Maximal Bris-Noether Wei
Parts joint with Asher And \& Hamah Larson
A classical Briv-Noether theory.
Brill-Noether theory of aby. Curves com be unelerstood as "representation theory for curves".
Q Given an abstract curve C, can we represent C as a curve in P^{r} of ckeg.d?
study linear systems on cures. C sm. cere.
Defn $A g^{r} d$ on C is a pair
$L \in P_{i}{ }^{d}(C)$ wo $k^{\circ}(L) \geqslant r+1$, and $V \subseteq H^{\circ}(L)$ of rank r.
\leadsto gives a map $C \longrightarrow P^{r}$ of degree.

Q when does C kam a grd?
Recull: Ceometrie Fiemam-Proch
Let $D=p_{1}+\cdots+p_{d}$ divizer on C
$\phi_{k}: C \longrightarrow P^{-1}$ cem enb.

$$
\overline{\phi_{k}(D)}=\operatorname{span}\left\{\phi_{k}\left(P_{1}\right), \ldots, \phi_{k}\left(P_{d}\right)\right\}
$$

Thm $\operatorname{dim}|D|=h^{\circ}\left((, D)-1=d-1-\operatorname{dim} \overline{\phi_{k}(D)}\right.$
Thus if D is a $g^{r} d$, then

$$
\operatorname{dim} \overline{\phi_{k}(D)}=d-r-1 .
$$

we want a r-dim space of these.
C has a $y^{\prime} d$ iff $\phi_{k}(c)$ has an relimil
family of $(d-r-1)$-planes
that are d-secand
inside $f(d-r-1, g-1)$, the planes meeting C once has codim $g-d+r-1$.
we wont a plane to meet d times,
so wout dindeypcad. dim of spoer

$$
\frac{\operatorname{dim} G(d-r-1, g-1)-d(g-d+r-1)}{\text { spen of plens muctry? }} \geqslant r
$$

spen of p(lus metry (ines (inchep)
[Griffith-HCum3][Lusarafld]
Brill-Noether theorem A general carne C of genus g admits a gid if

$$
p(g, r, d)=g-(r+1)(g-d+r) \geqslant 0 .
$$

We have more precise results as well:

$$
G_{d}^{r}(c)=\left\{g g^{r} ' s \text { on } c\right\}
$$

$G_{d}^{r}(c) \longrightarrow P_{i c}^{d}(c)$, image is called $(t, V) \longmapsto A$

$$
W_{d}^{r}(c)
$$

BN Theorem [Giesether, Grittiths, Alarms, Fulton, Kemp, Latansfeld
(i) If $\rho \geqslant 0$, then $W_{d}^{r}(c) \neq \varnothing$ for all $c \in M_{y} . \quad\left(\rightarrow G_{d}^{r}(c) \neq \varnothing\right)$
(ii) For $c \in M y$ general, $\operatorname{dim} G_{d}^{r}(c)=\rho(y, r, d)$, and 1,3 smooth if >0, then it is irredunctule.
E.g.t Not every curve of genus 3 is typereliptic.

$$
\rho(3,1,2)=3-(2)(2)=-1
$$

Moreover, there clearly are typerelliptie curves of every genus:
C: $y^{2}=f(x)$, with $f(x)$ a degree $2 y+2$ poly. wt distinct roots
(take a $2: 1$ map $C \rightarrow P^{\prime}$ ramified at 2_{y+2}
points).
Defer Curves admitting a $g^{r} d$ with $\rho \geq 0$ are called Bryy-Noether special.

- what are some other BN special cares?

Deft The gonality of a carve is

$$
g_{o}(k)=m i n\left\{k \mid \text { C admits a } g_{k}^{\prime}\right\} \text {. }
$$

By the BN tho, goo $\left.(C) \leq L \frac{g+3}{2}\right\rfloor$, with equality for general C.

Let $\mu_{y_{1, k}}:=\left\{c \in M_{y} \mid\right.$ yon $\left.(c) \leq k\right\}$. we have a stratification of My by gonality:

$$
\begin{aligned}
M_{g, 2}^{\prime} & \subseteq M_{g}^{\prime}, 3 \subseteq \ldots \subseteq M_{g}^{\prime}\left(\frac{g+1}{}\right) \\
\text { more special } & \subseteq M_{g} . \\
& =\rho(q, 1 a
\end{aligned}
$$

Mg'k is con irred. var of colin- $\rho(g, i d)$. More generally, we can consider other id:
Deft The Brith-Noether loci are $M_{g}{ }^{n} d:=\left\{c \in M_{y}\right.$ admitting a $\left.y \dot{d}\right\}$ when $\rho(g, r, d)<0, M_{g}{ }^{r} d \subseteq M_{g}$ is a proper sabvaricty.
Facts about BN lxi

- My ,d can have multiple components, of different dimensions.
- Each component has codimension at most $-\rho$, the expected codim. a codim $\geqslant 3$ when $p \leq-3$.
- codim $M_{g}{ }^{\prime} d=-\rho$ for $\quad-3 \leq \rho \leq-1$
- Maid irred. when $\rho=-1,-2$. (and distiret) LO BN divisors used in study of Erizabual Koclaisa dimension of Mg chai-Kimat H ?
-when P is not too negative:
M_{g}^{r} d $\left(l y_{d}^{r}\right)$ have components of the exp. dim $-\rho$, and are expected to behave sicily.
\rightarrow Refined BN Theory
Q: What linear systems does a "general" $e \in M_{y}{ }^{n} d$ hove?

For fired gonality:
Thu [Blunger, Jersoon-Rrenganathan]
general of gonality k, then C has a $g^{r} d$ iff

$$
\begin{aligned}
P_{k}(g, r, d) & =\max _{0 \leq l \leq r^{\prime}} \rho(g, r-l, d)-l k \geqslant 0 . \\
& \left(r^{\prime}=\min \{r, g-d+r-1\}\right)
\end{aligned}
$$

Coarser Q: How do BN loci stratify My?
Trivial containments:

$$
\begin{aligned}
& M_{g}{ }^{\prime} d \subseteq M_{g}{ }^{r} d+1 \\
& M_{g}^{r}, d \subseteq M_{g}{ }^{r-1} d-1
\end{aligned}
$$

Q what are the maximal BN loci?

Defn Maid is expected max el if $d^{2} g-1$,

$$
\begin{aligned}
& \text { - } \rho(g, r, d)<0, \\
& \text { - } \rho(g, r, d+1) \geqslant 0 \text {, and } \quad\left(d=r+\left\lceil\left\lceil\frac{g r}{r+1}\right\rceil-1\right) .\right. \\
& \text { - } \rho(g, r-1, d-1) \geqslant 0 \text {. }
\end{aligned}
$$

Rh By the trivial containments, every BN locus (o rits serve dual) is contained

Conj [Auch-H.] For any $g \geqslant 3$, except 7, 8,9 , the expectech max'l BN lo wi are mencil.
ie., For each M_{g}^{n} id, Mg', exp. mane'l BN loci, $\exists \quad C \in M$ Mid, $C \notin M_{l}{ }^{\prime}, e$, and $I e^{\prime} \in M_{g}, e, C^{\prime} \notin M_{g} i^{n} d$
Known cases on Max BN loci cory:

- if all loti have $\rho=-1$ or all heme $\rho=-2$ ie., $g+1$ or $g+2 \in\{\operatorname{lcm}(1, \ldots, x) \mid n \geqslant 4\}$.
for $g \leq 23$ LLelli- Chiesa, Avel-H, Avel-H-Larion, Buel-HI
- momy non-containments known
[Lelli-Ctiesa, Auch-H-Larson, Teixidor, Biyos
whut happens in genus $7,8,9$?
- Secant vavieties gire non-trivial containments.
E.g.) yemus 8
$M_{8,4}^{1} M_{8,7}^{2}$ are the exp. muxe'l lece-
Let A be a g_{y}^{\prime}, then $\omega_{c}-A=g g_{\text {gives }}^{\prime \prime} C \subseteq P^{4}$, which wisl have a 3 -secent line, giving a g_{7}^{2}. so $\mu_{8,4}^{1} \leq \mu_{8,7}^{2}$
a via gonality stratification. ©.w. Abher tuel \& Hamanh turom
Defn

$$
\left.K(g, n, d)=\max \{k\rangle \mu_{g}^{\prime}, k \leq M_{g}, d\right\}
$$

Prop If $K(g, n, d)>K(g, s, 0)$, then

$$
\mu_{y}{ }^{r}, d \notin \mu_{g}, e .
$$

pf) Since $K=K(g, n, d)>\lambda\langle(g, \geqslant 0)$,

$$
\text { so } \mu_{g, k} \notin \mu_{g} s_{e}
$$

$$
M_{g}{ }_{u} d \neq M_{g} d, e
$$

$$
\begin{align*}
& u_{1}^{\prime} \\
& M_{y, x}^{\prime}
\end{align*}
$$

E.g. $\quad K(8,2,7)=4$

By BN for cones of fixed gonality,

$$
K(g, n, d) \stackrel{[P, J-R]}{=} \max \left\{k / \quad \rho_{k}(g, n, d) \geqslant 0\right\} .
$$

Prop If $d \leqslant g-1, r d)=\left\{\begin{array}{c}\left\lfloor\frac{d}{r}\right\rfloor ; g+1>\left\lfloor\frac{d}{r}\right\rfloor+d \\ g+1-d+2 r+2-2 \sqrt{-\rho\rfloor}\rfloor\end{array}\right.$
Focus on exp maxl BN leci.
Thm For $g \geqslant g, \mu_{g}^{\prime},\left\lfloor\frac{g+1}{2}\right\rfloor \nsubseteq M_{g}{ }^{n} d \quad \forall r \geqslant 2$
exp.max'
iff $K(g, n d)<\left\lfloor\frac{g+1}{2}\right\rfloor$.
Lerma: if $\rho(g, n, d)=\rho(g, s, e)$, then

$$
x(g, r, d) \neq x(g, j, c)
$$

Prop If $r, s \geqslant 2, \rho(g, r, d)=\rho(g, \xi e)$ and Mgid, Mgs cere exp mancil, then one non-cont. holds

Thm If $\rho(g, 0, d)=\rho(g, 5, e)=-1$
then Mgid \& Mg'e.
$\left(\right.$ and $M g_{g}{ }^{2}, \notin \operatorname{Mg}^{n}, d$.)
(Fact: My,d is irred. if $\rho=-1$.) [E, senbued, Hams]

Leruma For M_{y}^{s}, e exp maxil,

$$
\frac{g}{s+1}+s-2 \sqrt{s+1}<k(g, s, 0) \leq \frac{g}{s+1}+s .
$$

*D row shetch of $K(g, r, d)$. A

Them $\exists G(r) \leq 4(r+1)^{5 / 2}+(r+1)^{2}+2(r+1)^{3 / 2}$ s.t. $M_{g}{ }^{r} d \notin M_{y}{ }^{s}, e \quad \forall s>r, g \geqslant G(r) \exp$ maxl

Thm For $g \geqslant 28, M_{g}^{2}, d$ exp. max'l is maxl. |ff $M_{g, d}^{2} \notin M_{g}^{\prime}$,e $\forall s \geqslant 3$ by Thom.

RJJ $M_{g}^{2}, d \notin \mu_{g},\left(\frac{g+1}{2}\right\rfloor$.

G Vide kB surfaces. J.w. Asher And
Strategy: To show Mg id \notin Mg, $_{\text {s }}$, find C wo a $g^{\prime} d$, but no ye on a ks.
(1) C with a g^{r} :

Let (S, H) be a polwizized $k 3$ suffer with

$$
\operatorname{Pic}(s)=\left\lvert\, \begin{array}{cc}
H & L \\
L & \begin{array}{cc}
H-2 & d \\
d & 2 r-2
\end{array}
\end{array}\right.
$$

Prop $(\in|H|$ sm irred has gonality
$\left\lfloor\frac{g+3}{2}\right\rfloor$ una has a $g^{\prime} d$ (might not be LI, but in nice cases, it 3.).
cor $\mu_{g_{1}} d \notin \mu_{g}^{\prime},\left[\frac{g+1}{2}\right\rfloor$ for $r \geqslant 2$ exp max'l.
(2) what if C has a ge?

Idea:. Then $\exists M \in \operatorname{Pie}(S)$ wt certain numerical properties (t)

- Show such M cannot exist.
(*)
Donayi-Momison Conj.
If C has a g_{e}^{s} of $\rho<0$, then $\exists M \in \operatorname{Fic}(s)$ sit. $\left.g^{s} e \subseteq|M|\right|_{C}$ and M satisfies some numerical properties False in general [Lelli-Ctiosa-knatsen]
Bounded versions for $e \leq B(\operatorname{gon}(c), y$, Pie $(s))$
Known:

$$
\begin{array}{ll}
s=1 & {[D M]} \\
s=2 & \text { [Lelli-Cbicsa] } \\
s=3 & {[\mathrm{H}]}
\end{array}
$$

Proof idea: study Lazarsfetel-Mukei band le E cerrociatcel to ge (it is unstable)
Prop If $N \subset E$ saturated line bamelle w/ $h^{\circ}(N) \geqslant 2$, then $M=\operatorname{dot}(E / N)$ works.

To find N :
"Morally"
Consider a destabilizing filtration $O C E_{1} C E_{2} C \cdots C E_{l} C E$ of $E S A$ EriN stable, torsion-frae, and $\mu\left(E_{i} / E_{i-1}\right) \geqslant \mu\left(E_{i+1} / E_{i}\right)$.
Show that if $l>1$ e okE, >1, then $C_{2}(E) \gg 0$, and does not exist on S.

SO J N 5 , as desired.
slogan Pie (S) controls which unstable LM lourdes exist.

