
Conjectures on Khovanov and Knot Floer
Homology and an Algorithm for the Jones

Polynomial

Ryan Maguire

February 17, 2022

1 / 47

Corrections

A bug was discovered in the Knot Floer Homology (KFH) code
that led to false negatives. The conjecture as presented in this talk
for KFH and Legendrian simple knots is false and counterexamples
have been found. For Khovanov homology the conjecture still
stands as of this correction (written 2023/02/27).

The wording of the theorem about Gauss codes has been
corrected, and references given.

The remainder of these slides are unchanged from the original talk.

2 / 47

Outline

I Gauss Code

I The Kauffman Bracket and Jones Polynomial

I Khovanov Homology

I An Algorithm for the Jones Polynomial

I Conjectures on Khovanov and Knot Floer Homology

3 / 47

Gauss Code

Take a knot, orient it, and label the crossings from 0 to N − 1.
Starting at the 0 crossing, travel along the knot and when you
come to a crossing, record the crossing number and whether you’re
on the over strand or the under strand. The string of length 2N
you’ve obtained is the Gauss code of the knot.

02

1

start

O0 U1 O2 U0 O1 U2

Figure: Gauss Code for the Right-Handed Trefoil

4 / 47

Gauss Code
Problem: Different knots can have the same Gauss code.1 Take
the left-handed trefoil, similar orientation and labelling scheme as
before, but different starting point. The resulting code is the same
as before. The left and right handed Trefoils are different (Their
Jones polynomials are different).2

02

1

start

O0 U1 O2 U0 O1 U2

Figure: Gauss Code for the Left-Handed Trefoil

1It bothers me that there’s only one trefoil knot in every knot table.
2Did it really take until the 1980’s to know these are different?

5 / 47

Gauss Code

Theorem
If two classical prime knots have the same Gauss code, either they
are isomorphic, or they are mirrors of each other.

By classical it is meant that the knots are not virtual (discussed in
a few slides). Dowker and Thistlethwaite proved that DT code
uniquely specifies a prime knot up to reflection [2], and DT codes
contain the same information as Gauss codes. Indeed, there are
algorithms to go from one to the other [1].

We have an example of two distinct knots having the same Gauss
code, the left and right handed trefoils. How can we describe knots
while distinguishing mirrors?

6 / 47

Gauss Code

Solution: Sign the crossings. At every crossing, rotate your head
until the crossing looks like one of the ones below. Call the one on
the left a negative crossing and the one on the right positive.

− +

Figure: Crossing Signs

7 / 47

Gauss Code

By also recording the sign, we get extended Gauss code.

Theorem
If two classical prime knots have the same extended Gauss code,
they are isomorphic.

Since unsigned codes distinguish knots up to mirror equivalence,
and since signing the code detects mirrors, the result is almost
immediate.

8 / 47

Gauss Code

Below is the extended Gauss code for the right-handed trefoil.

0+2+

1+

start

O0+ U1+ O2+ U0+ O1+ U2+

Figure: Extended Gauss Code for the Right-Handed Trefoil

9 / 47

Gauss Code

The rules:

1. Gauss code is a finite sequence of length 2N of ordered triples.

2. The ordered triples are of the form (s, n, t) with s ∈ {−1,+1},
t ∈ {O,U}, and 0 ≤ n ≤ N − 1. (s for sign, t for type).

3. Every integer 0 ≤ n ≤ N − 1 occurs exactly twice in the code,
once with O and once with U. The sign does not change.

10 / 47

Gauss Code

The three Reidemeister moves translate to fairly simple operations
on Gauss code.3 We will be discussing an algorithm for the Jones
polynomial that is exponential in crossings and it would be nice if
there were a simpler knot than either of the trefoils. And there is!

O0 O1 U0 U1 (1)

You’ll find no Reidemeister moves can reduce this to the unknot.

3HW what are they?
11 / 47

Gauss Code

If you try to draw the knot from this code, you’ll get the following.
There’s this fake crossing.

Figure: The Chain Link Fence Knot

12 / 47

Gauss Code

The graph theorist in you knows that we really want to draw this
on a torus.4

Figure: The Chain Link Fence Knot on a Torus

4Ever try and draw K5 without crossings?
13 / 47

Gauss Code

But what shall we name it (don’t read the figures label)? Let’s
draw it on a flat torus.

Figure: The Chain Link Fence Knot on a Flat Torus

14 / 47

Gauss Code
And then let’s lift that drawing to the universal cover.

Figure: Lift of the Chain Link Fence Knot to R2

15 / 47

Gauss Code

Looks like a chain-link fence. Let’s call it that. This is the simplest
non-trivial virtual knot. A classical knot can be thought of as a
smooth embedding of S1 into S2 × R. Virtual knots are smooth
embeddings of S1 into M × R where M is a compact surface. The
virtual genus of a virtual knot is the smallest possible genus of M.
Classical knots have virtual genus 0. The chain-link fence knot has
virtual genus 1.

16 / 47

Gauss Code
We can detect the virtual genus from extended Gauss code. Take
the right-handed trefoil and thicken it. Start anywhere you’d like,
but place your finger on the left strand and start walking forward.
When you encounter a crossing, go left! Eventually you’ll end up
back where you started. Keep doing this until you’ve traversed all
of the strands, keeping track of the total number of cycles.

Figure: Framed Left-Handed Trefoil

17 / 47

Gauss Code

To conclude, use the following:

V − E + F = 2− 2g (2)

You’ve just computed F ! V is the number of crossings, and E is
always 2V (the knot graph is a four-valent multigraph. By the
hand-shaking theorem, E = 4V /2 = 2V). So:

g =
V − F + 2

2
(3)

We don’t care about the virtual genus right now. But we do care
about the idea. We will modify it later to get the Jones polynomial.

18 / 47

The Kauffman Bracket and Jones Polynomial

The Kauffman Bracket is defined recursively in terms of
smoothings of a crossing. Given a crossing, there are two ways to
make it go away. We will label these the 0 and 1 smoothings, see
below.

0

1

Figure: Resolving a Crossing

19 / 47

The Kauffman Bracket and Jones Polynomial
Given a knot with N crossings, with crossings labeled 0 to N − 1,
and any integer 0 ≤ n ≤ 2N − 1, there is a unique resolution of all
crossings corresponding to n. Write n in binary. The value of the
kth bit tells us how we are supposed to smooth the kth crossing.

02

1

000

001

010

100

011

110

101 111

Figure: Cube of Resolutions for the Left-Handed Trefoil
20 / 47

The Kauffman Bracket and the Jones Polynomial
The following took too long to make.

0

12

3

0110

0111

1110

0100

0010

0101

0011

1100

1010

0000 1111

0001

1000

1011

11011001

Figure: Cube of Resolutions for the Figure-Eight

21 / 47

The Kauffman bracket is defined recursively as follows:

〈∅〉 = 1 (4)

〈L t S1〉 = (q + q−1)〈L〉 (5)

〈L〉 = 〈Ln,0〉 − q〈Ln,1〉 (6)

where Ln,0 and Ln,1 are the links obtained from the 0 and 1
smoothings of L at the nth crossing, respectively. The notation
L t S1 means the disjoint union of L with an unknot. Hence the
Kaufmann bracket of the unknot is q + q−1.

Theorem
The Kauffman bracket is invariant under Reidemeister II and III
moves.

It is not invariant under Reidemeister I, so we have a framed knot
invariant.

22 / 47

The Kauffman Bracket and the Jones Polynomial

If you have something that is invariant under Reidemeister II and
III, you should try to introduce the writhe5 into the problem since
only Reidemeister I changes the writhe of a diagram. The Jones
polynomial does exactly this:

J(L) = (−1)N−qN−−2N+〈L〉 (7)

N± being the number of positive and negative crossings,
respectively.

Theorem
The Jones polynomial is a knot invariant.

5Sum of the signs of the crossings
23 / 47

Khovanov Homology
You can get a homology theory out of this. Khovanov homology is
the “categorification” of the Jones polynomial, the graded Euler
characteristic of which gives you the Jones polynomial. I won’t be
discussing heavy details about Khovanov homology, only some of
the technical difficulties involved in its computation. The recursive
definition of the chain complex is as follows:

[[∅]] = 0→ Z→ 0 (8)

[[L t S1]] = V ⊗ [[L]] (9)

[[L]] = F
(
0→ [[Ln,0]]→ [[Ln,1]]{1} → 0

)
(10)

V is a graded vector space, {`} is the degree shift operation, and
F is the flatten operation of graded vector spaces. Like the
Kauffman bracket, we need the writhe to a get a true knot
invariant. The chain complex is C (L) = [[L]][N−]{N− − 2N+}, [`]
is the height shift operation on chain complexes. Khovanov
homology is the resulting homology from this (chain maps are not
defined in this talk).

24 / 47

Khovanov Homology

The näıve recursive algorithm for Khovanov homology is
exponential in both time and space. Most algorithm talks only care
about time, since in the modern era it seems we have infinite
space. The following is an excerpt from an email I recently sent:

I ran time6 to see how much memory the algorithm takes. For
n=10 and n=12, I get 0.65 GB and 9.33 GB, respectively. The

algorithm is EXP in space, so I did a best fitting exponential. For
n=14 (which is what is needed), the output is 132.5 GB. Yikes.

6Unix time and memory command
25 / 47

Khovanov Homology

No working totally free-and-open-source implementation of a
decent Khovanov homology algorithm is known to me. There are
three existing versions, all open source, but each has a problem.

I One is written in Mathematica, which is not an open
language.7

I Another is written in an old version of Java which wouldn’t
compile under the latest version of the language.8

I The sage implementation requires a super computer to
actually use (see previous email).

All efforts are greatly appreciated, but there needs to be a usable
implementation available to the general public without costing an
arm and a leg.

7Current pricing options are $19/month or $183/year. Ouch.
8Edit: Nikolay Pultsin recently fixed this and it compiles with OpenJDK-17.

26 / 47

Khovanov Homology

Why might we care?

I Khovanov homology is an unknot detector! An efficient
algorithm gives a decent means of solving the unknotting
problem.

I It is a very strong invariant. When trying to tabulate a list of
all knots up to N crossings, Khovanov homology can be used
to help remove duplicates.

I Testing conjectures!

27 / 47

An Algorithm for the Jones Polynomial

We’ll first start with smaller means. We’ll tackle the Jones
polynomial. We’ll do this by computing the Kauffman bracket.
Using the recursive definition we can inductively prove the
following formula:

〈L〉 =
2N−1∑
n=0

(−q)w(n)(q + q−1)c(n) (11)

Here, w(n) is the Hamming weight of n, the number of 1’s that
occur in the binary representation of n. c(n) is the circle counting
function, the number of disjoint circles that result from the
complete resolution of L corresponding to n. To compute 〈L〉 we
need only compute c(n).

28 / 47

An Algorithm for the Jones Polynomial

First, thicken the knot. All of the crossings then become “four-way
intersections.”

Figure: Framed Left-Handed Trefoil

29 / 47

An Algorithm for the Jones Polynomial

The aforementioned four-way intersections.

− +

Figure: Signed Crossings in a Framed Knot

30 / 47

An Algorithm for the Jones Polynomial

A smoothing amounts to a roadblock.

0 1

Figure: Smoothing a Negative Crossing in a Framed Knot

0 1

Figure: Smoothing a Positive Crossing in a Framed Knot

31 / 47

An Algorithm for the Jones Polynomial

Life will be easier if we label the four-way intersection. Given a
positive or negative crossing, we will label the four roads as follows:

− +0 01 1

2 23 3

Figure: Thickened Crossings with Labels

−0 −1 +0 +10 01 1

2 23 3

0 01 1

2 23 3

Figure: Thickened Resolved Crossings with Labels

32 / 47

An Algorithm for the Jones Polynomial

Create a table with 4N entries, all of which are set to 0. Start at
the 0 crossing in the Gauss code. Pictorially, you are walking
towards the crossing from road 0. You now need to know which
road to leave from. Let’s suppose the sign of the crossing is
negative, and you are supposed to do the zero resolution for this
crossing. The previous figure shows that we must travel down road
1. But hold on, the arrows are pointing the wrong way! So we
must walk backwards.

What does this mean? Find the next entry in the Gauss code for
the 0 crossing (If the first entry is O0−, find U0−, and vice-versa).
Since we are walking backwards, from there go to the previous
entry in the Gauss code (that’s what walking backwards means).
We have traversed roads 0 and 1 for the 0 crossing, so change
entries 0 and 1 of our table to 1.

33 / 47

An Algorithm for the Jones Polynomial

We continue this idea for all other crossings. We just need to know
which road to leave from, given the crossing sign, type, and
resolution, and which road we are entering from for the next
crossing. This can be obtained by studying the previous figures
carefully, but it is summarized in the following tables.

34 / 47

An Algorithm for the Jones Polynomial

In Sign Resolution Out

0 - 0 1
0 - 1 3
0 + 0 3
0 + 1 1

1 - 0 0
1 - 1 2
1 + 0 2
1 + 1 0

2 - 0 3
2 - 1 1
2 + 0 1
2 + 1 3

3 - 0 2
3 - 1 0
3 + 0 0
3 + 1 2

Table: The Circle Counting Algorithm - Where to Go

35 / 47

An Algorithm for the Jones Polynomial

Type Sign Direction In

O - Forward 1
O - Backward 3
O + Forward 0
O + Backward 2

U - Forward 0
U - Backward 2
U + Forward 1
U + Backward 3

Table: The Circle Counting Algorithm - Where to Start

36 / 47

An Algorithm for the Jones Polynomial

Eventually we will get back to road 0 of the zeroth crossing. Make
sure to keep track of which roads you’ve travelled. If you’ve
entered or exited through road 0 ≤ k ≤ 3 of the nth crossing,
change the 4n + k entry of the table to one.

After you’ve completed your cycle, find the first entry in the table
that is still zero and repeat this process. After at most 4N steps,
you’ll be done. The number of cycles you’ve counted is the
number of circles that resulted from the given resolution.

37 / 47

An Algorithm for the Jones Polynomial

Let’s use the trefoil as an example. The 0002 resolution results in 2
circles (Fig. 11). Let’s check that the algorithm detects this. The
Gauss code is:

O0 + U1 + O2 + U0 + O1 + U2+ (12)

We start by entering the zeroth crossing (road 0). It is an over
crossing, so we look ahead in the code and find the corresponding
under crossing. It is a positive crossing with the zero resolution, so
Tab. 1 tells us to leave through road 3. We mark road 0 and road
3 of the zeroth crossing as travelled and proceed. Leaving through
road 3 means we travel forward. Hence we wind up at O1+ in the
code and we are walking forwards. Over-crossing, positive sign,
walking forwards means we are entering the crossing from road 0
(Tab. 2).

38 / 47

An Algorithm for the Jones Polynomial

O0 + U1 + O2 + U0 + O1 + U2+ (13)

We will again leave through road 3 and enter the O2+ crossing
walking forwards. We again enter road 0 and leave through road 3
and wind up at O0+ walking forward, completing our first cycle.
The next untouched road is road 1 for the zeroth crossing. This
corresponding to U0+ walking forwards. Tab. 1 tells us to leave
through road 2. We end up at U1+ at road 1. Again we leave
through road 2 and end up at U2+ road 1. We leave through road
3 entering U0+, completing our cycle. All of the roads have been
marked, and we have 2 circles total, in agreement with Fig. 11.

39 / 47

An Algorithm for the Jones Polynomial

The simplest knot to try this on in it’s entirety by hand is the
chain-link-fence knot. You must use the circle counting algorithm
4 times, one for each resolution. Try it!

40 / 47

An Algorithm for the Jones Polynomial

Benefits:

I Time complexity is O(N2N), so no worse than the recursive
algorithm.

I The algorithm is O(N) in space! Significantly better than
O(2N). The reason being we don’t need to store all
resolutions in memory. We can do one at a time, add the
result to our polynomial, and continue.

I The idea should generalize to Khovanov homology. We need
only count the circles.

I The idea works for virtual knots. There is no restriction to the
classical setting.

41 / 47

Conjectures on Khovanov and Knot Floer Homology

A Legendrian knot is an embedding of S1 into R3 that is
everywhere tangent to the standard contact structure.

Every knot is topologically equivalent to a Legendrian knot. Two
Legendrian knots are said to be equivalent if they are equivalent
through a homotopy of Legendrian knots.

It is possible for inequivalent Legendrian knots to be equivalent as
topological knots.

If Legendrian knots in a given topological knot type are uniquely
determined by two classical invariants (their Thurston-Bennequin
numbers and rotation numbers), they are said to be Legendrian
simple.

42 / 47

Conjectures on Khovanov and Knot Floer Homology

It is known that torus knots are Legendrian simple.

Two results have shown that Khovanov homology (Mrowka and
Kronheimer) and Knot Floer homology (Ozváth and Szabó) are
unknot detectors. The unknot being the simplest of the torus
knots, a somewhat natural generalization would be that these two
homology theories distinguish the Legendrian simple knots.

Using the algorithm outlined, numerical evidence for this has been
collected for all knots up to 17 crossings (roughly 8 million knots).9

9Correction: There was a bug in the code. The conjecture fails for KFH.
43 / 47

Conjectures on Khovanov and Knot Floer Homology

An open analogous question for the Jones polynomial is whether it
too detects the unknot. This is not true of torus knots. There are
non-torus knots with the same Jones polynomial as a torus knot.

I T (2, 5) matches a 10 crossing knot.

I T (2, 7) matches a 12 crossing knot.

I T (2, 11) matches a 14 crossing knot.

Any patterns? T (n,m) is always of the form (2, prime), the second
number is always increasing by 2. Hmm.

44 / 47

Conjectures on Khovanov and Knot Floer Homology

I T (2, 5) matches a 17 crossing knot.

Well dang, there’s goes that trend.

Still, T (n,m) is always of the form (2, prime). It would be nice to
know if there are infinitely many of these matches.

For the 10, 12, and 14 crossing matches, the Khovanov homologies
are different.

The 17 crossing knot can not be computed yet since no available
computer to me has the required 500+ GB of memory needed.

Hence the need for an iterative implementation that is O(N) in
space!

45 / 47

Conjectures on Khovanov and Knot Floer Homology

A similar search through the all knots up to 12 crossings yielded no
match for Knot Floer homology.10

Much the way Khovanov homology is the categorification of the
Jones polynomial, so is Knot Floer homology for the Alexander
polynomial.

The Alexander polynomial is first computed (this is polynomial
time, much better than the Jones polynomial), and if matches
were found the Knot floer homologies were compared as well (slow,
exponential in time).

10Correction: Matches were found once the code was fixed.
46 / 47

References

Knot atlas dt codes.
http://katlas.math.toronto.edu/wiki/DT_

%28Dowker-Thistlethwaite%29_Codes.
Accessed: 2023-02-27.

C.H. Dowker and Morwen B. Thistlethwaite.
Classification of knot projections.
Topology and its Applications, 16(1):19–31, 1983.

47 / 47

http://katlas.math.toronto.edu/wiki/DT_%28Dowker-Thistlethwaite%29_Codes
http://katlas.math.toronto.edu/wiki/DT_%28Dowker-Thistlethwaite%29_Codes

