

Maximal Brill-Noether Loci via K3 Surfaces

Asher Auel and Richard Haburcak

Dartmouth College

Abstract

We explain a strategy for distinguishing Brill-Noether loci in the moduli space of curves by studying the lifting of linear systems on curves in polarized K3 surfaces, which motivates a conjecture identifying the maximal Brill-Noether loci with respect to containment. Via an analysis of the stability of Lazarsfeld-Mukai bundles, we obtain new lifting results for linear systems of rank 3 which suffice to prove the maximal Brill-Noether loci conjecture in genus 9-19, 22, and 23.

Brill-Noether Loci

The Brill-Noether theorem states that when $\rho(g,r,d)=g-(r+1)(g-d+r)\geq 0$, then every curve of genus g admits a line bundle of type g_d^r . When $\rho(g,r,d)<0$, the Brill-Noether locus $\mathcal{M}_{g,d}^r$ is a proper subvariety of \mathcal{M}_g .

There are many containments among Brill-Noether loci [7]:

- $\mathcal{M}_{q,d}^r \subseteq \mathcal{M}_{q,d+1}^r$ when $\rho(g,r,d+1) < 0$, and
- $\mathcal{M}_{q,d}^r \subseteq \mathcal{M}_{q,d-1}^{r-1}$ when $r \ge 2$ and $\rho(g,r-1,d-1) < 0$.

The expected maximal Brill-Noether loci are the $\mathcal{M}_{g,d}^r$, where for each r,d is maximal such that $\rho(g,r,d)<0$ and $\rho(g,r-1,d-1)\geq 0$.

Figure 1. g_d^r s in genus 14. Arrows show containments of the corresponding Brill-Noether loci. The general Clifford index (γ) is 6. $\Delta(g,r,d)=4(g-1)(r-1)-d^2$.

Conjecture and Theorem

- Maximal Brill-Noether Locus Conjecture: In genus $g \ge 9$, the maximal Brill-Noether loci are the expected maximal ones.
- Theorem: The conjecture holds in genus 9 19, 22, and 23.

In genus 20, 21, and $g \ge 24$, we cannot show that some of the expected maximal Brill-Noether loci are not contained in the expected maximal $\mathcal{M}_{g,d}^4$. If we knew that $\operatorname{codim} \mathcal{M}_{g,d}^r = -\rho(g,r,d)$ for $\rho = -4$ and $\rho = -5$ in these cases, then the conjecture holds in genus 20 and 21.

In genus 23, the Brill-Noether loci with $\rho=-1$ were proven to be maximal by Eisenbud-Harris and Farkas. Namely, the divisors $\mathcal{M}^1_{23,12}$, $\mathcal{M}^2_{23,17}$, and $\mathcal{M}^3_{23,20}$ have distinct support in \mathcal{M}_{23} . [2, 3, 4]

K3 Surfaces

The Noether-Lefschetz divisor $\mathcal{K}^r_{g,d}$ is the locus of polarized K3 surfaces (S,H) of genus g such that

$$\Lambda_{g,d}^r = H 2g - 2 d$$

$$L d 2r - 2$$

admits a primitive embedding in Pic(S) preserving H.

Proposition: Let $(S, H) \in \mathcal{K}_{g,d}^r$ and let $C \in |H|$ be a smooth irreducible curve. If L and H - L are basepoint free, $r \geq 2$, and $0 < d \leq g - 1$, then $L \otimes \mathcal{O}_C$ is a g_d^r .

Distinguishing Brill-Noether Loci and Lifting g_d^r s

Our strategy is to show that a curve on a very general polarized K3 surface in $\mathcal{K}_{g,d}^r$ admits a g_d^r , but no other expected maximal $g_{d'}^{r'}$. We do this by studying the lifting of line bundles on polarized K3 surfaces. [4, 5]

Donagi–Morrison Conjecture [1, 6]: Let (S, H) be a polarized K3 surface and $C \in |H|$ be a smooth irreducible curve of genus ≥ 2 . Suppose A is a complete basepoint free g_d^r on C such that $d \leq g-1$ and $\rho(g,r,d) < 0$. Then there exists a line bundle $M \in \operatorname{Pic}(S)$ adapted to |H| such that

- |A| is contained in the restriction of |M| to C, and
- $\gamma(M \otimes \mathcal{O}_C) \leq \gamma(A)$.

Donagi and Morrison verified the conjecture for r=1, and Lelli-Chiesa verified it for r=2 [1, 5], she also verified it under a technical hypothesis that the pair (C,A) do not have any unexpected secant varieties up to deformation [6].

Distinguishing Lattices If we have a lifting result, we find conditions on the Picard lattice associated to maximal Brill-Noether loci that would imply the Maximal Brill-Noether conjecture. **(L2):** For a fixed $\Lambda_{g,d}^r$ associated to an expected maximal $\mathcal{M}_{g,d}^r$ and any $\Lambda_{g,d'}^{r'}$ with $\lfloor \frac{g+1}{2} \rfloor \leq \gamma(r',d') \leq \lfloor g-2\sqrt{g}+1 \rfloor$, and $1 \leq r' \leq \lfloor \frac{g-1-\gamma(r',d')}{2} \rfloor$, one has $\Lambda_{g,d'}^{r'} \not\subseteq \Lambda_{g,d'}^r$.

Proposition If the Donagi-Morrison conjecture and L2 hold for all expected maximal g_d^r in genus g, then the Maximal Brill-Noether locus conjecture holds in genus g.

The genera ≤ 200 where **L2** does not hold are genus 89, 91, 92, 145, 153, and 190. And thus in all other genera below 200 the Donagi-Morrison conjecture implies the Maximal Brill-Noether conjecture.

Genus 14

The expected maximal Brill-Noether loci are $\mathcal{M}^1_{14,8}$, $\mathcal{M}^2_{14,11}$, and $\mathcal{M}^3_{14,13}$. Work of Lelli-Chiesa shows that $\mathcal{M}^3_{14,13} \not\subseteq \mathcal{M}^2_{14,11}$. Recent work on Brill-Noether theory for curves of fixed gonality shows that $\mathcal{M}^1_{14,8}$ is maximal. Moreover, using Lelli-Chiesa's lifting results, it can be shown that $\mathcal{M}^2_{14,11}$, $\mathcal{M}^3_{14,13} \not\subseteq \mathcal{M}^1_{14,8}$. It remains to find a curve with a g_{11}^2 that does not admit a g_{13}^3 .

Lifting g_d^3 s

Theorem: Let (S, H) be a polarized K3 surface of genus $g \neq 2, 3, 4, 8$, and $C \in |H|$ a smooth irreducible curve of Clifford index $\gamma(C)$. Suppose that S has no

elliptic curves and $d < \frac{5}{4}\gamma(C) + 6$, then the Donagi-Morrison conjecture holds for any g_d^3 on C.

We prove a slightly more refined version, replacing the hypothesis on non-existence of elliptic curves with an explicit dependence on the Picard lattice of S.

Proof Idea

Let A be a line bundle of type g_d^3 on $C \in |H|$. If $\rho(g,r,d) < 0$, then $E_{C,A}$ is not stable. To obtain a Donagi-Morrison lift of A, we want to show that $E_{C,A}$ has a maximal destabilizing subline bundle. To do this, we find lower bounds on d whenever $E_{C,A}$ has a different destabilizing subsheaf by analyzing the Harder-Narasimhan and Jordan-Hölder filtrations.

Lazarsfeld-Mukai Bundles

We define a bundle $F_{C,A}$ on S via the short exact sequence

$$0 \longrightarrow F_{C,A} \longrightarrow H^0(C,A) \otimes \mathcal{O}_S \xrightarrow{ev} \iota_*(A) \longrightarrow 0.$$

Dualizing gives $E_{C,A} = F_{C,A}^{\vee}$ (the LM bundle associated to A on C) sitting in the short exact sequence

$$0 \longrightarrow H^0(C, A)^{\vee} \otimes \mathcal{O}_S \longrightarrow E_{C, A} \longrightarrow \iota_*(\omega_C \otimes A^{\vee}) \longrightarrow 0;$$

The LM bundle $E_{C,A}$ is like a lift of A to a vector bundle on S.

Let $E_{C,A}$ be a LM bundle associated to a basepoint free line bundle A of type g_d^r on $C \subset S$, then:

- $c_1(E_{C,A}) = [C]$ and $c_2(E_{C,A}) = \deg(A)$;
- $\operatorname{rk}(E_{C,A}) = r + 1$ and $E_{C,A}$ is globally generated off the base locus of $\iota_*(\omega_C \otimes A^{\vee})$;
- $h^0(S, E_{C,A}) = h^0(C, A) + h^0(C, \omega_C \otimes A^{\vee}) = 2r + 1 + g d = g (d 2r) + 1;$
- $h^1(S, E_{C,A}) = h^2(S, E_{C,A}) = 0, h^0(S, E_{C,A}) = h^1(S, E_{C,A}) = 0;$
- $\chi(F_{C,A} \otimes E_{C,A}) = 2(1 \rho(g, r, d)).$

LM bundles are useful for lifting g_d^r s. In fact, if there is a nontrivial $N \in \text{Pic}(S)$ with $h^0(S, N) \neq 0$, $h^1(S, N) = 0$, and an injection $N \hookrightarrow E_{C,A}$, then the Donagi-Morrison conjecture holds with $L = \mathcal{O}_S(C) \otimes N^{\vee}$. [6]

Stability of Sheaves on K3 Surfaces

The slope of E is $\mu(E) = \frac{c_1(E).H}{\operatorname{rk}(E)}$. A torsion-free coherent sheaf is called slope stable or μ -stable (μ -semistable) if $\mu(F) < \mu(E)$ (respectively, $\mu(F) \le \mu(E)$) for all coherent sheaves $F \subseteq E$ with $0 < \operatorname{rk}(F) < \operatorname{rk}(E)$.

Every torsion-free coherent sheaf ${\cal E}$ has a unique Harder-Narasimhan filtration, which is an in-

creasing filtration $0 = HN_0(E) \subset HN_1(E) \subset \cdots \subset HN_\ell(E) = E,$

such that the factors $gr_i^{HN}(E) = HN_i(E)/HN_{i-1}(E)$ for $1 \le i \le \ell$ are torsion free semistable sheaves with $\mu(gr_1^{HN}(E)) > \mu(gr_2^{HN}(E)) > \cdots > \mu(gr_\ell^{HN}(E))$.

Likewise, every semistable sheaf E has a Jordan-Hölder filtration, which is an increasing filtration with stable factors all of slope $\mu(E)$.

Acknowledgments

We would like to thank David Jensen and Nathan Pflueger for helpful conversations about Brill-Noether theory, Margherita Lelli-Chiesa for explaining aspects of her work, Isabel Vogt for pointing out useful facts about Brill-Noether loci, and John Voight for helpful conversations and computations. The second author also thanks the NSF for generous funding to attend VBAC.

References

- [1] Ron Donagi and David R. Morrison, *Linear systems on K3-sections*, J. Differential Geom. **29** (1989), no. 1, 49–64.
- [2] David Eisenbud and Joe Harris, *The Kodaira dimension of the moduli space of curves of genus* ≥ 23, Inventiones mathematicae **90** (1987), no. 2, 359–387.
- [3] Gavril Farkas, The geometry of the moduli space of curves of genus 23, Mathematische Annalen **318** (2000), no. 1, 43-65.
- [4] Gavril Farkas, Brill-Noether loci and the gonality stratification of \mathcal{M}_g , J. reine angew. Math **2001** (2001), no. 539, 185–200.
- [5] Margherita Lelli-Chiesa, Stability of rank-3 Lazarsfeld-Mukai bundles on K3 surfaces, Proc. Lon. Math. Soc. **107** (2013), no. 2, 451–479.
- [6] Margherita Lelli-Chiesa, Generalized Lazarsfeld-Mukai bundles and a conjecture of Donagi and Morrison, Adv. Math. **268** (2015), no. 2, 529–563.
- [7] Margherita Lelli-Chiesa, A codimension 2 component of the Gieseker-Petri locus, 2021, to appear J. Algebraic Geom.