Abstract

We explain a strategy for distinguishing Brill-Noether loci in the moduli space of curves by studying the lifting of linear systems on curves in polarized K3 surfaces, which motivates a conjecture dentifying the maximal Brill-Noether loci with respect to containment. Via an analysis of the which suffice to prove the maximal Brill-Noether loci conjecture in genus $9-19$. 2 , and 23.

Brill-Noether Loci

The Brill - Noether theorem states that when $\rho(q, r, d)=q-(r+1)(q-d+r) \geq 0$, then every curve The Brill-Noether theorem states that when $\rho(g, r, d)=g-(r+1)(g-d+r) \geq 0$, then every curve
of genus g admits a line bundle of type g_{d}^{r}. When $\rho(g, r, d)<0$, the Brill-Noether locus $\mathcal{M}_{g, d}^{r}$ is a proper subvariety of \mathcal{M}_{9}
There are many containments among Brill-Noether loci [7]

- $\mathcal{M}_{g, d}^{r} \subseteq \mathcal{M}_{g, d+1}^{r}$ when $\rho(g, r, d+1)<0$, and
- $\mathcal{M}_{g, d}^{r} \subseteq \mathcal{M}_{g, d-1}^{r-1}$ when $r \geq 2$ and $\rho(g, r-1, d-1)<0$.

The expected maximal Brill-Noether loci are the $\mathcal{M}_{g, d}^{r}$, where for each r, d is maxima such that $\rho(g, r, d)<0$ and $\rho(g, r-1, d-1) \geq 0$.

Figure 1. r_{s}^{r} s in genus 14. Arrows show containments of the corresponding Brill-Noether loci. The general Clifford index (γ) is $6 . \Delta(g, r, d)=4(g-1)(r-1)-d^{2}$

Conjecture and Theorem

Maximal Brill-Noether Locus Conjecture: In genus $g \geq 9$, the maximal Brill-Noether loci are the expected maximal ones

- Theorem: The conjecture holds in genus $9-19,22$, and 23

In genus 20,21 , and $g \geq 24$, we cannot show that some of the expected maximal Brill-Noether oci are not contained in the expected maximal $\mathcal{M}_{g, d,}^{4}$. If we knew that codim $\mathcal{M}_{g, d}^{r}$
for $\rho=-4$ and $\rho=-5$ in these cases, then the conjecture holds in genus 20 and 21 .
In genus 23 , the Brill-Noether loci with $\rho=-1$ were proven to be maximal by Eisenbud-Harris and Farkas. Namely, the divisors $\mathcal{M}_{23,12}^{1}, \mathcal{M}_{23,17}^{2}$, and $\mathcal{M}_{23,20}^{3}$ have distinct support in \mathcal{M}_{23} [2, 3, 4]

K3 Surfaces

The Noether-Lefschetz divisor $\mathcal{K}_{g, d}^{r}$ is the locus of polarized K3 surfaces (S, H) of genus g such that

$$
\begin{gathered}
\\
\Lambda_{g, d}^{r}= \\
H \\
L
\end{gathered} \begin{array}{cc}
H & L \\
2 g-2 & d \\
d & 2 r-2
\end{array}
$$

admits a primitive embedding in $\operatorname{Pic}(S)$ preserving H.
Proposition: Let $(S, H) \in \mathcal{K}_{g, d}^{r}$ and let $C \in|H|$ be a smooth irreducible curve. If L and $H-L$ are basepoint free, $r \geq 2$, and $0<d \leq g-1$, then $L \otimes \mathcal{O}_{C}$ is a g_{d}^{r}.

Distinguishing Brill-Noether Loci and Lifting $g_{d}^{r} \mathbf{s}$

Our strategy is to show that a curve on a very general polarized K3 surface in $\mathcal{K}_{q, d}^{r}$ admits a $g_{d,}^{r}$, but no other expected maximal $g_{d^{\prime}}^{\prime^{\prime}}$. We do this by studying the lifting of line bundles on polarized K 3 surfaces. [4, 5]
Donagi-Morrison Conjecture [1, 6]: Let (S, H) be a polarized K3 surface and $C \in|H|$ be a smooth irreducible curve of genus ≥ 2. Suppose A is a complete basepoint free g_{d}^{r} on C such that $d \leq g-1$ and $\rho(g, r, d)<0$. Then there exists a line bundle $M \in \operatorname{Pic}(S)$ adapted to $|H|$ such that

- $|A|$ is contained in the restriction of $|M|$ to C, and
- $\gamma\left(M \otimes \mathcal{O}_{C}\right) \leq \gamma(A)$.

Donagi and Morrison verified the conjecture for $r=1$, and Lelli-Chiesa verified it for $r=2[1,5]$, she also verified it under a technical hypothesis that the pair (C, A) do not have any unexpected secant varieties up to deformation [6]

Distinguishing Lattices If we have a lifting result, we find conditions on the Picard lattice associated to maximal Brill-Noether loci thet would imply the Ma (L2): For a fixed $\Lambda_{g, d}^{r}$ associated to an expected maximal $\mathcal{M}_{g, d}^{r}$ and any $\Lambda_{g, d^{\prime}}^{r^{\prime}}$ with $\left\lfloor\frac{g+1}{2}\right\rfloor \leq \gamma\left(r^{\prime}, d^{\prime}\right) \leq\lfloor g-2 \sqrt{g}+1\rfloor$, and $1 \leq r^{\prime} \leq\left\lfloor\frac{g-1-\gamma\left(r^{\prime}, d^{\prime}\right)}{2}\right\rfloor$, one has $\Lambda_{g, d^{\prime}}^{r^{\prime}} \nsubseteq \Lambda_{g, d}^{r}$.

Proposition If the Donagi-Morrison conjecture and L2 hold for all expected maximal g_{d}^{r} in genus g, then the Maximal Brill-Noether locus conjecture holds in genus g.
The genera ≤ 200 where $\mathbf{L} 2$ does not hold are genus $89,91,92,145,153$, and 190 . And thus in all other genera below 200 the Donagi-Morrison conjecture implies the Maximal Brill-Noether conjecture.

Genus 14

The expected maximal Brill-Noether loci are $\mathcal{M}_{14,8}^{1}, \mathcal{M}_{14,11}^{2}$, and $\mathcal{M}_{14,13}^{3}$. Work of Lelli-Chiesa shows that $\mathcal{M}_{14,13}^{3} \nsubseteq \mathcal{M}_{14,11}^{2}$. Recent work on Brill- Noether theory for curves of fixed gonality shows that $\mathcal{M}_{14,8}^{1}$ is maximal. Moreover, using Lelli-Chiesa's lifting results, it can be shown that $\mathcal{M}_{14,11}^{2}, \mathcal{M}_{14,13}^{3} \notin \mathcal{M}_{14,8}^{1}$. It remains to find a curve with a g_{11}^{2} that does not admit a g_{13}^{3}.

Lifting $q_{d}^{3} \mathbf{S}$

Theorem: Let (S, H) be a polarized K3 surface of genus $q \neq 2,3,4,8$, and C $|H|$ a smooth irreducible curve of Clifford index $\gamma(C)$. Suppose that S has no elliptic curves and $d<\frac{{ }_{4}^{4}}{} \gamma(C)+6$, then the Donagi-Morrison conjecture holds for any g_{d}^{3} on C
We prove a slightly more refined version, replacing the hypothesis on non-existence of elliptic curves with an explicit dependence on the Picard lattice of S.

Proof Idea

Let A be a line bundle of type g_{d}^{3} on $C \in|H|$. If $\rho(g, r, d)<0$, then $E_{C, A}$ is not stable. To obtain a Donagi-Morrison lift of A, we want to show that $E_{C, A}$ has a maximal destabilizing subline bundle. To do this, we find lower bounds on d whenever $E_{C, A}$ has a different destabilizin subsheaf by analyzing the Harder-Narasimhan and Jordan-Hölder filtrations.

Lazarsfeld-Mukai Bundles

$$
\begin{aligned}
& \text { We define a bundle } F_{C, A} \text { on } S \text { via the short exact sequence } \\
& \qquad 0-F_{C, A}-H^{0}(C, A) \otimes \mathcal{O}_{S} \frac{e v}{-} \iota_{*}(A)-0 .
\end{aligned}
$$

Dualizing gives $E_{C, A}=F_{C, A}^{V}$ (the LM bundle associated to A on C) sitting in the short exact sequence

$$
0-H^{0}(C, A)^{\vee} \otimes \mathcal{O}_{S}-E_{C, A}-\iota_{*}\left(\omega_{C} \otimes A^{\vee}\right) \longrightarrow 0 ;
$$

The LM bundle $E_{C, A}$ is like a lift of A to a vector bundle on S
Let $E_{C, A}$ be a LM bundle associated to a basepoint free line bundle A of type g_{d}^{r} on $C \subset S$, then: - $c_{1}\left(E_{C, A}\right)=[C]$ and $c_{2}\left(E_{C, A}\right)=\operatorname{deg}(A)$;

- $\mathrm{rk}\left(E_{C, A}\right)=r+1$ and $E_{C A}$ is globally generated off the base locus of $\iota_{*}\left(\omega_{C} \otimes A^{\vee}\right)$:
- $h^{0}\left(S, E_{C,}\right)=h^{0}(C, A)+h^{0}\left(C, \omega_{C} \otimes A^{\vee}\right)=2 r+1+g-d=g-(d-2 r)+1$.
- $h^{1}\left(S, E_{C, A}\right)=h^{2}\left(S, E_{C, A}\right)=0, h^{0}\left(S, E_{C, A}^{\vee}\right)=h^{1}\left(S, E_{C, A}^{\vee}\right)=0$;
- $\chi\left(F_{C, A} \otimes E_{C, A}\right)=2(1-\rho(g, r, d))$

LM bundles are useful for lifting g_{d}^{r}. In fact, if there is a nontrivial $N \in \operatorname{Pic}(S)$ with $h^{0}(S, N) \neq 0$, $h^{1}(S, N)=0$, and an injection $N \rightarrow E_{C, 4}$, then the Donagi-Morrison conjecture holds with $L=\mathcal{O}_{S}(C) \otimes N^{\vee}$. [6]

Stability of Sheaves on K3 Surfaces

The slope of E is $\mu(E)=\frac{c_{1}(E) . H}{\operatorname{rk}(E)}$. A torsion-free coherent sheaf is called slope stable or μ-stable μ-semistable) if $\mu(F)<\mu(E)$ (respectively, $\mu(F) \leq \mu(E)$) for all coherent sheaves $F \subseteq E$ with $0<\operatorname{rk}(F)<\operatorname{rk}(E)$.

Every torsion-free coherent sheaf E has a unique Harder-Narasimhan filtration, which is an in creasing filtration $0=H N_{0}(E) \subset H N_{1}(E) \subset \cdots \subset H N_{\ell}(E)=E$,
such that the factors $g r_{i}^{H N}(E)=H N_{i}(E) / H N_{i-1}(E)$ for $1 \leq i \leq \ell$ are torsion free semistable sheaves with $\mu\left(g r_{1}^{H N}(E)\right)>\mu\left(g r_{2}^{H N}(E)\right)>\cdots>\mu\left(g r_{\ell}^{H N}(E)\right)$.
Likewise, every semistable sheaf E has a Jordan-Hölder filtration, which is an increasing filtration with stable factors all of slope $\mu(E$

Acknowledgments

 References[^0]
[^0]: -

 [2] David Eisennuud and Joe Harris, he Kodariar dimension of the moduus ispace of curves of fenus \geq 23, Inventiones mathematicae 90 (1987)

 16] Margherita Lelli-Chiesa, Generalized Lazarsfeld-Muckei bundles and a conjecture of Donosi iond Morisisn, Adv. Math. 268 (20155), no. 2,
 Margherita Lelli-Chiesa, A codimension 2 component of the Giesserer-Petri locus, 2021, to appear J A Alebraic Geon

