
Conjectures on Khovanov and Knot Floer
Homology and an Algorithm for the Jones

Polynomial

Ryan Maguire

April 23, 2022

1 / 48

Corrections

A bug was discovered in the Knot Floer Homology (KFH) code
that led to false negatives. The conjecture as presented in this talk
for KFH and Legendrian simple knots is false and counterexamples
have been found. For Khovanov homology the conjecture still
stands as of this correction (written 2023/02/27).

The remainder of these slides are unchanged from the original talk.

2 / 48

Outline

A theorem of Kronheimer and Mrowka shows that Khovanov
homology is an unknot detector. There is currently an open
question as to whether the Jones polynomial is also an unknot
detector.

One could ask if this theorem is a special case of a more general
claim. The unknot is the simplest of the torus knots, which are
knots that are known to be Legendrian simple. These are used to
test the question does Khovanov homology detect Legendrian
simple knots? Numerical evidence up to 17 crossings is provided.

A similar question about transverse knots is posed and numerical
evidence has been gathered using the twist knots. These questions
are also posed for Knot Floer Homology, which is also a known
unknot detector.

3 / 48

Outline
To gather numerical evidence one could simply get a giant list of
knots and start computing the Khovanov and Knot Floer
homologies for all torus and twist knots up to a certain number of
crossings, and compare the results with all knots up to 17
crossings.

These homologies are expensive to compute meaning this is not
feasible. Instead, the Jones and Alexander polynomials are
computed and compared. Only if matching polynomials are found
are the homologies computed. This simplification greatly reduces
computation time. One could, with the aid of computer, calculate
the Jones polynomial of all knots up to 17 crossings in an hour or
so.

As an added bonus, the Jones and Alexander polynomials of torus
and twist knots have well-known closed forms, reducing part of the
calculation entirely.

4 / 48

Outline

The following python packages were used:

I regina

I snappy

and the sage knot theory library was used as well. In addition, my
own ever-growing C library was used. The algorithm implemented
will be briefly described.

5 / 48

Gauss Code

Take a knot, orient it, and label the crossings from 0 to N − 1.
Starting at the 0 crossing, travel along the knot and when you
come to a crossing, record the crossing number and whether you’re
on the over strand or the under strand. The string of length 2N
you’ve obtained is the Gauss code of the knot.

02

1

start

O0 U1 O2 U0 O1 U2

Figure: Gauss Code for the Right-Handed Trefoil

6 / 48

Gauss Code

Problem: Different knots can have the same Gauss code.1 Take
the left-handed trefoil, similar orientation and labelling scheme as
before, but different starting point. The resulting code is the same
as before. The left and right handed Trefoils are different since
their Jones polynomials are different.

02

1

start

O0 U1 O2 U0 O1 U2

Figure: Gauss Code for the Left-Handed Trefoil

1It bothers me that there’s only one trefoil knot in every knot table.
7 / 48

Gauss Code

Solution: Sign the crossings. At every crossing, rotate your head
until the crossing looks like one of the ones below. Call the one on
the left a negative crossing and the one on the right positive.

− +

Figure: Crossing Signs

8 / 48

Gauss Code

By also recording the sign, we get extended Gauss code.

0+2+

1+

start

O0+ U1+ O2+ U0+ O1+ U2+

Figure: Extended Gauss Code for the Right-Handed Trefoil

9 / 48

Gauss Code

The rules:

1. Gauss code is a finite sequence of length 2N of ordered triples.

2. The ordered triples are of the form (s, n, t) with s ∈ {−1,+1},
t ∈ {O,U}, and 0 ≤ n ≤ N − 1. (s for sign, t for type).

3. Every integer 0 ≤ n ≤ N − 1 occurs exactly twice in the code,
once with O and once with U. The sign is does not change.

10 / 48

Gauss Code

The three Reidemeister moves translate to fairly simple operations
on Gauss code.2 Here’s a two crossing knot.

O0 O1 U0 U1 (1)

You’ll find no Reidemeister moves can reduce this to the unknot.

2HW what are they?
11 / 48

Gauss Code

If you try to draw the knot from this code, you’ll get the following.
There’s this fake crossing.

Figure: The Chain Link Fence Knot

12 / 48

Gauss Code

The graph theorist in you knows that we really want to draw this
on a torus.3

Figure: The Chain Link Fence Knot on a Torus

3Ever try and draw K5 without crossings?
13 / 48

Gauss Code

Perhaps this is easier to visualize on a flat torus.

Figure: The Chain Link Fence Knot on a Flat Torus

14 / 48

Gauss Code
We can detect the virtual genus from the Gauss code. Take the
right-handed trefoil and thicken it. Start anywhere you’d like, but
place your finger on the left strand and start walking forward.
When you encounter a crossing, go left! Eventually you’ll end up
back where you started. Keep doing this until you’ve traversed all
of the strands, keeping track of the total number of cycles.

Figure: Framed Right-Handed Trefoil

15 / 48

Gauss Code

To conclude, use the following:

V − E + F = 2− 2g (2)

You’ve just computed F ! V is the number of crossings, and E is
always 2V (the knot graph is a four-valent multigraph. By the
hand-shaking theorem, E = 4V /2 = 2V). So:

g =
V − F + 2

2
(3)

This method of computing virtual genus is obtainable via the
Gauss code. The idea of chasing around the diagram can be
modified to compute the Kauffman bracket.

16 / 48

The Kauffman Bracket and Jones Polynomial

The Kauffman Bracket is defined recursively in terms of
smoothings of a crossing. Given a crossing, there are two ways to
make it go away. We will label these the 0 and 1 smoothings, see
below.

0

1

Figure: Resolving a Crossing

17 / 48

The Kauffman Bracket and Jones Polynomial
Given a knot with N crossings, with crossings labeled 0 to N − 1,
and any integer 0 ≤ n ≤ 2N − 1, there is a unique resolution of all
crossings corresponding to n. Write n in binary. The value of the
kth bit tells us how we are supposed to smooth the kth crossing.

02

1

000

001

010

100

011

110

101 111

Figure: Cube of Resolutions for the Right-Handed Trefoil
18 / 48

The Kauffman Bracket and the Jones Polynomial
The following took far too long to make.

0

12

3

0110

0111

1110

0100

0010

0101

0011

1100

1010

0000 1111

0001

1000

1011

11011001

Figure: Cube of Resolutions for the Figure-Eight

19 / 48

The Kauffman bracket is defined recursively as follows:

〈∅〉 = 1 (4)

〈L t S1〉 = (q + q−1)〈L〉 (5)

〈L〉 = 〈Ln,0〉 − q〈Ln,1〉 (6)

where Ln,0 and Ln,1 are the links obtained from the 0 and 1
smoothings of L at the nth crossing, respectively. The notation
L t S1 means the disjoint union of L with an unknot. Hence the
Kauffman bracket of the unknot is q + q−1.

Theorem
The Kauffman bracket is invariant under Reidemeister II and III
moves.

It is not invariant under Reidemeister I.

20 / 48

The Kauffman Bracket and the Jones Polynomial

If you have something that is invariant under Reidemeister II and
III, you should try to introduce the writhe4 into the problem since
only Reidemeister I changes the writhe of a diagram. The Jones
polynomial does exactly this:

J(L)(q) = (−1)N−qN−−2N+〈L〉 (7)

N± being the number of positive and negative crossings,
respectively.

Theorem
The Jones polynomial is a knot invariant.

4Sum of the signs of the crossings
21 / 48

Khovanov Homology
You can get a homology theory by “categorifying” the Jones
polynomial. This is Khovanov homology, the graded Euler
characteristic of which gives you the Jones polynomial. I won’t be
discussing heavy details about Khovanov homology. The recursive
definition of the chain complex is as follows:

[[∅]] = 0→ Z→ 0 (8)

[[L t S1]] = V ⊗ [[L]] (9)

[[L]] = F
(
0→ [[Ln,0]]→ [[Ln,1]]{1} → 0

)
(10)

V is a graded vector space, {`} is the degree shift operation, and
F is the flatten operation of graded vector spaces. Like the
Kauffman bracket, we need the writhe to a get a true knot
invariant. The chain complex is C (L) = [[L]][N−]{N− − 2N+}, [`]
is the height shift operation on chain complexes. Khovanov
homology is the resulting homology from this (chain maps are not
defined in this talk).

22 / 48

Khovanov Homology

The Khovanov polnyomial is obtained via

Kh(L)(q, t) =
∑
r ,`

trq`dim
(
KH r

` (L)
)

(11)

The relation to the Jones polynomial is

J(L)(q) = Kh(q,−1) (12)

23 / 48

Khovanov Homology

The näıve recursive algorithm for Khovanov homology is
exponential in both time and space. Most algorithm talks only care
about time, since in the modern era it seems we have infinite
space. The following is an excerpt from an email I recently sent:

I ran time5 to see how much memory the algorithm takes. For
n=10 and n=12, I get 0.65 GB and 9.33 GB, respectively. The

algorithm is EXP in space, so I did a best fitting exponential. For
n=14 (which is what is needed), the output is 132.5 GB. Yikes.

5Unix time and memory command
24 / 48

Khovanov Homology

There are a few implementations of Khovanov homology available.

I One is written in Mathematica, which is not an open
language.6

I Another is written in Java which I couldn’t compile but thanks
to the magic of Nikolay Pultsin it’s working with OpenJDK.

I The sage implementation requires a super computer to
actually use (see previous email).

The Java version has been used to compare Khovanov homologies
of knots with the same Jones polynomial as some torus or twist
knot.

6Current pricing options are $19/month or $183/year. Ouch.
25 / 48

An Algorithm for the Jones Polynomial

We’ll first start with smaller means. We’ll tackle the Jones
polynomial. We’ll do this by computing the Kauffman bracket.
Using the recursive definition we can inductively prove the
following formula:

〈L〉 =
2N−1∑
n=0

(−q)w(n)(q + q−1)c(n) (13)

Here, w(n) is the Hamming weight of n, the number of 1’s that
occur in the binary representation of n. c(n) is the circle counting
function, the number of disjoint circles that result from the
complete resolution of L corresponding to n. To compute 〈L〉 we
need only compute c(n).

26 / 48

An Algorithm for the Jones Polynomial

First, thicken the knot. All of the crossings then become “four-way
intersections.”

Figure: Framed Right-Handed Trefoil

27 / 48

An Algorithm for the Jones Polynomial

The aforementioned four-way intersections.

− +

Figure: Signed Crossings in a Framed Knot

28 / 48

An Algorithm for the Jones Polynomial

A smoothing amounts to a roadblock.

0 1

Figure: Smoothing a Negative Crossing in a Framed Knot

0 1

Figure: Smoothing a Positive Crossing in a Framed Knot

29 / 48

An Algorithm for the Jones Polynomial

Life will be easier if we label the four-way intersection. Given a
positive or negative crossing, we will label the four roads as follows:

− +0 01 1

2 23 3

Figure: Thickened Crossings with Labels

−0 −1 +0 +10 01 1

2 23 3

0 01 1

2 23 3

Figure: Thickened Resolved Crossings with Labels

30 / 48

An Algorithm for the Jones Polynomial

Create a table with 4N entries, all of which are set to 0. Start at
the 0 crossing in the Gauss code. Pictorially, you are walking
towards the crossing from road 0. You now need to know which
road to leave from. Let’s suppose the sign of the crossing is
negative, and you are supposed to do the zero resolution for this
crossing. The previous figure shows that we must travel down doad
1. But hold on, the arrows are pointing the wrong way! So we
must walk backwards.

What does this mean? Find the next entry in the Gauss code for
the 0 crossing (If the first entry is O0−, find U0−, and vice-versa).
Since we are walking backwards, from there go to the previous
entry in the Gauss code (that’s what walking backwards means).
We have traversed roads 0 and 1 for the 0 crossing, so change
entries 0 and 1 of our table to 1.

31 / 48

An Algorithm for the Jones Polynomial

We continue this idea for all other crossings. We just need to know
which road to leave from, given the crossing sign, type, and
resolution, and which road we are entering from for the next
crossing. This can be obtained by studying the previous figures
carefully, but it is summarized in the following tables.

32 / 48

An Algorithm for the Jones Polynomial

In Sign Resolution Out

0 - 0 1
0 - 1 3
0 + 0 3
0 + 1 1

1 - 0 0
1 - 1 2
1 + 0 2
1 + 1 0

2 - 0 3
2 - 1 1
2 + 0 1
2 + 1 3

3 - 0 2
3 - 1 0
3 + 0 0
3 + 1 2

Table: The Circle Counting Algorithm - Where to Go

33 / 48

An Algorithm for the Jones Polynomial

Type Sign Direction In

O - Forward 1
O - Backward 3
O + Forward 0
O + Backward 2

U - Forward 0
U - Backward 2
U + Forward 1
U + Backward 3

Table: The Circle Counting Algorithm - Where to Start

34 / 48

An Algorithm for the Jones Polynomial

Eventually we will get back to road 0 of the zeroth crossing. Make
sure to keep track of which roads you’ve travelled. If you’ve
entered or exited through road 0 ≤ k ≤ 3 of the nth crossing,
change the 4n + k entry of the table to one.

After you’ve completed your cycle, find the first entry in the table
that is still zero and repeat this process. After at most 4N steps,
you’ll be done. The number of cycles you’ve counted is the
number of circles that resulted from the given resolution.

35 / 48

An Algorithm for the Jones Polynomial

Benefits:

I Time complexity is O(N2N), so no worse than the recursive
algorithm.

I The algorithm is O(N) in space! Significantly better than
O(2N). The reason being we don’t need to store all
resolutions in memory. We can do one at a time, add the
result to our polynomial, and continue.

I The idea works for virtual knots. There is no restriction to the
classical setting.

36 / 48

Conjectures on Khovanov and Knot Floer Homology

A Legendrian knot is an embedding of S1 into R3 that is
everywhere tangent to the standard contact structure.

Every knot is topologically equivalent to a Legendrian knot. Two
Legendrian knots are said to be equivalent if they are equivalent
through a homotopy of Legendrian knots.

It is possible for inequivalent Legendrian knots to be equivalent as
topological knots.

If Legendrian knots in a given topological knot type are uniquely
determined by two classical invariants (their Thurston-Bennequin
numbers and rotation numbers), they are said to be Legendrian
simple.

37 / 48

Conjectures on Khovanov and Knot Floer Homology

We can similarly define transverse knots, which are knots that are
everywhere transverse to the contact structure.

We can again consider transverse knots up to equivalence via
homotopy through transverse knots.

38 / 48

Conjectures on Khovanov and Knot Floer Homology

It is known that torus knots are Legendrian simple.

Two results have shown that Khovanov homology (Mrowka and
Kronheimer) and Knot Floer homology (Ozváth and Szabó) are
unknot detectors. The unknot being the simplest of the torus
knots, a somewhat natural generalization would be that these two
homology theories distinguish the Legendrian simple knots.

Using the algorithm outlined, numerical evidence for this has been
collected for all knots up to 17 crossings (roughly 8 million knots).

39 / 48

Conjectures on Khovanov and Knot Floer Homology

An open analogous question for the Jones polynomial is whether it
too detects the unknot. This is not true of torus knots. There are
non-torus knots with the same Jones polynomial as a torus knot.

I T (2, 5) matches a 10 crossing knot.

I T (2, 7) matches a 12 crossing knot.

I T (2, 11) matches a 14 crossing knot.

Any patterns? T (n,m) is always of the form (2, prime), the second
number is always increasing by 2. Hmm.

40 / 48

Conjectures on Khovanov and Knot Floer Homology

I T (2, 5) matches a 17 crossing knot.

Well dang, there’s goes that trend.

Still, T (n,m) is always of the form (2, prime). It would be nice to
know if there are infinitely many of these matches.

In all cases, the Khovanov homologies are different.

41 / 48

Conjectures on Khovanov and Knot Floer Homology

Kh(T (2, 5)) =q−15t−5 + q−11t−4+

q−11t−3 + q−7t−2 + q−5t0 + q−3t0 (14)

Kh(K10) =q−15t−7 + q−11t−6 + q−11t−5+

q−9t−4 + q−7t−4 + q−9t−3 + q−5t−3+

2q−5t−2 + q−1t−1 + q−3t0 + q−1t0 (15)

Kh(K17) =q−1t0 + q1t0 + q−1t1 + q3t2+

q1t3 + 2q5t4 + q5t5 + q9t5 + q7t6+

q9t6 + q11t7 + q11t8 + q15t9 (16)

42 / 48

Conjectures on Khovanov and Knot Floer Homology

Kh(T (2, 7)) =q5t0 + q7t0 + q9t2 + q13t3+

q13t4 + q17t5 + q17t6 + q21t7 (17)

Kh(K12) =q3t0 + q5t0 + q3t1 + 2q7t2+

q7t3 + q11t3 + q9t4 + 2q11t4+

q11t5 + q13t5 + q15t5 + q13t6+

q15t6 + q17t7 + q17t8 + q21t9 (18)

43 / 48

Conjectures on Khovanov and Knot Floer Homology

Kh(T (2, 11)) =q9t0 + q11t0 + q13t2+

q17t3 + q17t4 + q21t5 + q21t6+

q25t7 + q25t8 + q29t9 + q29t10 + q33t11 (19)

Kh(K14) =q−33t−13 + q−29t−12 + q−29t−11+

q−27t−10 + q−25t−10 + q−27t−9 + q−25t−9+

q−23t−9 + 2q−23t−8 + q−21t−8 + q−23t−7+

q−19t−7 + 2q−19t−6 + q−21t−5 + q−19t−5+

q−15t−5 + q−17t−4 + q−15t−4 + q−17t−3+

q−13t−2 + q−11t0 + q−9t0 (20)

44 / 48

Conjectures on Khovanov and Knot Floer Homology

A similar search yielded no matches for Knot Floer Homology.7

Much the way Khovanov homology is the categorification of the
Jones polynomial, so is Knot Floer homology for the Alexander
polynomial.

The Alexander polynomial is first computed (this is polynomial
time, much better than the Jones polynomial), and if matches
were found the Knot Floer homologies were compared as well
(slow, exponential in time).

Much worse than the Jones polynomial, roughly 5,000 knots had
the same Alexander polynomial as some torus knot. Most
matching the trefoil, cinquefoil, septefoil, and T (3, 4).

7Correction: This is false, a bug was found.
45 / 48

Conjectures on Khovanov and Knot Floer Homology

Twist knots were also checked to check for this conjecture for
transversally simple knots. Not all twist knots are transversally
simple, but some are.

For up to 17 crossings, 9 knots had the same Jones polynomial as
a twist knot. In all cases the Khovanov homologies were different.
A similar statement holds for Knot Floer Homology.

46 / 48

What’s Next?

I More crossings! There is a publicly available database with
the DT code of all knots up to 19 crossings.

I Check the code. In programming there’s always room for
mistakes.

I Parallelize the code. I have 24 cores on my computer, and I
want to use them, dag-nabbit.

47 / 48

The End

Thank You!

48 / 48

