2
+

g − 1

2
+

c1(N).(c1(N1) + c1(M/N))

2
+

c1(N1).(c1(N) + c1(M/N))

2

≥ 3

2
+

g − 1

2
+ γ + 1

where the last inequality comes from the fact that N1 contributes to γ(C), and that

in cases (a),(b), and (c) c1(N).(c1(N1) + c1(M/N)) ≥ γ + 2.

If the HN filtration of E is 0 ⊂ N ⊂ E with E/N properly semistable and the

JH filtration of E/N is 0 ⊂ M ⊂ E/N with rk(M) = 2, then we have an equality of

normalized Euler characteristics

χ(E)− χ(N)

3
=

χ(E/N)

3
=

χ(M)

2
=

χ(M/N)

2
.

Thus χ(E) = g − γ + 1 = 3χ(M/N)
2

+ χ(N), where γ = d − 6 is the Clifford index of
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the g3d on C. From the short exact sequence

0 // N // E // E/N // 0 ,

we have χ(N) = h0(S,E)− h0(S,E/N) ≤ g − γ − 1 as h0(S,E/N) ≥ 2. Therefore

g − γ + 1 = χ(E) ≤ 3χ(M/N)

2
+ g − γ − 1,

and thus 2 ≤ 3
2
χ(M/N) ≤ 0, which is a contradiction. Thus this does not occur, and

in all cases we have at least d ≥ 3
2
γ + 5, as claimed.

5.1.5. Filtration 2 ⊂ 3 ⊂ 4

We assume E has a terminal filtration 0 ⊂ N ⊂ M ⊂ E with N a stable torsion free

sheaf of rank rk(N) = 2, rk(M) = 3, and N1 = E/M a line bundle. Furthermore, we

have

µ(N) ≥ µ(M) ≥ µ(E) =
g − 1

2
≥ µ(N1) (5.14)

µ(M) ≥ µ(M/N) ≥ µ(E/N) ≥ µ(N1) (5.15)

d = c2(E) = c2(N) + c1(N).c1(M/N) + c1(N).c1(N1) + c1(M/N).c1(N1) (5.16)

Moreover, as N is stable, we have c2(N) ≥ 3
2
+ c1(N)2

4
.

Lemma 5.11. Suppose E is as above. Then N1 ⊗ OC contributes to γ(C) and one

of the following occurs:

(a) (detN)⊗OC and (M/N)⊗OC contribute to γ(C);

(b) c1(N).(c1(N1)+ c1(M/N)) ≥ g+1 and either (M/N)⊗OC contributes to γ(C)

or c1(M/N).(c1(N) + c1(N1)) ≥ g;
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(c) (detN)⊗OC contributes to γ(C), we can assume c1(N)2 ≥ 0 and

c1(M/N).c1(N) ≥ 1
2
c1(N).(c1(M/N) + c1(N1));

(d) c1(N)2 ≤ −2 and c1(N)2

2
+ c1(M/N).c1(N) ≥ g+1

2
.

Proof. From Proposition 5.1 and Proposition 5.3, we see that N1 ⊗ OC contributes

to γ(C) and h2(S, detN) = h2(S, detM) = h2(S,M/N) = h2(S, detE/N) = 0.

We have the following four cases:

(i) h0(S,M/N), h0(S, detN) ≥ 2

(ii) h0(S,M/N) ≥ 2 and h0(S, detN) < 2

(iii) h0(S,M/N) < 2 and h0(S, detN) ≥ 2

(iv) h0(S,M/N), h0(S, detN) < 2.

In case (i), as N1 has global sections, and H − c1(M/N) = c1(N) + c1(N1) and

H − c1(N) = c1(N1) + c1(M/N), we see that both (detN) ⊗ OC and (M/N) ⊗ OC

contribute to γ(C), and we are in case (a).

In case (ii), we have χ(N) < 2, hence c1(N)2 ≤ −2, and we calculate

c1(N).(c1(N1) + c1(M/N)) = c1(N).(c1(E)− c1(N))

= 2µ(N)− c1(N)2 ≥ g − 1 + 2 = g + 1

We now observe that c1(detN ⊗N1)
2 ≥ c1(M/N)2 which follows from the following

calculation

c1(detN ⊗N1)
2 − c1(M/N)2 = c1(N)2 + 2c1(N).c1(N1) + c1(N1)

2 − c1(M/N)2

= 2µ(N) + µ(N1)− µ(M/N) ≥ µ(N) + µ(N1) > 0.
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If c1(detN ⊗N1)
2 < 0, then also c1(M/N) < 0, and we calculate

2g − 2 = c1(E)2 = (c1(N) + c1(M/N) + c1(N1))
2

= c1(detN ⊗N1)
2 + 2c1(detN ⊗N1).c1(M/N) + c1(M/N)2

< 2(c1(N) + c1(N1)).c1(M/N),

thus c1(M/N).(c1(N) + c1(N1)) ≥ g. Else c1(detN ⊗ N1)
2 ≥ 0, and so h0(S,H ⊗

(M/N)∨) = h0(S, detN ⊗ N1) ≥ 2, whereby M/N ⊗ OC contributes to γ(C). Thus

we are in case (b).

In case (iii), since detE/N ∼= detM/N ⊗ N1, we have h0(S, detM/N ⊗ N1) ≥ 2

by [56, Lemma 3.3]. Thus as h0(S, detN) ≥ 2, we have that detN ⊗OC contributes

to γ(C). Thus proving the first statement of case (c).

In cases (iii) and (iv), as h0(S,M/N) < 2 we have c1(M/N)2 ≤ −2. We now

calculate

2g − 2 = c1(E)2 = (c1(N) + c1(M/N) + c1(N1))
2

= c1(N)2 + c1(M/N)2 + c1(N1)
2

+ 2c1(N).c1(M/N) + 2c1(M/N).c1(N1) + 2c1(N).c1(N1)

≤ c1(N)2 + c1(N1)
2

+ 2c1(N).c1(M/N) + 2c1(M/N).c1(N1) + 2c1(N).c1(N1)− 2

≤ g − 1 + c1(N)2 + 2c1(M/N).c1(N)− 2,

thus c1(N)2

2
+ c1(M/N).c1(N) ≥ g+1

2
. If c1(N)2 ≤ −2, we are in case (d).

From now on, we assume c1(N)2 ≥ 0. From the inequality µ(M/N) ≥ µ(N1), we
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see that

c1(N).c1(M/N) > c1(M/N)2 + c1(N).c1(M/N)

≥ c1(N1)
2 + c1(N1).c1(M/N)

≥ c1(N1).c1(M/N).

Thus

c1(M/N).c1(N)− 1

2
c1(N).(c1(M/N) + c1(N1))

=
1

2
(c1(N).c1(M/N)− c1(N).c1(N1)) > 0,

and we are in case (c).

Lemma 5.12. With E as above, if general curves in |H|s have Clifford index γ =

γ(C), we have d ≥ 5 + 3
2
γ.

Proof. The proof follows the same argument as Lemma 5.7.

5.1.6. Filtration 1 ⊂ 2 ⊂ 3 ⊂ 4

We suppose E has a terminal filtration of the form

0 = E0 ⊂ E1 ⊂ E2 ⊂ E3 ⊂ E4 = E,
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where rk(Ei) = i, and Ei/Ei+1 are torsion free sheaves of rank 1. Furthermore, we

have

µ(E1) ≥ µ(E2) ≥ µ(E3) ≥ µ(E) =
g − 1

2
≥ µ(E/E3) (5.17)

µ(E1) ≥ µ(E2/E1) ≥ µ(E3/E2) ≥ µ(E/E3) (5.18)

µ(Ei/Ej) ≥ µ(E/E3) for 1 ≤ j < i ≤ 4 (5.19)

d = c1(E/E3).(c1(E1) + c1(E2/E1) + c1(E3/E2)) + c1(E1).c1(E3/E2)

+c1(E2/E1).c1(E3/E2) + c1(E1).c1(E2/E1) (5.20)

Letting ei := c1(Ei/(Ei−1)), be the Chern roots of E, and writing

ei + ej := c1(Ei/Ei−1 ⊗ Ej/Ej−1),

we have

4d =e1(e2 + e3 + e4) + (e1 + e2).(e3 + e4) + (e1 + e2 + e3).e4

+ (e1 + e4).(e2 + e3) + (e1 + e3).(e2 + e4) + (e1 + e3 + e4).e2 + (e1 + e2 + e4).e3

Lemma 5.13. With E as above, if general curves in |H|s have Clifford index γ =

γ(C),

m := min{D2|D ∈ Pic(S), D2 ≥ 0, D is effective}

(i.e. there are no curves of genus g′ < m+2
2

on S), and

µ = min{µ(D)|D ∈ Pic(S), D2 ≥ 0, µ(D) > 0},

we have d ≥ 5
4
γ + µ

2
+ m

2
+ 9

2
.
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Proof. From Proposition 5.1 and Proposition 5.3, we see that det(E/Ei) ⊗ OC con-

tributes to γ(C), and so we have e1(e2 + e3 + e4) ≥ γ + 2, (e1 + e2).(e3 + e4) ≥ γ + 2,

and (e1 + e2 + e3).e4 ≥ γ + 2. We also have h2(S, F ) = 0 for F = det(Ei/Ej) and

F = E/E3, detEi.

It remains to bound the other four terms.

To bound (e2 + e3).(e1 + e4), we note that µ(e2 + e3) ≥ µ+ µ(e3) ≥ µ+ µ(E/E2),

and thus

(e2 + e3)
2 + (e1 + e4).(e2 + e3)

≥ µ+
(e1 + e2).(e3 + e4)

2
+

(e3 + e4)
2

2

≥ µ+
γ + 2

2
+

(e3 + e4)
2

2
.

Furthermore, we note that µ(e1 + e4) = µ(e1) + µ(e4) ≥ g−1
2

+ µ, whereby

(e1 + e4)
2 + (e1 + e4).(e2 + e3) ≥ γ.

Now if h0(S, e1 + e4) < 2 then by considering the Euler characteristic we have (e1 +

e4)
2 ≤ −2, and thus (e1 + e4).(e2 + e3) ≥ γ + 2. If h0(S, e2 + e3) < 2 then (e2 +

e3)
2 ≤ −2, and we have (e1 + e4).(e2 + e3) ≥ 2 + µ+ γ+2

2
+ (e3+e4)2

2
. By assumption,

(e3 + e4)
2 ≥ m, hence (e1 + e4).(e2 + e3) ≥ 3 + µ + γ

2
+ m

2
as well. Finally, if

h0(S, e1 + e4), h
0(S, e2 + e3) ≥ 2, and thus they contribute to the γ(C), and hence

by Proposition 5.1 (e1 + e4).(e2 + e3) ≥ γ + 2. Therefore in either case, we have

(e1 + e4).(e2 + e3) ≥ 3 + µ+ γ
2
+ m

2
.

To bound (e1 + e3).(e2 + e4), we note that µ(e1 + e3) ≥ g−1
2
, and hence

(e1 + e3)
2 + (e1 + e3).(e2 + e4) ≥

g − 1

2
.
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We also note that µ(e2 + e4) ≥ µ+ µ(E/E1) ≥ µ+ µ(E/E2), whereby

(e2 + e4)
2 + (e1 + e3).(e2 + e4)

≥ 1 +
(e1 + e2).(e3 + e4)

2
+

(e3 + e4)
2

2

≥ 1 +
γ + 2

2
+

(e3 + e4)
2

2
.

As above, we have (e1 + e3).(e2 + e4) ≥ 3 + µ+ γ
2
+ m

2
.

To bound (e1 + e3 + e4).e2, we note that µ(e1 + e3 + e4) ≥ µ(e1) ≥ g−1
2

and

µ(e2) ≥ µ(E/E1) ≥ µ(E/E2). Following the same argument as above, we have

(e1 + e3 + e4).e2 ≥ 3 + γ
2
+ m

2
.

To bound (e1+e2+e4).e3, we note that µ(e1+e2+e4) ≥ µ(e1) ≥ g−1
2

and µ(e3) ≥

µ(E/E2). Following the same argument as above, we have (e1+e2+e4).e3 ≥ 3+ γ
2
+m

2
.

Finally, we have that three of the terms in the expression for 4d are bounded below

by γ + 2, two by 3 + γ
2
+ m

2
, and two by 3 + µ+ γ

2
+ m

2
. Thus d ≥ 5

4
γ + µ

2
+ m

2
+ 9

2
, as

desired.

Remark 5.14. We note that in the proof above, µ is always at least the minimum

slope of the determinant of a quotient of E.

Section 5.2

Lifting g3ds

As above, (S,H) is a polarized K3 surface of genus g, C ∈ |H| is a smooth irreducible

curve of general Clifford index γ = ⌊g−1
2
⌋, A is a complete basepoint free g3d with

ρ(A) < 0, and E = EC,A the unstable LM bundle. Having attained the needed

bounds on c2(E), we can prove our lifting results.

Theorem 5.15. Let (S,H) be a polarized K3 surface of genus g ̸= 2, 3, 4, 8 and
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C ∈ |H| a smooth irreducible curve of Clifford index γ. Let

m := min{D2 | D ∈ Pic(S), D2 ≥ 0, D is effective}

(i.e. there are no curves of genus g′ < m+2
2

on S), and

µ = min{µ(D) | D ∈ Pic(S), D2 ≥ 0, µ(D) > 0}.

If

d < min

{
5

4
γ +

µ

2
+

m

2
+

9

2
,
5

4
γ +

m

2
+ 5,

3

2
γ + 5,

γ

2
+

g − 1

2
+ 4

}
,

then there is a line bundle M ∈ Pic(S) adapted to |H| such that |A| ⊆ |M ⊗OC | and

γ(M ⊗OC) ≤ γ(A). Moreover, one has c1(M).C ≤ 3g−3
2

.

Proof. The LM bundle E has c2(E) = d. If g ̸= 2, 3, 4, 8, then d < 5g+19
6

. By

the assumptions on d, the only terminal filtration of E is of type 1 ⊂ 4. Thus by

Proposition 4.17, the result follows.

Considering the bounds obtained in Section 5.1, we have also proved the following

proposition.

Proposition 5.16. With A as above, the bundle EC,A only admits a terminal filtration

of type 1 ⊂ 4, 1 ⊂ 2 ⊂ 4, or 1 ⊂ 2 ⊂ 3 ⊂ 4.

Proof. We simply solve ρ(g, 3, d) < 0 for d and compare it to the bounds obtained

for each terminal filtration.
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Chapter 6

Maximal Brill–Noether Loci via

K3 surfaces

In this chapter, we outline a conjecture regarding containments of Brill–Noether loci

and verify it in genus ≤ 19, 22, and 23. The sections are taken from [6].

Section 6.1

Maximal Brill–Noether locus conjecture

A question of interest is to determine the stratification of Mg by Brill–Noether loci

and, in particular, to identify those loci that are maximal with respect to containment.

For Brill–Noether divisors, this is equivalent to having distinct support, a property

that is crucially used by Eisenbud and Harris [23], and further developed by Farkas

[26], to give lower bounds on the Kodaira dimension of M23.

There are various trivial containments among the Brill–Noether loci, e.g., M1
g,2 ⊆

M1
g,3 ⊆ · · · ⊆ M1

g,k = Mg, where k ≥ ⌊g+3
2
⌋ is at least the generic gonality of a

curve of genus g. Likewise, we have Mr
g,d ⊆ Mr

g,d+1 by adding a base point to a grd

on C. Similarly, by subtracting a point not in the base locus, Mr
g,d ⊆ Mr−1

g,d−1 when
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ρ(g, r − 1, d− 1) < 0, see [27, 55].

Modulo these trivial containments, the expected maximal Brill–Noether loci are

the Mr
g,d, where for fixed r, with 2r ≤ d ≤ g−1, d is maximal such that ρ(g, r, d) < 0

and ρ(g, r−1, d−1) ≥ 0. Hence, every Brill–Noether locus is contained in an expected

maximal one, and we conjecture that the expected maximal loci are distinct.

Conjecture 6.1 ([6]). In every genus g ≥ 3, the maximal Brill–Noether loci are the

expected ones, except when g = 7, 8, 9.

The conjecture states that at least one component of each expected maximal Brill–

Noether locus is not contained in any other Brill–Noether locus, hence the expected

maximal loci are indeed the maximal elements in the containment lattice of all Brill–

Noether loci. Concretely, this means that given any two expected maximal Brill–

Noether loci Mr
g,d and Mr′

g,d′ , there exists a genus g curve admitting a grd but not a

gr
′

d′ .

In each genus g = 7, 8, 9, there is an unexpected containment between the two

expected maximal Brill–Noether loci. In genus 8, Mukai [63, Lemma 3.8] proved

the unexpected containment M1
8,4 ⊂ M2

8,7, see Proposition 6.24. In genus 7 and 9,

Hannah Larson pointed out the unexpected containments M2
7,6 ⊂ M1

7,4 and M2
9,7 ⊂

M1
9,5, see Proposition 6.23 and Proposition 6.25.

Recently, there have been several breakthroughs in the study of Brill–Noether

special curves of fixed gonality [16, 27, 43, 51, 52, 69, 70], from which one can deduce

that the expected maximal M1
g,⌊ g+1

2
⌋ is not contained in any of the other expected

maximal loci and hence is maximal, see Section 6.2. Additionally, following the work

of Farkas [27] in genus 23, there has been recent focus on showing that Brill–Noether

loci of codimension 1 and 2 are distinct, and showing various non-containments of

Brill–Noether loci of codimension 2, see [12, 13, 14, 45]; in fact, for g ≥ 34 and not

divisible by 3, one can deduce that there are at least 2 maximal Brill–Noether loci.
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These results are proved using a mix of tropical, combinatorial, and limit linear series

methods.

On the other hand, our approach is to use K3 surfaces to construct curves ad-

mitting a grd, but not a gr
′

d′ , thus distinguishing the Brill–Noether loci. This idea was

introduced by Farkas [27], and further developed by Lelli-Chiesa [56, 58], who can

produce curves on a K3 surface admitting a g1d or g
2
d, but not a grd′ . We further extend

this technique to curves that admit a g3d, which suffices to prove our main theorem.

Theorem 6.2. Conjecture 6.1 holds in genus 3–19, 22, and 23.

In genus 23, Eisenbud and Harris [23], and Farkas [27], prove the part of this

conjecture concerning the Brill–Noether divisors in their work on the birational ge-

ometry of the moduli space of curves. Concerning genus 20 and 21, our results reduce

Conjecture 6.1 to the verification that the codimension of M3
20,17 and M4

21,20 is the

expected value of 4, and that the codimension of M4
20,19 is at least the expected value

of 5, which should be within reach using current techniques.

Section 6.2

Maximal Brill–Noether Loci

In this section, we take a look at the analytic geometry of various Brill–Noether theory

conditions on linear systems. We find simple bounds on the maximal Clifford index

of Brill–Noether special linear systems and for linear systems that can potentially

lift to a K3 surface without contradicting the Hodge index theorem. Furthermore,

we find that all non-computing linear systems are always potentially liftable to K3

surfaces. We end with a discussion of how Conjecture 4.6 and lattice theory can imply

Conjecture 6.1. We work with a fixed genus g throughout this section.

Let (S,H) be a polarized K3 surface of genus g. In the moduli space K◦
g of

polarized K3 surfaces of genus g, the Noether–Lefschetz (NL) locus parameterizes
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K3 surfaces with Picard rank > 1. By Hodge theory, the NL locus is a union of

countably many irreducible divisors, which we call NL divisors. In [34], Greer, Li,

and Tian study the Picard group of K◦
g using Noether–Lefschetz theory and the locus

of Brill–Noether special K3 surfaces in K◦
g is identified as a union of NL divisors.

More generally, it is convenient to work with the moduli space of primitively quasi-

polarized K3 surfaces, denoted Kg where Kg \ K◦
g is a divisor parameterizing K3

surfaces containing a (−2)-exceptional curve. We define the NL divisor Kr
g,d to be the

locus of polarized K3 surfaces (S,H) ∈ Kg such that

Λr
g,d =

H L

H 2g − 2 d

L d 2r − 2

admits a primitive embedding in Pic(S) preserving H. In this language, the divisor

Kg \ K◦
g is K0

g,0. We note that the Kr
g,d are each irreducible by [68]. As we’ll show

in Lemma 6.28, polarized K3 surfaces (S,H) ∈ Kr
g,d should be thought of as those

having a curve C ∈ |H| such that L⊗OC is a line bundle of type grd, and we say that

the lattice Λr
g,d is associated to grd. Specifically, we have the following lemma, which

we prove in Section 6.3.

Lemma 6.3 (See Lemma 6.28). Let (S,H) ∈ Kr
g,d and let C ∈ |H| be a smooth

irreducible curve. If L and H − L are basepoint free, r ≥ 2, and 1 ≤ d ≤ g − 1, then

L⊗OC is a grd.

Conversely, one is interested in the question of when a given grd on a curve in a

K3 surface is the restriction of a line bundle from the K3; in this case, we say that

the line bundle is a lift of the grd. Lifting of line bundles on curves on K3 surfaces is

considered in [21, 32, 56, 57, 61, 75]. In lifting Brill–Noether special linear systems

on C ∈ |H| to a line bundle L ∈ Pic(S), we are naturally led to considering two
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constraints. First, we have ρ(g, r, d) < 0 as the linear system is Brill–Noether special.

We call the constraint ρ(g, r, d) < 0 the Brill–Noether constraint. If a grd on a curve

C ∈ |H| on a polarized K3 surface (S,H) has a suitable lift (see Corollary 4.15),

then Pic(S) admits a primitive embedding of Λr
g,d preserving H, and in particular

disc
(
Λr

g,d

)
< 0 by the Hodge index theorem. Thus we define

∆(g, r, d) := disc
(
Λr

g,d

)
= 4(g − 1)(r − 1)− d2 = 4(g − 1)(r − 1)− (γ(r, d) + 2r)2.

We thus call the constraint ∆(g, r, d) < 0 the Hodge constraint as the inequality

stems from the Hodge index theorem. We remark that when ∆(g, r, d) < 0, the

Torelli theorem for polarized K3 surfaces implies that a very general K3 surface in

Kr
g,d has Pic(S) = Λr

g,d.

Remark 6.4. When considering the lifting of linear systems to K3 surfaces, it is more

convenient to consider the Brill–Noether and Hodge constraints for fixed g in the

(r, γ)-plane as opposed to the (r, d)-plane, in particular, because the Clifford index of

curves on K3 surfaces remains constant in their linear system [32]. In the (r, γ)-plane

the Brill–Noether and Hodge constraints determine regions that are bounded by the

curves ρ(g, r, d) = 0 and ∆(g, r, d) = 0, which we call the Brill–Noether hyperbola

and Hodge parabola, respectively. Simple calculations show that the maximum γ on

the Brill–Noether hyperbola is obtained at r =
√
g − 1 and γ = g − 2

√
g + 1, the

intersection with the line d = g − 1. Hence, taking γ ≤ ⌊g − 2
√
g + 1⌋ suffices to

bound Brill–Noether special linear systems. Similarly, the maximum γ on the Hodge

parabola is given by γ = g−5
2
, and obtained at the intersection with the line d = g−1

at r = g+3
4
. Thus if γ > g−5

2
then ∆ < 0. Trivially ⌊g−4

2
⌋ ≥ g−5

2
, and in fact the

bound γ ≥ ⌊g−4
2
⌋ =⇒ ∆ < 0 is the best possible as seen in genus 9, 13, and 17.

As an example, we show the bounds in genus 100, as graphed on the (r, γ)-plane in

Section 6.2.
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Figure 6.1: The Brill–Noether hyperbola (ρ = 0) and the Hodge parabola (∆ = 0) in
genus 100. The shaded area satisfies both ρ < 0 and ∆ < 0.

We recall that the Clifford index of a line bundle A on a smooth projective curve

C is the integer γ(A) = deg(A)− 2 r(A) where r(A) = h0(C,A)− 1 is the rank of A.

The Clifford index of C is

γ(C) := min{γ(A) | h0(C,A) ≥ 2 and h1(C,A) ≥ 2}.

We say that a line bundle A on C computes the Clifford index of C if γ(A) = γ(C).

Clifford’s theorem states that 0 ≤ γ(C) ≤ ⌊g−1
2
⌋, and when C is a general curve of

genus g, γ(C) = ⌊g−1
2
⌋.

Definition 6.5. Let A be a Brill–Noether special grd on a curve C of genus g, i.e.

ρ(g, r, d) < 0. We say A is non-computing if γ(r, d) > ⌊g−1
2
⌋, that is, A is a Brill–

Noether special grd that cannot compute the Clifford index of C.

Lemma 6.6. Let g ≥ 14, r ≥ 2, and 2r ≤ d ≤ g− 1. If Mr
g,d is an expected maximal

Brill–Noether locus, then γ(d, r) = d − 2r > ⌊g−1
2
⌋. When g < 14, there are no

non-computing grd’s.
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Proof. One can easily check that if d− 2r ≤ ⌊g−1
2
⌋, then ρ(g, r, d+1) < 0, and hence

Mr
g,d is not an expected maximal Brill–Noether locus. When g < 14, this is a simple

computation enumerating all grd’s with Clifford index ≤ ⌊g−1
2
⌋+ 1.

Thus for genus g ≥ 14, except for M1
g,⌊ g+1

2
⌋, all the maximal Brill–Noether loci

are those associated to non-computing grds. If lifting results are able to distinguish

between maximal Brill–Noether loci, there should not be an obvious obstruction to

lifting the associated linear systems. In particular, the Hodge index theorem implies

that the lattices obtained by lifting should have negative discriminant, which we show

is true for non-computing grds below.

Proposition 6.7. Let g, r, d be natural numbers with 2 ≤ d ≤ g−1 and 1 ≤ r ≤ g−1.

Then the Hodge parabola lies under the Brill–Noether hyperbola. In particular, all

non-computing linear systems, and all expected maximal Brill–Noether loci, satisfy

∆ < 0.

Proof. For fixed g ≥ 2, and for each constraint (ρ = 0 or ∆ = 0), we solve for γ as

a function of r and g. For ρ(g, r, γ) = 0, we find γρ(r) = g − r − g
r+1

. Likewise for

∆(g, r, γ) = 0 we have γ∆(r) = 2
√

(g − 1)(r − 1)− 2r. Observe that γρ = γ∆ has no

solutions in the given range (solve for r in terms of g, and note that g ≥ 2). Finally,

since γρ(1) > 0 and γ∆(1) < 0, we see by continuity that γρ(r)− γ∆(r) > 0.

The bound γ ≥ ⌊g−4
2
⌋ implies that ∆ < 0, as in the remark above. Since this is

below the general Clifford index (⌊g−1
2
⌋), we see that any lattice associated to a non-

computing linear system will have negative discriminant. In particular, by Lemma 6.6

above, this applies to the expected maximal linear systems.

We thus conjecture (Conjecture 6.1) that the maximal Brill–Noether loci are ex-

actly the expected maximal Brill–Noether loci, which are Brill–Noether loci Mr
g,d

where for fixed r, d is maximal such that ρ(g, r, d) < 0 and ρ(g, r−1, d−1) ≥ 0. Equiv-
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alently, the expected maximal Brill–Noether loci correspond to the maximal grd lying

under the Brill–Noether hyperbola for each r, up to the containments Mr
g,d ⊆ Mr

g,d+1

when ρ(g, r, d+ 1) < 0 and Mr
g,d ⊂ Mr−1

g,d−1 when ρ(g, r − 1, d− 1) < 0.

One could imagine that if there are any unexpected containments among Brill–

Noether loci, then some would come from containments of the form M1
g,d ⊂ Mr

g,d′ .

However, we find that the expected maximal M1
g,d is not contained in the other

expected maximal loci.

Proposition 6.8. Let ρ(g, r, d) < 0, and γ(r, d) ≥ ⌊g−1
2
⌋ + 1, e.g., for a non-

computing grd. Then M1
g,⌊ g+1

2
⌋ ⊈ Mr

g,d. When 9 ≤ g < 14, M1
g,⌊ g+1

2
⌋ ⊈ Mr

g,d for

an expected maximal Brill–Noether locus with r ≥ 2.

Proof. Let k = g+1
2
, and r′ = min{r, g − d+ r − 1}. We compute

ρk = max
ℓ∈{0,...,r′}

ρ(g, r − ℓ, d)− ℓk = ρ(g, r, d) + (g − k − γ(r, d) + 1)ℓ− ℓ2

≤ max
ℓ∈{0,...,r′}

ρ(g, r, d) + ℓ

(
g −

⌊
g − 1

2

⌋
−
⌊
g + 1

2

⌋)
− ℓ2

< max
ℓ∈{0,...,r′}

ρ(g, r, d) + 2ℓ− ℓ2 ≤ ρ(g, r, d) + 1 ≤ 0.

Therefore ρk < 0. From [70, Theorem 1.1], as dimW r
d (C) ≤ ρk, and W r

d (C) is empty

if its dimension is negative, we see that a general k-gonal curve does not admit a grd.

Hence M1
g,⌊ g+1

2
⌋ ⊈ Mr

g,d.

The statement for 9 ≤ g < 14 is obtained simply by calculating ρk explicitly, and

noting that in each case ρk < 0.

Remark 6.9. In [27], Farkas asks the general question of when does a general k-

gonal curve of genus g have no other linear series grd with ρ(g, r, d) < 0? The above

proposition answers the case when k = ⌊g+1
2
⌋, when the curve has maximal sub-

general gonality. If a curve has a Brill–Noether special gr
′

d′ , then it has a grd for an
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expected maximal Brill–Noether locus, and the above shows this is not the case. In

general, this question is answered by recent breakthroughs in Brill–Noether theory

for curves of fixed gonality, see e.g. [16, 27, 43, 51, 52, 69, 70].

In Lemma 6.28, we show that under mild assumptions, the curves C ∈ |H| on a

polarized K3 surface (S,H) with Pic(S) = Λr
g,d associated to an expected maximal

locus with r ≥ 2, all have general Clifford index. Thus the M1
g,⌊ g+1

2
⌋ does not contain

other expected maximal loci in many genera. Similar results have been proven by

Farkas and Lelli-Chiesa [27, 56].

A natural question is whether lattices corresponding to grds can be contained as

sublattices in each other. In general, the answer is yes. Already in genus 14, we

see that Λ2
14,10 could be embedded as a sublattice of Λ2

14,8. However, these are not

associated to expected maximal loci. In particular, we would like to show that lattices

associated to expected maximal loci cannot contain any lattices associated to other

grd. This turns out to be false (see Section 6.2.1). However, we can prove that lattices

associated to Brill–Noether special linear systems with lower than general Clifford

index cannot be contain in lattices associated to expected maximal loci, and that

any containments between lattices associated to an expected maximal loci and those

associated to non-computing grds must be equalities.

Proposition 6.10. Let Λr
g,d be associated to an expected maximal grd.

(i) Any lattice Λr′

g,d′ associated to a special gr
′

d′ with γ(gr
′

d′) < ⌊g−1
2
⌋ for any r′ or

γ(gr
′

d′) = ⌊g−1
2
⌋ if r′ ̸= 1 cannot be contained in Λr

g,d.

(ii) Let d′ ≤ g − 1. Any lattice Λr′

g,d′ associated to another expected maximal gr
′

d′ is

not contained in Λr
g,d, unless the lattices are isomorphic. Similarly, any lattice

associated to a non-computing gr
′

d′ with d′ ≤ g− 1 is not contained in the lattice

associated to an expected maximal grd unless they are isomorphic.
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Proof. To simplify notation, we write ∆ for the discriminant of a lattice Λ.

To prove (i), we recall that if Λsub ⊂ Λexp is a finite index sublattice, then we

have ∆sub = [Λexp : Λsub]
2∆exp. We calculate that the ratio ∆sub

∆exp
is never a square for

the lattices considered. Specifically, we show that the largest negative discriminant

−∆sub among lattices with γ < ⌊g−1
2
⌋, divided by the negative discriminant −∆exp

of any lattice associated to an expected maximal linear system, is not an integer.

Because ∆(g, r, d) = disc(−Λr
g,d) = d2−4(g−1)(r−1), it is clear that for fixed γ this

decreases as r increases until d = g−1. It follows that none of the lattices considered

can be contained in Λ1
g,⌊ g+1

2
⌋, the expected maximal loci with r = 1. From now on,

we assume r > 1. Furthermore, we can take

� max(−∆sub) = d2 with d = g+1
2

when γ = g−1
2

− 1 ; or

� max(−∆sub) = d2 − 4(g − 1) with d = 2
3
g + 2 when γ = g−1

2
.

We also note that −∆ increases when r and γ both increase by 1, and increases

as γ increases for fixed r. Thus if r′ ≥ r, then clearly max(−∆sub)
−∆exp

< 1. If r′ < r, then

moving from gr
′

d′ to grd, we take steps increasing r′ and γ by 1 until we hit r (and

then take steps increasing γ) or hit the line d = g − 1 and we take steps increasing

γ by 1 and decreasing r′ by 1. Since each of these steps increase −∆, we again see

that max(−∆sub)
−∆exp

< 1. We can always take these steps since we may assume we start at

r = 1 or r = 2, and the expected maximal grd lie far above. Thus (i) is proved.

To prove (ii), we similarly bound max(−∆) and min(−∆) for non-computing grds.

It can be verified that the ratio min(−∆)
max(−∆)

> 1
4
for r <

√
g, and hence max(−∆) <

4min(−∆), thus the discriminants of lattices associated to the expected maximal

Brill–Noether loci cannot differ by a square greater than 1. Hence if the lattices

associated to expected maximal loci are contained, they must be the same lattice.

Since −∆ increases as r decreases and as γ increases until d = g − 1, this argument

in fact shows that any lattice associated to a non-expected maximal non-computing
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gr
′

d′ cannot be contained in the lattice of an expected maximal grd unless they have the

same discriminant.

Remark 6.11. In fact, computation up to large genus shows that the lattices associated

to expected maximal loci do not contain any lattices associated to other expected

maximal loci. We conjecture that this is always true, though a proof of this is currently

unknown.

6.2.1. Program: Donagi–Morrison implies maximal Brill–Noether loci

To verify Conjecture 6.1, our strategy is for fixed genus g and distinct expected

maximal Mr
g,d and Mr′

g,d′ to prove that for a very general K3 surface (S,H) ∈ Kr
g,d, a

smooth curve C ∈ |H| admits a grd but not a gr
′

d′ . We do this by combining three kinds

of results: (i) a lifting result, (ii) showing that C ∈ |H| has a grd given by restricting

L ∈ Λr
g,d, and (iii) a comparison result that distinguishes lattices. The latter two can

be checked for any fixed genus. If all the lattices can be distinguished, a lifting result

like the Donagi–Morrison conjecture (Conjecture 4.6) implies Conjecture 6.1.

We start by defining a few terms in Conjecture 4.6.

Definition 6.12. Let S be a K3 surface, C ⊂ S be a curve, and A ∈ Pic(C) and

M ∈ Pic(S) be line bundles. We say that the linear system |A| is contained in the

restriction of |M | to C when for every D0 ∈ |A|, there is some divisor M0 ∈ |M | such

that D0 ⊂ C ∩M0.

Definition 6.13. A line bundle M is adapted to |H| when

(i) h0(S,M) ≥ 2 and h0(S,H ⊗M∨) ≥ 2; and

(ii) h0(S,M ⊗OC) is independent of the smooth curve C ∈ |H|.

Thus wheneverM is adapted to |H|, condition (i) ensures thatM⊗OC contributes

to γ(C), and condition (ii) ensures that γ(M⊗OC) is constant as C varies in its linear
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system and is satisfied if either h1(S,M) = 0 or h1(S,H ⊗M∨) = 0.

For convenience, we recall the notion of a Donagi–Morrison lift, Definition 4.7.

Definition 6.14. Let (S,H) be a polarized K3 surface and C ∈ |H| be a smooth

irreducible curve of genus ≥ 2. Suppose A is a complete basepoint free grd on C such

that d ≤ g − 1 and ρ(g, r, d) < 0. We call a line bundle M a Donagi–Morrison lift of

A if M satisfies the conditions in Conjecture 4.6. That is,

� M is adapted to |H|,

� |A| is contained in the restriction of |M | to C, and

� γ(M ⊗OC) ≤ γ(A).

We call a line bundle M a potential Donagi–Morrison lift of A if M satisfies γ(M ⊗

OC) ≤ γ(A) and d(M ⊗OC) ≥ d(A). Note that a Donagi–Morrison lift is a potential

Donagi–Morrison lift. We say a (potential) Donagi–Morrison lift is of type gse if

M2 = 2s− 2 and M.H = e.

We summarize a few potential results distinguishing lattices, each of which would

be useful in verifying Conjecture 6.1 given an appropriate lifting result.

(L1) For a fixed lattice Λr
g,d associated to an expected maximal Mr

g,d and any lattice

Λr′

g,d′ associated to another expected maximal Mr′

g,d′ , one has Λr′

g,d′ ⊈ Λr
g,d.

(L2) For a fixed lattice Λr
g,d associated to an expected maximal Mr

g,d and any lattice

Λr′

g,d′ with ⌊g+1
2
⌋ ≤ γ(r′, d′) ≤ ⌊g− 2

√
g+ 1⌋ and 1 ≤ r′ ≤ ⌊g−1−γ(r′,d′)

2
⌋, one has

Λr′

g,d′ ⊈ Λr
g,d.

(L3) For a pair of lattices (Λr
g,d,Λ

r′

g,d′) both associated to expected maximal Brill–

Noether loci, and any lattice Λs
g,e such that ⌊g+1

2
⌋ ≤ γ(s, e) ≤ γ(r′, d′) and

1 ≤ s ≤ ⌊g−1−γ(s,e)
2

⌋, one has Λs
g,e ⊈ Λr

g,d.
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We note that (L2) implies (L1). Furthermore, for fixed r and d, (L2) implies (L3)

for all r′ and d′.

Remark 6.15. The bounds on γ(s, e) and s in (L3) include all lattices associated to

a potential Donagi–Morrison lift of a gr
′

d′ . Indeed, suppose M is a potential Donagi–

Morrison lift of a gr
′

d′ , and say M is of type gse. The lower bound on γ(s, e) comes from

Proposition 6.10 (i). Since M is a potential Donagi–Morrison lift of a gr
′

d′ , we have

γ(s, e) ≤ γ(r′, d′), which is the upper bound on γ(s, e). Since M ⊗OC contributes to

γ(C), this forces H ⊗ M∨ ⊗ OC to be at least a g12g−2−e, whereby s ≤ g−1−γ(s,e)
2

as

2s ≤ e, which gives the upper bound on s.

Similarly, the bounds in (L2) include all lattices associated to a potential Donagi–

Morrison lift of an expected maximal linear system. M ⊗ OC must have Clifford

index no bigger than the expected maximal grd by Conjecture 4.6, the upper bound

on γ(r′, d′) comes from Remark 6.4. The other bounds are obtained in the same way

as for (L3).

Remark 6.16. As stated above, computations show that (L1) holds for every expected

maximal locus up to large genus.

We note that (L2) and (L3) do not always hold. The first genus where (L3) fails

is g = 56, where (L3) fails for the lattices Λr
g,d = Λ2

56,39 and Λr′

g,d′ = Λ6
56,49; indeed,

in attempting to check whether M2
56,39 can be contained in M3

56,44, a g344 on a curve

C ∈ |H| for a very general (S,H) ∈ K2
56,39 has a potential Donagi–Morrison lift M of

type g649. However, Λ2
56,39

∼= Λ6
56,49, and so (L3) does not hold. In this case, because

ρ(56, 2, 39) = −1 and ρ(56, 3, 44) = −4, we clearly have M2
56,39 ⊈ M3

56,44. Hence the

failure of (L3) does not necessarily obstruct our program to prove that Conjecture 4.6

implies Conjecture 6.1.

The next genus where (L3) fails is g = 89, where the locus M3
89,69 could possibly

be contained in M4
89,75 or M5

89,79. This is because line bundles of type g336 and
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g475 have a potential Donagi–Morrison lift M of type g1085, and the lattice ⟨H,M⟩ =

Λ10
89,85 is isomorphic to Λ3

89,69, so that (L3) does not hold. In this example, M3
89,69

has codimension 3 in M89, whereas M4
89,75 and M5

89,79 both have codimension 1,

hence the codimensions of the loci do not rule out the possibility that M3
89,69 is not

maximal. Thus in genus 89, Conjecture 4.6 together with (L2) is not sufficient to

imply Conjecture 6.1 without additional techniques.

We note that below genus 200, except for genus 56, 89, 91, 92, 145, 153, and 190,

(L2) holds, and thus Conjecture 4.6 implies Conjecture 6.1.

Proposition 6.17. Let Mr
g,d and Mr′

g,d′ be two expected maximal Brill–Noether loci.

Suppose (S,H) is a polarized K3 surface with Pic(S) = Λr
g,d, and L⊗OC is a grd. If

the Donagi–Morrison conjecture (Conjecture 4.6) holds for gr
′

d′ on C and (L3) holds

for the pair (Λr
g,d,Λ

r′

g,d′), then Mr
g,d ⊈ Mr′

g,d′. In particular, if Conjecture 4.6 and

(L2) hold for all expected maximal grd in genus g, then Conjecture 6.1 holds in genus

g.

Proof. The condition (L3) implies that Pic(S) cannot admit any potential Donagi–

Morrison lift of the gr
′

d′ . Hence the existence of a gr
′

d′ on C contradicts the Donagi–

Morrison conjecture. Therefore C has no gr
′

d′ , as was to be shown.

To state a related question, we need a simple definition.

Definition 6.18. For a Brill–Noether special curve C, we define the special Clifford

index of C as

γ̃(C) := min{γ(A) | ρ(A) < 0, h0(C,A) ≥ 2, and h1(C,A) ≥ 2}.

We say a Brill–Noether special line bundle A on C computes the special Clifford index

if γ(A) = γ̃(C).
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Lelli-Chiesa’s lifting result [57, Theorem 4.2] provides a lift of Brill–Noether special

line bundles computing the Clifford index. A similar result for line bundles computing

the special Clifford index of the curve together with L1 would imply that Mr
g,d ⊈

Mr′

g,d′ for γ(r, d) ≥ γ(r′, d′). We are left with three questions to which positive answers

would imply parts of Conjecture 6.1.

Question 6.19. When (L1) or (L2) fail, can the Brill–Noether loci be distinguished

in another way?

Question 6.20. Under what conditions does a line bundle computing the special Clif-

ford index of a curve C lift to a line bundle on S?

Question 6.21. Does the Donagi–Morrison conjecture hold for expected maximal grds?

We note that the work on Brill–Noether theory for fixed gonality, if it were ex-

tended to higher rank, could provide another approach to distinguishing Brill–Noether

loci that is complementary to the Donagi–Morrison lifting approach.

Section 6.3

Maximal Brill–Noether Loci in Genus ≤ 23

In this section, we identify the maximal Brill–Noether loci in genus 3–19, 22, and 23,

proving Theorem 6.2. Our technique combines known results about non-containments

of Brill–Noether loci, work by Lelli-Chiesa [56] on lifting of rank 2 linear systems and

linear systems computing the Clifford index, together with our lifting results for rank

3 linear systems above.

6.3.1. Genus 3–6

By Clifford’s theorem, any Brill–Noether special curve of genus 3 or 4 is hyperelliptic,

hence M1
g,2 is the only maximal (and expected maximal) Brill–Noether locus. Sim-

ilarly, in genus 5, every Brill–Noether special curve has gonality ≤ 3, hence M1
5,3 is
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the only maximal (and expected maximal), Brill–Noether locus. Thus Conjecture 6.1

holds in genus 3–5. In genus 6, we verify the conjecture as well.

Proposition 6.22. The maximal Brill–Noether loci in genus 6 are M1
6,3 and M2

6,5.

Proof. M1
6,3 and M2

6,5 are the expected maximal Brill–Noether loci. It remains to

show that they are distinct. Since ρ(6, 1, 3) = −2 and ρ(6, 2, 5) = −3, results on

the codimension of Brill–Noether loci (e.g., [22, 24, 78]) imply that M1
6,3 ⊈ M2

6,5. A

smooth plane quintic curve C has genus 6. By a well-known result of Max Noether

[40], C has gonality 4, hence has no g13. Thus M2
6,5 ⊈ M1

6,3.

6.3.2. Unexpected containments in genus 7–9

In each genus 7-9, there are two expected maximal Brill–Noether loci, and we give

detailed constructions of the unexpected containments between them: These are

M2
7,6 ⊂ M1

7,4, M1
8,4 ⊂ M2

8,7, and M2
9,7 ⊂ M1

9,5. Thus in these genera, there is a

unique maximal Brill–Noether locus. In genus 7 and 9, we are indebted to Hannah

Larson for pointing them out.

Proposition 6.23. Every Brill–Noether special curve of genus 7 has a g14.

Proof. The expected maximal Brill–Noether loci in genus 7 are M1
7,4 and M2

7,6. We

show that every smooth genus 7 curve with a g26 has a g14. Let ϕ : C → P2 be the

map given by the g26. If the g26 is not very ample (i.e. if the induced map is not

birational), then subtracting any two general points on C gives a g14 (see [38, Chapter

IV, Proposition 3.1]). Thus we can assume ϕ is a nondegenerate map, so that ϕ(C)

is a plane curve of degree 6, so has arithmetic genus 10. Hence ϕ(C) must have a

singular point (a point of multiplicity ≥ 2). Projecting from this point gives a g1k for

k ≤ 4, hence a g14.

Proposition 6.24 (Mukai [63, Lemma 3.8]). Every Brill–Noether special curve of

genus 8 has a g27.
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Proof. The maximal Brill–Noether loci in genus 8 are M1
8,4 and M2

8,7. We show that

a curve C of genus 8 with a g14 has a g27. Let A be a line bundle of type g14 on C.

If C has a g26 then it has a g27, thus we may assume that C has no g26, hence no g38

(Serre adjoint to a g26). Similarly, we can assume C has no g13 (as twice a g13 is a g26),

whence |A| is basepoint free. Furthermore, the Serre adjoint A′ of A is of type g410

and is very ample as there is no g38. Hence |A′| exhibits C as degree 10 curve in P4.

This embedding of C has 8 trisecant lines by the Berzolari formula

#{trisecant lines to C} =
(d− 2)(d− 3)(d− 4)

6
− g(d− 4),

where g is the genus of C and d is the degree of C in P4, see [8]. Projecting from one

of the trisecant lines gives a g27.

Proposition 6.25. Every Brill–Noether special curve of genus 9 has a g15.

Proof. The expected maximal Brill–Noether loci in genus 9 are M1
9,5 and M2

9,7. We

will show, similarly to Proposition 6.23, that every smooth genus 9 curve with a g27

has a g15. Let ϕ : C → P2 be the map given by the g27. If the g27 is not very ample,

then C has a g15. Thus we can assume ϕ is a nondegenerate map, so that ϕ(C) is a

plane curve of degree 7, so has arithmetic genus 15. Hence ϕ(C) must have a singular

point of multiplicity ≥ 2. Projecting from this point gives a g1k for k ≤ 5, hence a

g15.

Remark 6.26. The constructions in genus 7–9 rely on projections from secant linear

spaces. Given a very ample linear system of type grd defining an embedding C → Pr of

degree d, if C admits a k-secant l-dimensional linear subspace of Pr, then projection

from that linear subspace results in a gr−l−1
d−k . The expected dimension of the space

of l-dimensional linear spaces of Pr that are k-secant to C is classically known to

be k − (k − l − 1)(r − l), see [29]. Secant linear spaces for which this expected di-
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mension is nonnegative (resp. negative) are called expected (resp. unexpected). When

the expected dimension is 0, there are unwieldy enumerative formulas for the ex-

pected number of such secant linear spaces generalizing the Berzolari formula, see

[4, VIII.4]. We have checked that the only cases when an expected maximal grd (or

its Serre adjoint) admits an expected k-secant l-dimensional linear space and such

that the associated gr−l−1
d−k is also Brill–Noether special (and not Serre adjoint to a

grd) are the three cases discussed above in genus 7–9. Thus no additional unexpected

containments of expected maximal Brill–Noether loci can arise from expected secant

linear spaces. Unexpected secant linear spaces could potentially give rise to other

unexpected containments, but these should not exist if we believe various versions

of the Donagi–Morrison conjecture for expected maximal Brill–Noether special linear

systems, see [57, Theorem 1.4].

6.3.3. Genus 10–13

We first establish a few useful lemmas which, in effect, say that if Pic(S) = ⟨H,L⟩

looks like it is obtained by lifting a grd on C ∈ |H| to a line bundle L, then L is in fact

a lift of a grd. Moreover, for these lifts, we would like the line bundle to be basepoint

free, which is true if the grd is primitive. In particular, our next lemma shows that if a

curve C on a K3 surface strictly contains a Brill–Noether special linear system, then

it is primitive.

Lemma 6.27. Let (S,H) be a polarized K3 surface of genus g, C ∈ |H| a smooth

connected curve, and A ∈ Pic(C) be a line bundle of type grd. Suppose that ρ(g, r, d) <

0 and C has no Brill–Noether special linear series of Clifford index smaller than A.

Then A is primitive.

Proof. We note that γ(ωC ⊗ A∨) = γ(A), ρ(A) = ρ(ωC ⊗ A∨), γ(A − P ) < γ(A)

when P is a basepoint of A, and ρ(g, r, d− 1) < ρ(g, r, d). Suppose A has a basepoint
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P . Then A − P has strictly smaller Clifford index and is Brill–Noether special. By

assumption, C cannot be in the linear series |A − P |. Thus A is basepoint free.

Likewise, if ωC ⊗ A∨ has a basepoint P , then ωC ⊗ A∨ − P is Brill–Noether special

and has smaller Clifford index, which cannot be the case.

Parts of the following Lemma go back to Farkas in [27] and Rathmann’s Theorem

(see [47, 74]).

Lemma 6.28. Let (S,H) be a polarized K3 surface of genus g in the Noether–

Lefschetz divisor Kr
g,d, i.e., with Pic(S) admitting a primitive embedding of the sub-

lattice

Λr
g,d =

H L

H 2g − 2 d

L d 2r − 2

Let C ∈ |H| be a smooth irreducible curve.

(i) If Pic(S) = Λr
g,d and 2 ≤ r, d ≤ g − 1, then L is nef.

(ii) If L and H − L are basepoint free, r ≥ 2, and 0 < d ≤ g − 1, then L⊗OC is a

grd. (The assumption on basepoint free-ness is achieved if for example S has no

(−2)-curves, or can be checked numerically.)

(iii) Suppose that L ⊗ OC is a grd with γ(r, d) > ⌊g−1
2
⌋ and ρ(g, r, d) < 0 and that

all lattices obtained by lifting special linear systems of general Clifford index or

lower cannot be contained in Pic(S). Then C has Clifford index γ(C) = ⌊g−1
2
⌋,

maximal gonality ⌊g+3
2
⌋, and Clifford dimension 1.

(iv) If Pic(S) = Λr
g,d is associated to an expected maximal grd, then the assumption

on lattices in (iii) holds.
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(v) Suppose that γ(r, d) ≤ ⌊g−1
2
⌋, ρ(g, r, d) < 0, and that all lattices obtained by

lifting special linear systems A not of type grd with γ(A) ≤ ⌊g−1
2
⌋ cannot be

contained in Pic(S). Then L⊗OC is a grd and γ(C) = γ(r, d).

Proof. To prove (i) we show that for any (−2)-curve Γ = aH + bL ∈ Λr
g,d, we have

Γ.L ≥ 0. We note that as Γ is a (−2)-curve, a and b must have opposite sign. We

prove (i) in three cases.

First suppose a > 0 and b < 0. Then as Γ.H ≥ 1 and a > 0, we have bΓ.L ≤ −2,

thus as b < 0, Γ.L ≥ 0.

Second, suppose a < −1 and b > 0. Then since Γ.H ≥ 1, we have aΓ.H ≤ −2.

Thus b.Γ.L ≥ 0, and since b > 0 we must have Γ.L ≥ 0.

Lastly, suppose a = −1 and b > 0. We see that if Γ.H ≥ 2, then we can follow

the same argument as above to see that L is nef. Thus the only remaining case is

when a = −1 and Γ.H = 1. We calculate 2g − 2 = (H + Γ)2 = (bL)2 = b2(2r − 2),

hence b2 = g−1
r−1

∈ Z. From Γ.H = 1, we see b = 2g−1
d

, and plugging this in to

2g − 2 = b2(2r − 2) yields

d2(g − 1) = (2g − 1)2(r − 1).

Looking modulo g− 1, we immediately see that r− 1 ≡ 0 mod g− 1, hence r−1
g−1

∈ Z,

and thus r = g, which is a contradiction. Thus L is always nef.

To prove (ii), we note that L is clearly a lift of a gr
′

d on C for some r′ ≥ 0. Since

0 < d ≤ g − 1, we see that L2, (H − L)2 > 0. Furthermore, since H.L,H.(H −

L) > 0, both these line bundles are nontrivial and intersect H positively, hence

h0(S, L), h0(S,H−L) ≥ 2. By assumption, L and H−L are basepoint free, and thus

globally generated. Therefore Corollary 4.15 applies. Thus, as L2 = 2r − 2, we see

that L⊗OC must be a divisor of type grd. Hence (ii) is proved.

To prove (iii), we note that a g1d′ with ρ(g, 1, d′) < 0 has Clifford index γ(g1d′) <
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⌊g−1
2
⌋. Suppose for contradiction that C has lower than general Clifford index. Then

by [57, Theorem 4.2] we would be able to lift some special linear system computing

γ(C) to a divisor L′ ∈ Pic(S), and by assumption ⟨H,L′⟩ cannot be contained in

Pic(S). Thus C has general Clifford index. The same argument shows that C cannot

have a special linear system computing its Clifford index. Thus C has a g1⌊ g+3
2

⌋ which

computes the Clifford index. Hence C has maximal gonality and Clifford dimension

1.

To prove (iv), we note that if C had any Brill–Noether special gr
′

d′ with γ(gr
′

d′) ≤
g−1
2
, then it has a grd with γ = g−1

2
or a g1d with γ(g1d) =

g−1
2

− 1. Thus we only need

to consider lattices Λr
g,d associated to those grd. The proof is now Proposition 6.10(i).

Thus (iv) is proved.

To prove (v), we note again that L ⊗ OC is a gr
′

d . If r′ ̸= r, then γ(C) ̸= γ(r, d)

and some line bundle A would compute γ(C). Thus there would exists some lift of A

to a line bundle L′, but again the lattice ⟨H,L′⟩ ⊈ Pic(S). Hence r′ = r and we see

that L⊗OC is a grd. Similarly, γ(C) = γ(r, d).

Remark 6.29. If Λr
g,d has a (−2)-curve, there are still some ways to check that L and

H − L are basepoint free. Namely, if they are both nef, then we can check they are

basepoint free by checking if there are any elliptic curves on S. Namely if N ∈ Pic(S)

is nef and there are no elliptic curves, then N is basepoint free by a well-known result

of Saint-Donat. To numerically check if D ∈ Pic(S) is nef, one can check whether

D.Γ ≥ 0 for any (−2)-curve Γ.

One can also check that L⊗OC is a grd by enumerating all of the degree d gr
′

d on

C and using Lelli-Chiesa’s lifting results to show that Pic(S) cannot have a lift of a

gr
′

d for r′ ̸= r.

We can now prove that the maximal Brill–Noether loci in genus 10–19, 22, and

23 are as predicted by Conjecture 6.1. The proof in genus 10–13 uses Brill–Noether
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theory for curves of fixed gonality and various results distinguishing lattices above.

In genus 14–19, 22 and 23, the main strategy to distinguish the expected maximal

Brill–Noether loci, for example to show that Mr
g,d ⊈ Mr′

g,d′ , is to prove that for a

very general K3 surface (S,H) ∈ Kr
g,d, a curve C ∈ |H| has a grd but not a gr

′

d′ . This is

done by, first, applying Lemma 6.28 to deduce that C has a grd, and second, assuming

that C has a gr
′

d′ and then using various lifting results to produce a line bundle M on

S that is numerically incompatible with Pic(S).

For the rest of the section, we summarize the various arguments, organized by

genus.

In low genus, where there are no non-computing linear systems, we argue by the

Clifford index of C and can assume that a grd computes the Clifford index of C ∈ |H|.

Then Lelli-Chiesa’s lifting results [57] suffice to verify Conjecture 6.1 in genus 10–13.

Proposition 6.30. For any 10 ≤ g ≤ 13 and any positive integers r, d, r′, d′ such

that

� r′ ≥ 2,

� ρ(g, r, d), ρ(g, r′, d′) < 0,

� ∆(g, r, d),∆(g, r′, d′) < 0, and

� 2 < γ(r′, d′) ≤ γ(r, d) ≤ ⌊g−1
2
⌋,

there is a polarized K3 surface (S,H) ∈ Kr
g,d such that a curve C ∈ |H| admits a grd

but not a gr
′

d′ . Thus Mr
g,d ⊈ Mr′

g,d′.

Proof. First assume that r′ ≥ 2. We let (S,H) ∈ Kr
g,d be a very general and C ∈ |H|

a smooth irreducible curve of genus g. As in Proposition 6.10 (i), no lattices obtained

by lifting special linear systems on C can be contained in Pic(S). By Lemma 6.28

(v) we see that L⊗OC is a grd and γ(C) = γ(r, d). We suppose for contradiction that
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C admits a gr
′

d′ . We cannot have γ(r′, d′) < γ(r, d), as then the grd does not compute

the Clifford index of C. Hence γ(r′, d′) = γ(r, d). But now [57, Theorem 4.2] shows

that we have a Donagi–Morrison lift M ∈ Pic(S) of the gr
′

d′ , and by Proposition 6.10

(i) again, we see that ⟨H,M⟩ ⊈ Pic(S) unless the Donagi–Morrison lift of the gr
′

d′

is of type grd, which only occurs when r, r′ ≥ 2. In this case, the Lazarsfeld–Mukai

bundle EC,gr
′

d′
has a quotient E with γ(E) = 0, and one checks that none of the cases

of Lemma 3.21 can occur (for a detailed computation see Proposition 6.35). Thus C

cannot admit a gr
′

d′ .

Remark 6.31. When r′ = 1, case (a) of Lemma 3.21 can occur, hence we assume

r′ ≥ 2. In fact, in genus 11, M1
11,5 ⊆ M2

11,9. However, for expected maximal loci, the

codimensions of the expected maximal M1
g,k and M2

g,d loci rule out similar contain-

ments.

Corollary 6.32. In genus 10–13, Conjecture 6.1 holds.The maximal Brill–Noether

loci

� in genus 10 are M1
10,5 and M2

10,8;

� in genus 11 are M1
11,6 and M2

11,9;

� in genus 12 are M1
12,6, M2

12,9, and M3
12,11;

� in genus 13 are M1
13,7, M2

13,10, and M3
13,12.

Proof. Propositions 6.30 and 6.8 suffice to verify the conjecture in genus 10–13.

6.3.4. Genus 14–15

The arguments in genus 14 and 15 only require the lifting results of Lelli-Chiesa [57]

and the preliminary results above.
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Proposition 6.33. In genus 14, the maximal Brill–Noether loci are M1
14,7, M2

14,11,

and M3
14,13.

Proof. These loci are the expected maximal Brill–Noether loci in genus 14, thus it

remains to show that there are no containments among them. By Proposition 6.8,

M1
14,7 ⊈ M2

14,11 and M1
14,7 ⊈ M3

14,13. By Lemma 6.28 (iii), we see that there are

curves which admit a g211 or a g313 and have maximal gonality ⌊14+3
2

⌋ = 8, whereby

M2
14,11 ⊈ M1

14,7 and M3
14,13 ⊈ M1

14,7. Since ρ(14, 2, 11) = −1 and ρ(14, 3, 13) = −2,

and noting that therefore M2
14,11 has codimension 1 and M3

14,13 has codimension at

least 2 in M14, we see that M2
14,11 ⊈ M3

14,13. Finally, Lelli-Chiesa’s lifting of rank 2

linear systems [56] shows that M3
14,13 ⊈ M2

14,11.

The proof in genus 15 follows the same argument as genus 14 above.

Proposition 6.34. In genus 15, the maximal Brill–Noether loci are M1
15,7, M2

15,11,

and M3
15,14.

6.3.5. Genus 16–17

In genus 16 and 17, the proofs are slightly complicated by the fact that one cannot

expect to always lift a linear system A ∈ Pic(C) to a line bundle on S, but under

the Donagi–Morrison conjecture, we can at least find a Donagi–Morrison lift, i.e., a

line bundle N ∈ Pic(S) such that |A| ⊆ |N ⊗ OC | with γ(N ⊗ OC) ≤ γ(A), see

Definition 4.7.

Proposition 6.35. The maximal Brill–Noether loci in genus 16 are M1
16,8, M2

16,12,

and M3
16,14.

Proof. As above, it remains to show that there are no containments among these loci.

One can check, as in Remark 6.29, that for L in Λ3
16,14, L⊗OC is in fact a g314. We note

that there are no (−2)-curves in Λ2
15,12. Hence Lemma 6.28 applies for Pic(S) either
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Λ2
16,12 or Λ3

16,14. Thus M2
16,12 ⊈ M1

16,8 and M3
16,14 ⊈ M1

16,8. Furthermore, we have

M1
16,8 ⊈ M2

16,12 and M1
16,8 ⊈ M3

16,14 from Proposition 6.8. Since ρ(16, 2, 12) = −2

and ρ(16, 3, 14) = −4, we see that M2
16,12 ⊈ M3

16,14. It remains to show that there

are curves with a g314 and no g212.

Suppose that Pic(S) = Λ3
16,14, and suppose C has a line bundle A of type g212.

Then by [56, Theorem 1], there is a Donagi–Morrison lift of A. It can easily be

checked that if the Donagi–Morrison lift M is not of type g314, then M can not be

contained in Pic(S). Thus we can assume thatM is of type g314 andM2 = 4. However,

by Lemma 3.24, we see that γ(EC,A/N) = 0, and each of the cases in Lemma 3.21

cannot hold. In case (c), one appeals to [77, Theorem 5.2] which shows that a curve

is hyperelliptic only if there is an irreducible curve B ⊂ S of genus 1 or 2. However,

this would yield B2 = 0 or B2 = 2, both of which are too small. Thus there can be

no such M , and thus C cannot admit a g212. Thus M3
16,14 ⊈ M2

16,12.

The proof in genus 17 follows the same argument as genus 16 above.

Proposition 6.36. The maximal Brill–Noether loci in genus 17 are M1
17,9, M2

17,13,

and M3
17,15.

6.3.6. Genus 18

The proof in genus 18 is slightly complicated by the fact that in showing the non-

containment M2
18,13 ⊈ M3

18,16, the bound in Theorem 5.15 does not rule out the

possibility of a 1 ⊂ 2 ⊂ 4 terminal filtration. The other non-containments are similar

to the proofs above. We give a proof of this non-trivial non-containment.

Proposition 6.37. The maximal Brill–Noether loci in genus 18 are M1
18,9, M2

18,13,

and M3
18,16.

Proof. The only non-containment requiring additional analysis is M2
18,13 ⊈ M3

18,16.

The other non-containments follow the arguments above.
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In Theorem 5.15, the bound on d to ensure that a Donagi–Morrison lift exists for

a g316 on a general (S,H) ∈ K2
18,13 is 16, and hence we are not guaranteed to have

a Donagi–Morrison lift by using Proposition 4.17. However, the bound is sufficient

to show that the LM bundle EC,A associated to the g316 can only have a terminal

filtration of type 1 ⊂ 4 or 1 ⊂ 2 ⊂ 4. We argue that the terminal filtration of type

1 ⊂ 2 ⊂ 4 cannot exist.

Suppose Pic(S) = Λ2
18,13, and that C has g316. Lemma 6.28 shows that C has

γ(C) = 8. Suppose also that E = EC,g316
has a 1 ⊂ 2 ⊂ 4 terminal filtration, which

is 0 ⊂ N ⊂ M ⊂ E where N is a line bundle and M has rank 2. We show that this

leads to a contradiction. We have c1(N).c1(E/N) ≥ γ(C) + 2 by Proposition 5.3.

Furthermore, C has general Clifford index by Lemma 6.28. Up to replacing N with

its saturation, we can assume E/N is a gLM bundle of type (II), and a computation

gives γ(E) = c1(N).c1(E/N) + γ(E/N)− 2, thus γ(E/N) ≤ 2.

One can easily check that S has no elliptic curves, hence one of the four cases

in Proposition 3.27 occur. In case (i) and (ii), one checks the cases in Lemma 3.21,

and finds that none can occur. Thus for a smooth irreducible D ∈ | det(E/N)|,

D is either trigonal, a plane quintic, or a plane sextic, see Remark 3.28. If C is

hyperelliptic or trigonal, one finds a Donagi–Morrison lift of the g12 or the g13, which

cannot be contained in Pic(S). Thus we may assume γ(D) = 2. As the condition

(∗) from [57, Theorem 4.2] applies, we obtain a Donagi–Morrison lift of the g26, which

again cannot be contained in Pic(S). Thus E cannot have a 1 ⊂ 2 ⊂ 4 filtration.

Therefore E can only have a terminal filtration of type 1 ⊂ 4, and Conjecture 4.6

holds for the g316. The rest of the argument is now similar to the arguments above.

6.3.7. Genus 19

Proposition 6.38. The maximal Brill–Noether loci in genus 19 are M1
19,10, M2

19,14,

and M3
19,17.
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Proof. To apply Theorem 5.15, it suffices to note that when Pic(S) = Λ2
19,14, then we

have µ ≥ 2 and hence the Donagi–Morrison conjecture holds for a g317 on a smooth

C ∈ |H|, otherwise the argument is similar to Proposition 6.35.

We include again the example by Knutsen and Lelli-Chiesa Example 4.20. This

time with more context in light of our lifting results.

Remark 6.39. In [57, Appendix A, Remark 12], Knutsen and Lelli-Chiesa construct

examples of K3 surfaces S of Picard rank 2 such that a smooth irreducible curve

C ⊂ S has a Brill–Noether special linear system A of rank 3 with ρ(A) = −1 whose

Lazarsfeld–Mukai bundle EC,A admits no effective sub-line bundle. That is, Proposi-

tion 4.17 cannot be used to find a Donagi–Morrison lift of A. Here, we give an explicit

example and explain how it relates to our results.

We first recall Knutsen and Lelli-Chiesa’s construction. For even integers a, b ≥ 4

and d = a + b, let S be a K3 surface with Pic(S) = Λb
a,d. Suppose that Pic(S) has

no classes of self-intersection −2 or 0. There are infinitely many choices of a and b

that satisfy these hypotheses, and such that every element of the linear systems |H|

and |L| are reduced and irreducible; these are examples of the so-called Knutsen K3

surfaces in [2]. Thus general curves C1 ∈ |H| and C2 ∈ |L| are smooth of genus a

and b, and by Lazarsfeld’s theorem [53], are Brill–Noether general, in particular, have

generic gonality k1 = (a + 2)/2 and k2 = (b + 2)/2, respectively. Let E1 and E2 be

the LM bundles associated to gonality pencils g1k1 on C1 and a g1k2 on C2. As these

pencils are Brill–Noether general, the LM bundles E1 and E2 are simple, hence admit

no injective map from an effective line bundle N . A calculation using Remark 3.16

shows that the vector bundle E = E1 ⊕ E2 is a LM bundle associated to a linear

system A of type g3k1+k2+d on a smooth irreducible curve C ∈ |H + L|. We note that

g(C) = 2d − 1, and that ρ(A) = −1. However, since E admits no injective map

N ↪→ E, the linear system A admits no Donagi–Morrison lift, and so Conjecture 4.6
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fails for (C,A).

By construction, E has a 2 ⊂ 4 terminal filtration. Checking the bound from

Lemma 5.4, one finds that γ(C) ≤ d − 2, thus C does not have general Clifford

index. In fact, one can verify using Lemma 6.28 that L|C is a line bundle of type

gbd+2b−2, which has γ(L|C) = d − 2. We note that A is non-computing, and does

not compute the special Clifford index γ̃(C). However, the linear system L|C does

compute γ̃(C), and has a (Donagi–Morrison) lift by construction. Hence, while this

is a counterexample to the Donagi–Morrison conjecture, it does not give a negative

answer to Question 6.20.

The first case where such an example shows the failure of Conjecture 4.6 for (C,A)

is genus 19, with a = 6 and b = 4.

The smooth curves in |H| and |L| are Brill–Noether general of genus 6 and 4, so

have gonality 4 and 3, respectively. Then we consider a smooth curve C ∈ |H + L|,

which has genus 19. The example above gives a Lazarsfeld–Mukai bundle E that is

the direct sum of Lazarsfeld–Mukai bundles of gonality pencils on curves in |H| and

|L|, which is is the Lazarsfeld–Mukai bundle of a g317 on C. By construction, this LM

bundle has a terminal filtration of type 2 ⊂ 4 and does not admit any injective map

from an effective line bundle, hence the g317 on C does not admit a Donagi-Morrison

lift. However, taking L and restricting it to C, one sees that L|C is a g416 which has

Clifford index 8, hence C is not Clifford general (as the general Clifford index is 9),

and is in fact quite special. The corresponding polarized K3 surface (S,H + L) of

genus 19 has Pic(S) = Λ4
19,16 with basis H + L,L. In the proof of Proposition 6.38,

we needed the Donagi–Morrison Conjecture (Conjecture 4.6) for linear systems on

curves on a different lattice polarized K3 surface, showing that our bounded version

(Theorem 5.15) is in some sense tight (at least in genus 19).

137



6.3 Maximal Brill–Noether Loci in Genus ≤ 23 Max BN Loci

6.3.8. Genus 20− 21

We briefly list what is known and summarize the last needed non-containments to

verify Conjecture 6.1 in genus 20 and 21.

The expected maximal Brill–Noether loci in genus 20 are M1
20,10, M2

20,15, and

M3
20,17, and M4

20,19. We state the following propositions without proof, as they follow

the arguments above.

Proposition 6.40. In genus 20, the loci M1
20,10, M2

20,17, and M4
20,19 are maximal.

There are also non-containments

� M3
20,17 ⊈ M1

20,10 and

� M3
20,17 ⊈ M2

20,17.

In fact, the only non-containment that remains to verify Conjecture 6.1 in genus

20 is M3
20,17 ⊈ M4

20,19. Current lifting methods do not suffice to prove the last

non-containment, as there are no known general lifting results for linear systems of

rank 4. If Conjecture 4.6 holds in rank 4, then this would suffice. Another approach

to verifying Conjecture 6.1 in genus 20 is to show that the codimension of M3
20,17 is at

least the expected value of 4 and the codimension of M4
20,19 is at least the expected

value of 5.

Similarly, the expected maximal Brill–Noether loci in genus 21 are M1
21,11, M2

21,15,

and M3
21,18, and M4

21,20. And current methods suffice to prove that some expected

maximal loci are indeed maximal.

Proposition 6.41. In genus 21, the loci M1
21,11 and M4

21,20 are maximal. There are

also non-containments

� M2
21,15 ⊈ M1

21,11

� M3
21,18 ⊈ M1

21,11
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� M2
21,15 ⊈ M3

21,18

� M3
21,18 ⊈ M2

21,15 .

Our results reduce the verification of Conjecture 6.1 in genus 21 to the verifica-

tion of the non-containments M2
21,15 ⊈ M4

21,20 and M3
21,18 ⊈ M4

21,20. Again, Conjec-

ture 4.6 in rank 4 would suffice. Another approach is by verifying that the codimension

of M4
21,20 is the expected value of 4, since ρ(21, 2, 15) = ρ(21, 3, 18) = −3 and thus

the corresponding loci have codimension 3 in M21.

6.3.9. Genus 22

Proposition 6.42. The maximal Brill–Noether loci in genus 22 are M1
22,11, M2

22,16,

and M3
22,19, and M4

22,21.

Proof. In genus 22, [12, Corollary 3.5] shows that the loci M2
22,16 and M3

22,19 are

distinct. The argument then follows Proposition 6.35.

6.3.10. Genus 23

Finally, we provide a proof in genus 23. We note that Farkas proved in [26] that the

Brill–Noether divisors M1
23,12, M2

23,17, and M3
23,20 are mutually distinct. Our results,

and those of Lelli-Chiesa [56], provide a different proof for these non-containments.

However, the full proof of Conjecture 6.1 in genus 23 requires our improved lifting

results.

Proposition 6.43. The maximal Brill–Noether loci in genus 23 are M1
23,12, M2

23,17,

M3
23,20, and M4

23,22.

Proof. Since ρ(23, 1, 12) = ρ(23, 2, 17) = ρ(23, 3, 20) = −1 and ρ(23, 4, 22) = −2,

Eisenbud and Harris [24] show that the corresponding loci are irreducible of codi-

mension 1 in Mg and that M4
23,22 has codimension ≥ 2, hence the other loci cannot
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be contained in M4
23,22. Since there are no (−2)-curves in the Picard lattices of a

general K3 surface in K2
23,17, K3

23,20, and K4
23,22, we see by Lemma 6.28 that none of

the loci are contained in M1
23,12. One can check that for a very general K3 surface in

K4
23,22, the minimal positive self-intersection is 4. Hence by Theorem 5.15, if C ∈ |H|

had a g320 then by considering the Donagi–Morrison lifts, one finds that L is the only

possible Donagi–Morrison lift of the g320. Therefore γ(E/N) = 0, and one then argues

as in the proof of Proposition 6.35. Thus M4
23,22 ⊈ M3

23,20. The lifting results in [56]

similarly show that M4
23,22 ⊈ M2

23,17 and M3
23,22 ⊈ M2

23,17. Since the latter two are

codimension 1 and irreducible, they are distinct. Thus all of the Brill–Noether loci

are distinct.
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Chapter 7

Brill–Noether special K3 surfaces

In this chapter, we present results on the Brill–Noether theory of K3 surfaces informed

by Donagi–Morrison type results. Specifically, we answer part of a conjecture of Mukai

and Knutsen on the structure of the Picard group of a polarized K3 surface (S,H) if

a curve C ∈ |H| is Brill–Noether special.

Section 7.1

Introduction

In the early 21st century, Mukai introduced a Brill–Noether theory for polarized K3

surfaces, and showed that in genus g ≤ 10 and g = 12, the Brill–Noether general

polarized K3 surfaces are precisely those admitting a so-called “Mukai model” in a

projective homogeneous variety. While much of this work implicitly circles around

the relationship between the Brill–Noether theory of curves on a K3 surface and the

Brill–Noether theory of the associated polarized K3 surface, the precise relationship

between these two notions is still somewhat mysterious.

Following Mukai [64, Definition 3.8], we say that a polarized K3 surface (S,H) of

genus g is Brill–Noether special if there exists a nontrivial line bundle J ̸= H such
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that h0(S, J)h0(S,H − J) ≥ h0(S,H) = g + 1. If both J and H − J are globally

generated, this is equivalent to ρ(g, r, d) = g−(r+1)(g−d+r) < 0, whereH2 = 2g−2,

J2 = 2r− 2, and d = J.H. In this case, we call the sublattice generated by H and J ,

isomorphic to Λr
g,d, a Brill–Noether special marking of Pic(S).

Example 7.1. Let (S,H) be a K3 surface with Pic(S) = Λ1
g,1, that is

Pic(S) =

H L

H 2g − 2 1

L 1 0

.

Note that (S,H) is Brill–Noether special, indeed ρ(g, 1, 1) = g − 2g < 0. However,

|H| has a base component. We compute that (H − gL)2 = −2, and thus

H = gL+ ((−2)-curve),

where the (−2)-curve is the fixed component of H. This is the case when S is an

elliptic K3 surface with a section L.

Thus we focus on the case when H has no fixed component, that is, when H is

ample and basepoint free and hence there are smooth irreducible curves C ∈ |H|.

If a smooth curve C ∈ |H| is Brill–Noether general, it follows that (S,H) is also

Brill–Noether general. To see this, simply restrict a the line bundle J to a C, and

note that J |C has ρ(C, J |C) < 0. We explain the details here.

Proposition 7.2. If (S,H) is Brill–Noether special, then a smooth curve C ∈ |H| is

Brill–Noether special.

Proof. Suppose H = M + N with h0(M) · h0(N) ≥ g + 1. Consider the long exact

sequence for C,

0 → OS(−C) → OS → OC → 0.
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Tensoring this with M gives

0 → M ⊗OS(−C) → M → M |C → 0.

Since h0(S,−N) = h0(S,M⊗OS(−C)), the long exact sequence in cohomology shows

that h0(C,M |C) ≥ h0(S,M). Likewise for N . Recall that by adjunciton, ωC = H|C .

Hence h0(C,N |C) = h0(C, (H −M)|C) = h1(C,M |C). We compute

h0(C,M |C) · h1(C,M |C) = h0(C,M |C) · h0(C,N |C)

≥ h0(S,M) · h0(S,N)

≥ g + 1 > g.

Thus M |C is Brill–Noether special. Hence C is Brill–Noether special, as desired.

The converse is an open question, stated by Johnsen and Knutsen [44, Remark 10.2],

and attributed to Mukai.

Question 7.3. Let (S,H) be a polarized K3 surface, and C ∈ |H| a smooth irreducible

curve. If C is Brill–Noether special, then is (S,H) is Brill–Noether special?

Lazarsfeld’s proof of the Brill–Noether–Petri theorem, Theorem 3.3, in [53] implies

that ifH generates the Picard group of S, in particular (S,H) is Brill–Noether general,

then a smooth curve in the linear system of H is Brill–Noether general. However, the

question remains open for K3 surfaces of higher Picard rank.

Theorem 7.4. Question 7.3 has a positive answer for 2 ≤ g ≤ 19.

Our approach to this question, is to take A and show that a Donagi–Morrison

lift M of A gives a Brill–Noether special marking on Pic(S). The proof would be

simplified if we could always find a lift (M ∈ Pic(S) such that M |C ∼= A), not just
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a Donagi–Morrison lift of A. However, this is not always the case. The reason we

only verify Question 7.3 through genus 19 is that in genus 20 and above, current

techniques for lifting line bundles are insufficient. In particular, one would need to

lift linear systems of rank 4. In genus 18 and 19, we encounter this problem, but can

work around it by finding another linear system with rank 3 which we can lift; this

ad hoc solution, however, stops working in higher genus. Throughout the chapter, we

let (S,H) be a polarized K3 surface of genus g ≥ 2, and C ∈ |H| a smooth irreducible

curve of genus g.

Section 7.2

Brill–Noether special K3 surfaces

For convenience, we briefly recall important notions arising in lifting Brill–Noether

special linear systems on C ∈ |H| to a line bundle L ∈ Pic(S). We are naturally

lead to consider two constraints. Firstly, we have ρ(g, r, d) < 0 as the linear system is

special. We call the constraint ρ(g, r, d) ≤ 0 the Brill-Noether constraint. Secondly,

if the linear system were to lift, then we must have disc Pic(S) < 0. In analogy with

the lifting results of Lelli-Chiesa, we write L2 = n = 2r − 2 and define

∆(g, r, d) := disc
(
Λg

d,2r−2

)
= 4(g− 1)(r− 1)− d2 = 4(g− 1)(r− 1)− (γ(g, r, d)+2r)2,

calling the constraint ∆ ≤ 0 the Hodge constraint, as the inequality ∆(g, r, d) < 0

stems from the Hodge index theorem.

Recall that the Noether–Lefschetz divisors Kr
g,d in the moduli space of K3 surfaces

of genus g parameterize K3 surfaces with a primitive embedding Λr
g,d ↪→ Pic(S). For

more details, see Section 6.2. In [34], Greer, Li, and Tian study the Picard group

of the moduli space of polarized K3 surfaces of genus g, and prove that the non-
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Brill–Noether special K3 surfaces are contained a union of certain Noether–Lefschetz

divisors. We rephrase the constraints in [34] using the Hodge and Brill–Noether

constraint.

Proposition 7.5 ([34, Lemma 2.8]). The locus of non-Brill–Noether general K3 sur-

faces in Kg is a union of the Noether–Lefschetz divisors Kr
g,d satisfying 2 ≤ d ≤ g−1,

ρ(g, r, d) < 0, and ∆(g, r, d) < 0.

Proof. The lower bound in [34, Lemma 2.8]
√
4(g − 1)(r − 1) < d is simply

∆(g, r, d) < 0. One of the upper bounds d ≤ g − 1 is trivial. The other upper bound

d ≤ r + g − g+1
r+1

is simply ρ(g, r, d) < 0.

Proposition 7.6. Let A be a grd on C, and suppose there is a short exact sequence

0 → N → EC,A → E → 0

where N is a line bundle with h0(S,N) ≥ 2, and E is a LM bundle with γ(E) = k.

Let M = det(E). Suppose that M2 = 2r′ − 2. If r′ > r + rk
r−1

, then E is not stable.

Proof. E = ED,B is a LM bundle for a smooth irreducible curve D ∈ |M | of genus r′

and a line bundle B ∈ Pic(D). Since γ(E) = k and rk(E) = r, B is a gr−1
k+2r−2 on D.

We compute

ρ(g(D), r(B), d(B)) = ρ(r′, r − 1, k + 2r − 2),

and see that ρ(g(D), r(B), d(B)) < 0 if and only if r′ > r + rk
r−1

, hence E is not

stable.

Corollary 7.7. If the LM bundle E above is stable with γ(E) = 0 and γ(M |C) =

γ(A), then M |C ∼= A.

Proof. M is a Donagi–Morrison lift of A. Since E is stable, Proposition 7.6 implies

we have r′ = r, hence as H.M −M2+2 = γ(A)−γ(E), we have deg(M |C) = deg(A).
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Therefore γ(M |C) = γ(A) implies that h0(C,M |C) = r + 1. Thus M |C ∼= A, as

desired.

Remark 7.8. If E above is not a LM bundle, then E∨∨ is a LM bundle of Clifford index

γ(E∨∨) = γ(E)−ℓ(κ), where κ = E∨∨/E is the 0-dimensional sheaf supported on the

points where E is not locally free. Moreover, E∨∨ is a LM bundle for a gr−1
k+2r−2−ℓ(κ)

on a smooth irreducible curve D ∈ |M |. Repeating the same calculation shows that

if r′ > r + r(k−ℓ(κ))
r−1

, then E∨∨ is not stable.

In any genus, the lifting results of Lelli-Chiesa [57, Theorem 4.2] and Knutsen [46,

Lemma 8.3] suffice to verify Question 7.3 when γ(C) ≤ ⌊g−1
2
⌋ and γ(A) = γ(C). In

those cases, taking J to be the lift of A provides a Brill–Noether special marking on

(S,H). However, in genus ≥ 14, there are non-computing line bundles, which have

γ(A) > γ(C). We verify Question 7.3 in genus 14− 17 using Donagi–Morrison lifts.

We begin with a few simple observations to aid the proofs. Throughout this

section, let (S,H) be a polarized K3 surface of genus g, C ∈ |H| a smooth irreducible

curve, and A be a grd on C. Suppose also that there is a short exact sequence

0 → N → EC,A → E → 0

where N is a line bundle with h0(S,N) ≥ 2, and E is a stable gLM bundle with

γ(E) = k. That is, assume Conjecture 4.19 holds for A.

Lemma 7.9. One has k = γ(E) ≤ γ(A)− γ(C).

Proof. As in the proof of [6, Proposition 3.17], we note that h0(C, det(E)) ≥ 2 and

h1(C, det(E)) ≥ 2. Hence det(E)|C contributes to the Clifford index of C, and thus

γ(det(E)|C) ≥ γ(C). Since γ(det(E)|C) = γ(A) − γ(E) − 2h1(S,N), the result

follows.
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Proposition 7.10. If det(E) is of type gr
′

d′ and ρ(g, r′, d′) ≥ 0, then

k = γ(E) ≤ γ(A) + r′ − r′g

r′ + 1
.

Proof. Suppose that det(E) is of type gr
′

γ(A)−k+2r′ . The bound is obtained from

ρ(g, r′, γ(A)− k + 2r′) ≥ 0.

We compute

ρ(g, r′, γ(A)− k + 2r′) ≥ 0

⇐⇒ k ≤ g

r′ + 1
+ r′ − g + γ(A)

= γ(A) + r′ − r′g

r′ + 1
.

Corollary 7.11. If k = γ(E) > γ(A)+ r′− r′g
r′+1

, then ⟨H, det(E)⟩ is a Brill–Noether

special marking on (S,H).

7.2.1. Strong Donagi–Morrison holds for genus 14-19

In genus ≥ 14, there are non-computing line bundles, and thus the lifting results of

Lelli-Chiesa and Knutsen [57, 46] where the line bundle computes γ(C), do not suffice.

To verify Question 7.3 in genus 14-17, we first verify that Conjecture 4.19 holds for

the non-computing line bundles, where we use the lifting results of Lelli-Chiesa when

r = 2 [56], and our work when r = 3, Theorem 5.15.

We list the non-computing line bundles in genus 14-19.

� g = 14: g211, g
3
13;

� g = 15: g314;
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� g = 16: g212, g
3
14;

� g = 17: g213, g
3
15;

� g = 18: g213, g
3
15, g

3
16, g

4
17;

� g = 19: g214, g
3
16, g

3
17, g

4
18.

We first show that Conjecture 4.19 holds for each of these linear systems, and

then use the Donagi–Morrison lifts to show that Pic(S) has a Brill–Noether special

marking.

Lemma 7.12. Let (S,H) be a K3 surface of genus g. Suppose there is a line bundle

L ∈ Pic(S) of type grd with L and H − L globally generated. If d ≤ r, then (S,H) is

Brill–Noether special.

Proof. Let r = 2+L2

2
≥ 1, and d ≤ r. We compute

ρ(g, r, d) = g − (r + 1)(g − d+ r) = −rg − (r + 1)(r − d) < 0.

Thus the sublattice of Pic(S) generated byH and L is a Brill–Noether special marking

of Pic(S).

Thus, to show that (S,H) is Brill-Noether special if C ∈ |H| has a Brill–Noether

special g3d, we may assume µ ≥ 4 in Theorem 5.15.

Lemma 7.13. Let (S,H) be a polarized K3 surface of genus 14 ≤ g ≤ 19 and C ∈ |H|

a smooth irreducible curve. Suppose A is a non-computing line bundle on C, then at

least one of the following holds:

(a) (S,H) is Brill–Noether special;

(b) there is a line bundle N ↪→ EC,A such that h0(S,N) ≥ 2 and E = EC,A/N is

stable, that is, Conjecture 4.19 holds; or,
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(c) A is of type g4d, and C has a basepoint free complete linear system of type g3d′

with d′ ≤ d− 1. Moreover, (a) holds or (b) holds for the g3d′.

Proof. For A of type g2d, we are always in case (b), the proof follows from [56].

If A is of type g3d, we apply Theorem 5.15 and Lemma 7.12. In the proof of

Theorem 5.15, we cannot have m = 0, as then c1(M1)
2 = 0 in Lemma 5.6, and M1

is a gLM of type (II) and if c1(M1)
2 = 0, then c2(M1) = 0, which is not the case as

M1 is stable and thus has c2(M1) ≥ 2, as in Remark 3.26. Likewise, by Lemma 7.12,

we see that either (S,H) is Brill–Noether special and we are in case (a) or else µ in

Theorem 5.15 may be assumed large and we are in case (b).

If A is of type g4d as in genus 18 or 19, we show that we are in case (b) or (c). In

genus 18, if A is of type g417, then C has a g316, see [27, 55]. If the g
3
16 is not basepoint

free, then subtracting basepoints yields the result. Likewise in genus 19, if A is of

type g418, then C has a basepoint free g3d′ with d′ ≤ 17. Applying the above argument

to the g3d′ yields the last statement of case (c).

Theorem 7.14. Let (S,H) be a polarized K3 surface of genus 14 ≤ g ≤ 19 and

C ∈ |H| a smooth irreducible curve. Then C is Brill–Noether special if and only if

(S,H) is Brill–Noether special.

Proof. One direction is Proposition 7.2.

Conversely, suppose that C is Brill–Noether special and has a line bundle A with

ρ(C,A) < 0. We argue by the Clifford index of C.

If γ(C) < ⌊g−1
2
⌋, the lifting results of Lelli-Chiesa Theorem 4.10 and Knutsen [46,

Lemma 8.3] suffice to verify Question 7.3.

Similarly, if γ(C) = ⌊g−1
2
⌋ and γ(A) = γ(C), then Theorem 4.10 and [46, Lemma

8.3] suffice.

Now suppose that γ(C) = ⌊g−1
2
⌋, and γ(A) > γ(C), that is, A is non-computing.

Now Lemma 7.9, Corollary 7.11, and Lemma 7.13 show that either (S,H) is Brill–
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Noether special or the Donagi–Morrison lifts of A give a Brill–Noether special marking

on (S,H), as desired.
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