Maximal Brill-Noether loci via the gonality stratification

Richard Haburcak
Joint with Asher Auel and Hannah Larson
Max Planck Institute for Mathematics Bonn
Dartmouth College

Joint Mathematics Meetings
January $6^{\text {th }}, 2024$

Classical Brill-Noether theory

Let C be a smooth algebraic curve.

Definition

A g_{d}^{r} on C is a pair (A, V) of

- a line bundle $A \in \operatorname{Pic}^{d}(C)$ with $h^{0}(C, A) \geq r+1$, and
- a subspace $V \subseteq H^{0}(C, A)$ of dimension $r+1$.

A (basepoint free) g_{d}^{r} gives a map $C \rightarrow \mathbb{P}^{r}$ of degree d.

Classical Brill-Noether theory

Let C be a smooth algebraic curve.

Definition

A g_{d}^{r} on C is a pair (A, V) of

- a line bundle $A \in \operatorname{Pic}^{d}(C)$ with $h^{0}(C, A) \geq r+1$, and
- a subspace $V \subseteq H^{0}(C, A)$ of dimension $r+1$.

A (basepoint free) g_{d}^{r} gives a map $C \rightarrow \mathbb{P}^{r}$ of degree d.

Question

When does C have a g_{d}^{r} ?

Brill-Noether loci

Theorem (Brill-Noether theorem)
A general curve $C \in \mathcal{M}_{g}$ admits a g_{d}^{r} if and only if

$$
\rho(g, r, d):=g-(r+1)(g-d+r) \geq 0
$$

Thus when $\rho(g, r, d)<0$, the Brill-Noether locus

$$
\mathcal{M}_{g, d}^{r}:=\left\{C \in \mathcal{M}_{g} \text { admitting a } g_{d}^{r}\right\} \text { is a subvariety of } \mathcal{M}_{g} .
$$

Recall, the gonality of a curve is $\operatorname{gon}(C):=\min \left\{k \mid C\right.$ admits a $\left.g_{k}^{1}\right\}$

A general curve in $\mathcal{M}_{g, k}^{1}$ has gonality k, and we have a stratification

Brill-Noether loci

Theorem (Brill-Noether theorem)

A general curve $C \in \mathcal{M}_{g}$ admits a g_{d}^{r} if and only if

$$
\rho(g, r, d):=g-(r+1)(g-d+r) \geq 0
$$

Thus when $\rho(g, r, d)<0$, the Brill-Noether locus

$$
\mathcal{M}_{g, d}^{r}:=\left\{C \in \mathcal{M}_{g} \text { admitting a } g_{d}^{r}\right\} \text { is a subvariety of } \mathcal{M}_{g} .
$$

Recall, the gonality of a curve is $\operatorname{gon}(C):=\min \left\{k \mid C\right.$ admits a $\left.g_{k}^{1}\right\}$.

Gonality stratification

A general curve in $\mathcal{M}_{g, k}^{1}$ has gonality k, and we have a stratification

$$
\mathcal{M}_{g, 2}^{1} \subset \mathcal{M}_{g, 3}^{1} \subset \cdots \subset \mathcal{M}_{g,\left\lfloor\frac{g+1}{2}\right\rfloor}^{1} \subset \mathcal{M}_{g,\left\lfloor\frac{g+3}{2}\right\rfloor}^{1}=\mathcal{M}_{g}
$$

Properties of Brill-Noether loci $\mathcal{M}_{g, d}^{r}$

- Can have multiple components of varying dimensions
- Each component has codimension at most $-\rho(g, r, d)$, the expected codimension
- $\operatorname{codim} \mathcal{M}_{g, d}^{r}=-\rho(g, r, d)$ for $-3 \leq \rho(g, r, d) \leq-1$
- Irreducible for $\rho=-1$ and distinct for $\rho=-1,-2$
- When $\rho(g, r, d)$ is not too negative ($\rho \geq-g+3$), have a component of expected codimension
- $\mathcal{M}_{g, k}^{1}$ is an irreducible subvariety of codimension $-\rho(g, 1, k)$

Properties of Brill-Noether loci $\mathcal{M}_{g, d}^{r}$

- Can have multiple components of varying dimensions
- Each component has codimension at most $-\rho(g, r, d)$, the expected codimension
- $\operatorname{codim} \mathcal{M}_{g, d}^{r}=-\rho(g, r, d)$ for $-3 \leq \rho(g, r, d) \leq-1$
- Irreducible for $\rho=-1$ and distinct for $\rho=-1,-2$
- When $\rho(g, r, d)$ is not too negative ($\rho \geq-g+3$), have a component of expected codimension
- $\mathcal{M}_{g, k}^{1}$ is an irreducible subvariety of codimension $-\rho(g, 1, k)$

Properties of Brill-Noether loci $\mathcal{M}_{g, d}^{r}$

- Can have multiple components of varying dimensions
- Each component has codimension at most $-\rho(g, r, d)$, the expected codimension
- $\operatorname{codim} \mathcal{M}_{g, d}^{r}=-\rho(g, r, d)$ for $-3 \leq \rho(g, r, d) \leq-1$
- Irreducible for $\rho=-1$ and distinct for $\rho=-1,-2$
- When $\rho(g, r, d)$ is not too negative ($\rho \geq-g+3$), have a component of expected codimension
- $\mathcal{M}_{g, k}^{1}$ is an irreducible subvariety of codimension $-\rho(g, 1, k)$

Properties of Brill-Noether loci $\mathcal{M}_{g, d}^{r}$

- Can have multiple components of varying dimensions
- Each component has codimension at most $-\rho(g, r, d)$, the expected codimension
- $\operatorname{codim} \mathcal{M}_{g, d}^{r}=-\rho(g, r, d)$ for $-3 \leq \rho(g, r, d) \leq-1$
- Irreducible for $\rho=-1$ and distinct for $\rho=-1,-2$
- When $\rho(g, r, d)$ is not too negative $(\rho \geq-g+3)$, have a component of expected codimension
- $\mathcal{M}_{\sigma, k}^{1}$ is an irreducible subvariety of codimension - $p(g, 1, k)$

Properties of Brill-Noether loci $\mathcal{M}_{g, d}^{r}$

- Can have multiple components of varying dimensions
- Each component has codimension at most $-\rho(g, r, d)$, the expected codimension
- $\operatorname{codim} \mathcal{M}_{g, d}^{r}=-\rho(g, r, d)$ for $-3 \leq \rho(g, r, d) \leq-1$
- Irreducible for $\rho=-1$ and distinct for $\rho=-1,-2$
- When $\rho(g, r, d)$ is not too negative $(\rho \geq-g+3)$, have a component of expected codimension
- $\mathcal{M}_{g, k}^{1}$ is an irreducible subvariety of codimension $-\rho(g, 1, k)$

Properties of Brill-Noether loci $\mathcal{M}_{g, d}^{r}$

- Can have multiple components of varying dimensions
- Each component has codimension at most $-\rho(g, r, d)$, the expected codimension
- $\operatorname{codim} \mathcal{M}_{g, d}^{r}=-\rho(g, r, d)$ for $-3 \leq \rho(g, r, d) \leq-1$
- Irreducible for $\rho=-1$ and distinct for $\rho=-1,-2$
- When $\rho(g, r, d)$ is not too negative $(\rho \geq-g+3)$, have a component of expected codimension
- $\mathcal{M}_{g, k}^{1}$ is an irreducible subvariety of codimension $-\rho(g, 1, k)$

Refined Brill-Noether theory

Question

What linear systems does a "general" curve $C \in \mathcal{M}_{g, d}^{r}$ admit?

Considering "general" $C \in \mathcal{M}_{g, d}^{r}$, refined Brill-Noether theory can be rephrased in terms of (non-)containments of Brill-Noether loci.

Question
What are the maximal Brill-Noether loci?

Refined Brill-Noether theory

Question

What linear systems does a "general" curve $C \in \mathcal{M}_{g, d}^{r}$ admit?

Theorem (Pflueger, Jensen-Ranganathan)
A general curve C of gonality k admits a g_{d}^{r} if and only if

$$
0 \leq \rho_{k}(g, r, d):=\max _{0 \leq \ell \leq \min \{r, g-d+r-1\}} \rho(g, r-\ell, d)-\ell k
$$

Considering "general" $C \in \mathcal{M}_{g, d}^{r}$, refined Brill-Noether theory can be rephrased in terms of (non-)containments of Brill-Noether loci.
\square What are the maximal Brill-Noether loci?

Refined Brill-Noether theory

Question

What linear systems does a "general" curve $C \in \mathcal{M}_{g, d}^{r}$ admit?

Theorem (Pflueger, Jensen-Ranganathan)
A general curve C of gonality k admits a g_{d}^{r} if and only if

$$
0 \leq \rho_{k}(g, r, d):=\max _{0 \leq \ell \leq \min \{r, g-d+r-1\}} \rho(g, r-\ell, d)-\ell k
$$

Considering "general" $C \in \mathcal{M}_{g, d}^{r}$, refined Brill-Noether theory can be rephrased in terms of (non-)containments of Brill-Noether loci.

Question

What are the maximal Brill-Noether loci?

Maximal Brill-Noether loci

We have trivial containments

- $\mathcal{M}_{g, d}^{r} \subset \mathcal{M}_{g, d+1}^{r}$ by adding a basepoint
- $\mathcal{M}_{g, d}^{r} \subset \mathcal{M}_{g, d-1}^{r-1}$ by subtracting a non-basepoint

Brill-Noether loci in genus 14

Maximal Brill-Noether loci

We have trivial containments

- $\mathcal{M}_{g, d}^{r} \subset \mathcal{M}_{g, d+1}^{r}$ by adding a basepoint
- $\mathcal{M}_{g, d}^{r} \subset \mathcal{M}_{g, d-1}^{r-1}$ by subtracting a non-basepoint

Definition

$\mathcal{M}_{g, d}^{r}$ is expected maximal if $d \leq g-1$ (up to Serre duality) and

- $\rho(g, r, d+1) \geq 0$, and
- $\rho(q, r-1, d-1) \geq 0$.

Maximal Brill-Noether loci

We have trivial containments

- $\mathcal{M}_{g, d}^{r} \subset \mathcal{M}_{g, d+1}^{r}$ by adding a basepoint
- $\mathcal{M}_{g, d}^{r} \subset \mathcal{M}_{g, d-1}^{r-1}$ by subtracting a non-basepoint

Definition

$\mathcal{M}_{g, d}^{r}$ is expected maximal if $d \leq g-1$ (up to Serre duality) and

- $\rho(g, r, d)<0$,
- $\rho(g, r, d+1) \geq 0$, and
- $\rho(g, r-1, d-1) \geq 0$.

For each $1 \leq r \leq\left\lfloor\sqrt{g}-\frac{1}{2}\right\rfloor$, there is one expected maximal Brill-Noether locus with $d=d_{\max }(g, r):=r+\left\lceil\frac{g r}{r+1}\right\rceil-1$ We write $\mathcal{M}_{g}^{r}:=\mathcal{M}_{g, d_{\max }(g, r)}^{r}$.

Maximal Brill-Noether loci

We have trivial containments

- $\mathcal{M}_{g, d}^{r} \subset \mathcal{M}_{g, d+1}^{r}$ by adding a basepoint
- $\mathcal{M}_{g, d}^{r} \subset \mathcal{M}_{g, d-1}^{r-1}$ by subtracting a non-basepoint

Definition

$\mathcal{M}_{g, d}^{r}$ is expected maximal if $d \leq g-1$ (up to Serre duality) and

- $\rho(g, r, d)<0$,
- $\rho(g, r, d+1) \geq 0$, and

For each $1 \leq r \leq\left\lfloor\sqrt{g}-\frac{1}{2}\right\rfloor$, there is one expected maximal Brill-Noether locus with $d=d_{\max }(g, r):=r+\left\lceil\frac{g r}{r+1}\right\rceil-1$ We write $\mathcal{M}_{g}^{r}:=\mathcal{M}_{g, d_{\max }(g, r)}^{r}$.

Maximal Brill-Noether loci

We have trivial containments

- $\mathcal{M}_{g, d}^{r} \subset \mathcal{M}_{g, d+1}^{r}$ by adding a basepoint
- $\mathcal{M}_{g, d}^{r} \subset \mathcal{M}_{g, d-1}^{r-1}$ by subtracting a non-basepoint

Definition

$\mathcal{M}_{g, d}^{r}$ is expected maximal if $d \leq g-1$ (up to Serre duality) and

- $\rho(g, r, d)<0$,
- $\rho(g, r, d+1) \geq 0$, and
- $\rho(g, r-1, d-1) \geq 0$.

For each $1 \leq r \leq\left\lfloor\sqrt{g}-\frac{1}{2}\right\rfloor$, there is one expected maximal Brill-Noether locus with $d=d_{\max }(g, r):=r+\left\lceil\frac{g r}{r+1}\right\rceil-1$. We write $\mathcal{M}_{g}^{r}:=\mathcal{M}_{g, d_{\max }(g, r)}^{r}$.

Maximal Brill-Noether loci

We have trivial containments

- $\mathcal{M}_{g, d}^{r} \subset \mathcal{M}_{g, d+1}^{r}$ by adding a basepoint
- $\mathcal{M}_{g, d}^{r} \subset \mathcal{M}_{g, d-1}^{r-1}$ by subtracting a non-basepoint

Definition

$\mathcal{M}_{g, d}^{r}$ is expected maximal if $d \leq g-1$ (up to Serre duality) and

- $\rho(g, r, d)<0$,
- $\rho(g, r, d+1) \geq 0$, and
- $\rho(g, r-1, d-1) \geq 0$.

For each $1 \leq r \leq\left\lfloor\sqrt{g}-\frac{1}{2}\right\rfloor$, there is one expected maximal Brill-Noether locus with $d=d_{\max }(g, r):=r+\left\lceil\frac{g r}{r+1}\right\rceil-1$.
We write $\mathcal{M}_{g}^{r}:=\mathcal{M}_{g, d_{\max }(g, r)}^{r}$.

Maximal Brill-Noether loci

Conjecture (Auel-H.)

For $g \geq 3$, except $g=7,8,9$, the expected maximal Brill-Noether loci are maximal.

That is, for every pair of expected maximal loci there is some curve $C \in \mathcal{M}_{g}^{r}$ but $C \notin \mathcal{M}_{g}^{s}$.
In genus 7, 8,9, there are non-trivial containments:
$\mathcal{M}_{7,6}^{2} \subseteq \mathcal{M}_{7,4}^{1}, \quad \mathcal{M}_{8,4}^{1} \subset \mathcal{M}_{8,7}^{2}, \quad \mathcal{M}_{9,7}^{2} \subset \mathcal{M}_{9,5}^{1}$. [Larson, Mukai]
The conjecture holds in many cases:

- $g \leq 20,22,23$ [Farkas, Lelli-Chiesa, Auel-H., Auel-H.-Larson]

Many other non-containments of BN loci are known [Lelli-Chiesa, Teixidor Bigas, Auel-H.-Larson]

Maximal Brill-Noether loci

Conjecture (Auel-H.)

For $g \geq 3$, except $g=7,8,9$, the expected maximal Brill-Noether loci are maximal.

In genus $7,8,9$, there are non-trivial containments:
$\mathcal{M}_{7,6}^{2} \subseteq \mathcal{M}_{7,4}^{1}, \quad \mathcal{M}_{8,4}^{1} \subset \mathcal{M}_{8,7}^{2}, \quad \mathcal{M}_{9,7}^{2} \subset \mathcal{M}_{9,5}^{1}$. [Larson, Mukai]
The conjecture holds in many cases:

- $g \leq 20,22,23$ [Farkas, Lelli-Chiesa, Auel-H., Auel-H.-Larson]

Many other non-containments of BN loci are known [Lelli-Chiesa, Teixidor i Bigas, Auel-H.-Larson]

Maximal Brill-Noether loci

Conjecture (Auel-H.)

For $g \geq 3$, except $g=7,8,9$, the expected maximal Brill-Noether loci are maximal.

In genus $7,8,9$, there are non-trivial containments:
$\mathcal{M}_{7,6}^{2} \subseteq \mathcal{M}_{7,4}^{1}, \quad \mathcal{M}_{8,4}^{1} \subset \mathcal{M}_{8,7}^{2}, \quad \mathcal{M}_{9,7}^{2} \subset \mathcal{M}_{9,5}^{1}$. [Larson, Mukai]
The conjecture holds in many cases:

- $g \leq 20,22,23$ [Farkas, Lelli-Chiesa, Auel-H., Auel-H.-Larson]
loci have same $\rho \in\{-1,-2\}$) [Eisenbud-Harris, Choi-Kim-Kim]
Many other non-containments of BN loci are known [Lelli-Chiesa, Teixidor i Bigas, Auel-H.-Larson]

Maximal Brill-Noether loci

Conjecture (Auel-H.)

For $g \geq 3$, except $g=7,8,9$, the expected maximal Brill-Noether loci are maximal.

In genus $7,8,9$, there are non-trivial containments:
$\mathcal{M}_{7,6}^{2} \subseteq \mathcal{M}_{7,4}^{1}, \quad \mathcal{M}_{8,4}^{1} \subset \mathcal{M}_{8,7}^{2}, \quad \mathcal{M}_{9,7}^{2} \subset \mathcal{M}_{9,5}^{1}$. [Larson, Mukai]
The conjecture holds in many cases:

- $g \leq 20,22,23$ [Farkas, Lelli-Chiesa, Auel-H., Auel-H.-Larson]
- $g+1$ or $g+2 \in\{\operatorname{lcm}(1, \ldots, n) \mid n \geq 4\}$ (all expected maximal BN loci have same $\rho \in\{-1,-2\}$) [Eisenbud-Harris, Choi-Kim-Kim]

Many other non-containments of BN loci are known [Lelli-Chiesa, Teixidor i Bigas, Auel-H.-Larson]

Maximal Brill-Noether loci

Conjecture (Auel-H.)

For $g \geq 3$, except $g=7,8,9$, the expected maximal Brill-Noether loci are maximal.

In genus $7,8,9$, there are non-trivial containments:
$\mathcal{M}_{7,6}^{2} \subseteq \mathcal{M}_{7,4}^{1}, \quad \mathcal{M}_{8,4}^{1} \subset \mathcal{M}_{8,7}^{2}, \quad \mathcal{M}_{9,7}^{2} \subset \mathcal{M}_{9,5}^{1}$. [Larson, Mukai]
The conjecture holds in many cases:

- $g \leq 20,22,23$ [Farkas, Lelli-Chiesa, Auel-H., Auel-H.-Larson]
- $g+1$ or $g+2 \in\{\operatorname{lcm}(1, \ldots, n) \mid n \geq 4\}$ (all expected maximal BN loci have same $\rho \in\{-1,-2\}$) [Eisenbud-Harris, Choi-Kim-Kim]

Many other non-containments of BN loci are known [Lelli-Chiesa, Teixidor i Bigas, Auel-H.-Larson]

Distinguishing BN loci via gonality stratification

Definition

$$
\kappa(g, r, d):=\max \left\{k \mid \mathcal{M}_{g, k}^{1} \subseteq \mathcal{M}_{g, d}^{r}\right\}
$$

$2 \leq \kappa(g, r, d)$: hyperelliptic curves have all $g_{d}^{r} \mathrm{~s}$ (via trivial containments).

Distinguishing BN loci via gonality stratification

Definition

$$
\kappa(g, r, d):=\max \left\{k \mid \mathcal{M}_{g, k}^{1} \subseteq \mathcal{M}_{g, d}^{r}\right\}
$$

$2 \leq \kappa(g, r, d)$: hyperelliptic curves have all $g_{d}^{r} \mathrm{~s}$ (via trivial containments).

$$
\kappa(g, r, d) \leq\left\lfloor\frac{g+3}{2}\right\rfloor: \mathcal{M}_{g,\left\lfloor\frac{g+3}{2}\right\rfloor}^{1}=\mathcal{M}_{g}
$$

Distinguishing BN loci via gonality stratification

Definition

$$
\kappa(g, r, d):=\max \left\{k \mid \mathcal{M}_{g, k}^{1} \subseteq \mathcal{M}_{g, d}^{r}\right\}
$$

$2 \leq \kappa(g, r, d)$: hyperelliptic curves have all $g_{d}^{r} \mathrm{~s}$ (via trivial containments).
$\kappa(g, r, d) \leq\left\lfloor\frac{g+3}{2}\right\rfloor: \mathcal{M}_{g,\left\lfloor\frac{g+3}{2}\right\rfloor}^{1}=\mathcal{M}_{g}$.
$\kappa(8,2,7)=4$
$\mathcal{M}_{8,4}^{1} \subset \mathcal{M}_{8,7}^{2}$ (genus 8 counterexample) and $\mathcal{M}_{8,5}^{1}=\mathcal{M}_{8}$ so $\mathcal{M}_{8,5}^{1} \nsubseteq \mathcal{M}_{8,7}^{2}$.

Proposition

Suppose $\kappa(g, r, d)>\kappa(g, s, e)$, then $\mathcal{M}_{g, d}^{r} \nsubseteq \mathcal{M}_{g, e}^{s}$.

$$
\kappa(g, r, d)=k>\kappa(g, s, e)=k-1
$$

A general curve of gonality k is contained in $\mathcal{M}_{g, d}^{r}$, but not in $\mathcal{M}_{g, e}^{s}$.

$\kappa(g, r, d)$

By the refined Brill-Noether theory for curves of fixed gonality,

$$
\kappa(g, r, d)=\max \left\{k \mid \rho_{k}(g, r, d) \geq 0\right\} .
$$

Moreover, for expected maximal loci with $r \geq 2$, we always have
\square

$\kappa(g, r, d)$

By the refined Brill-Noether theory for curves of fixed gonality,

$$
\kappa(g, r, d)=\max \left\{k \mid \rho_{k}(g, r, d) \geq 0\right\} .
$$

$\rho_{k}(g, r, d)=\max _{0 \leq \ell \leq \min \{r, g-d+r-1\}} \rho(g, r, d)+(g-k-d+2 r+1) \ell-\ell^{2}$, which ranges over upside down parabolas.

$\kappa(g, r, d)$

By the refined Brill-Noether theory for curves of fixed gonality,

$$
\kappa(g, r, d)=\max \left\{k \mid \rho_{k}(g, r, d) \geq 0\right\} .
$$

$\rho_{k}(g, r, d)=\max _{0 \leq \ell \leq \min \{r, g-d+r-1\}} \rho(g, r, d)+(g-k-d+2 r+1) \ell-\ell^{2}$, which ranges over upside down parabolas.

Theorem (Auel-H.-Larson)
Let $d \leq g-1$, then

$$
\kappa(g, r, d)= \begin{cases}\lfloor d / r\rfloor & \text { if } g+1>d+\lfloor d / r\rfloor \\ g+1-d+2 r+\lfloor-2 \sqrt{-\rho(g, r, d)}\rfloor & \text { else. }\end{cases}
$$

Moreover, for expected maximal loci with $r \geq 2$, we always have $\kappa\left(\mathcal{M}_{g}^{r}\right)=g+1-d_{\max }(g, r)+2 r+\lfloor-2 \sqrt{-\rho}\rfloor$.

Simple proofs of non-containments of Brill-Noether loci

Theorem (Auel-H.)
For $g \neq 8, \mathcal{M}_{g}^{1}$ is maximal.
Compute $\kappa\left(\mathcal{M}_{g}^{1}\right)>\kappa\left(\mathcal{M}_{g}^{r}\right)$, hence $\mathcal{M}_{g}^{1} \nsubseteq \mathcal{M}_{g}^{r}$. We obtain a new proof that Brill-Noether loci with $\rho=-1$ are distinct. Theorem (Auel-H.-Larson) For two expected maximal BN loci, if $p(g, r, d)=p(g, s, e)$ then we have $\mathcal{M}_{g}^{r} \nsubseteq \mathcal{M}_{g}^{s}$ or the other non-containment. ρ and $d-2 r$ identify Brill-Noether loci up to Serre duality. Now use $\kappa\left(\mathcal{M}_{g}^{r}\right)=g+1-d_{\max }(g, r)+2 r+\lfloor-2 \sqrt{-\rho}\rfloor$

Simple proofs of non-containments of Brill-Noether loci

Theorem (Auel-H.)

For $g \neq 8, \mathcal{M}_{g}^{1}$ is maximal.
Compute $\kappa\left(\mathcal{M}_{g}^{1}\right)>\kappa\left(\mathcal{M}_{g}^{r}\right)$, hence $\mathcal{M}_{g}^{1} \nsubseteq \mathcal{M}_{g}^{r}$.
We obtain a new proof that Brill-Noether loci with $\rho=-1$ are distinct.
Theorem (Auel-H.-Larson)
For two expected maximal BN loci, if $\rho(g, r, d)=\rho(g, s, e)$ then we have $\mathcal{M}_{g}^{r} \nsubseteq \mathcal{M}_{g}^{s}$ or the other non-containment.
ρ and $d-2 r$ identify Brill-Noether loci up to Serre duality. Now use $\kappa\left(\mathcal{M}_{g}^{r}\right)=g+1-d_{\max }(g, r)+2 r+\lfloor-2 \sqrt{-\rho}\rfloor$.

Bounds on $\kappa(g, r, d)$

Non-containments of Brill-Noether loci

Theorem (Auel-H.-Larson)

Fix $r \geq 2$. If $g \geq 4(r+1)^{5 / 2}+(r+1)^{2}+2(r+1)^{3 / 2}$, then $\kappa\left(\mathcal{M}_{g}^{r}\right)>\kappa\left(\mathcal{M}_{g}^{s}\right)$ for all $s>r$. In particular, $\mathcal{M}_{g}^{r} \nsubseteq \mathcal{M}_{g}^{s}$.

For each r, there exists a smallest $G(r)$ such that $\kappa\left(\mathcal{M}_{g}^{r}\right)>\kappa\left(\mathcal{M}_{g}^{s}\right)$:

r	2	3	4	5	6	7	8	9	10
$G(r)$	28	50	96	140	232	306	390	561	684

> Fixing r, to prove that \mathcal{M}_{g}^{r} is always maximal, it remains to check $\mathcal{M}_{g}^{r} \nsubseteq \mathcal{M}_{g}^{q}$ for $q<r$, and all non-containments for $g<G(r)$.

Non-containments of Brill-Noether loci

Theorem (Auel-H.-Larson)

Fix $r \geq 2$. If $g \geq 4(r+1)^{5 / 2}+(r+1)^{2}+2(r+1)^{3 / 2}$, then $\kappa\left(\mathcal{M}_{g}^{r}\right)>\kappa\left(\mathcal{M}_{g}^{s}\right)$ for all $s>r$. In particular, $\mathcal{M}_{g}^{r} \nsubseteq \mathcal{M}_{g}^{s}$.

For each r, there exists a smallest $G(r)$ such that $\kappa\left(\mathcal{M}_{g}^{r}\right)>\kappa\left(\mathcal{M}_{g}^{s}\right)$:

r	2	3	4	5	6	7	8	9	10
$G(r)$	28	50	96	140	232	306	390	561	684

Non-containments of Brill-Noether loci

Theorem (Auel-H.-Larson)

Fix $r \geq 2$. If $g \geq 4(r+1)^{5 / 2}+(r+1)^{2}+2(r+1)^{3 / 2}$, then $\kappa\left(\mathcal{M}_{g}^{r}\right)>\kappa\left(\mathcal{M}_{g}^{s}\right)$ for all $s>r$. In particular, $\mathcal{M}_{g}^{r} \nsubseteq \mathcal{M}_{g}^{s}$.

For each r, there exists a smallest $G(r)$ such that $\kappa\left(\mathcal{M}_{g}^{r}\right)>\kappa\left(\mathcal{M}_{g}^{s}\right)$:

r	2	3	4	5	6	7	8	9	10
$G(r)$	28	50	96	140	232	306	390	561	684

Fixing r, to prove that \mathcal{M}_{g}^{r} is always maximal, it remains to check $\mathcal{M}_{g}^{r} \nsubseteq \mathcal{M}_{g}^{q}$ for $q<r$, and all non-containments for $g<G(r)$.

Non-containments of Brill-Noether loci

Corollary (Auel-H.-Larson)

Except for $g=7,9$, and possibly $g=24,27$, the expected maximal Brill-Noether locus \mathcal{M}_{g}^{2} is maximal.

To show $\mathcal{M}_{g}^{2} \nsubseteq \mathcal{M}_{g}^{1}$, we use K 3 surfaces to exhibit a curve with a $g_{d_{\max }(g, 2)}^{2}$ and generic gonality.

Non-containments of Brill-Noether loci

Corollary (Auel-H.-Larson)

Except for $g=7,9$, and possibly $g=24,27$, the expected maximal Brill-Noether locus \mathcal{M}_{g}^{2} is maximal.

To show $\mathcal{M}_{g}^{2} \nsubseteq \mathcal{M}_{g}^{1}$, we use K 3 surfaces to exhibit a curve with a $g_{d_{\max }(g, 2)}^{2}$ and generic gonality.

Proposition (Auel-H.-Larson)

For any $g \geq 14, \mathcal{M}_{g}^{r} \nsubseteq \mathcal{M}_{g}^{1}$ for all expected maximal Brill-Noether loci with $r \geq 2$.

Thank You!

Questions?

