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Outline

An Affine connection on a manifold is used to describe the notion
of parallel translation. The definition of such an object is
motivated by the covariant derivative from the calculus of Rn.
We’ll use this to compute the angle of deviation of a pendulum in
Paris swinging north-to-south over a 24 hour period.
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Basic Definitions

A section of a manifold to it’s tangent bundle is a function
f : M → TM such that for all p ∈ M we have proj

(
f (p)

)
= p,

where proj
(
(x , v)

)
= x , (x , v) ∈ TM. A smooth vector field on a

smooth manifold (M, A) is a smooth section X : M → TM.

An equivalent formulation is an assignment at each p ∈ M a
tangent vector Xp ∈ TpM and this assignment is done smoothly.
That is, for any given function f ∈ C∞(M, R) the function Xf ,
defined in a local chart (U , ϕ) as:

Xf (p) = Xpf =
N−1∑
n=0

an
∂f

∂ϕn
(p) (1)

is smooth.

3 / 20



Basic Definitions

Since a vector field X : M → TM can be applied to smooth
functions f ∈ C∞(M, R), the result being a smooth, it is possible
to compose vector fields X ,Y : M → TM. That is, given a
function f ∈ C∞(M, R) and two smooth vector fields X and Y ,
we obtain a new smooth function X (Yf ). The composition of two
vector fields need not be a vector field. Using local coordinates
(U , ϕ), we may represent the tangent vectors Xp and Yp as follows:

Xp =
N−1∑
n=0

an(p)
∂

∂ϕn
(2)

Yp =
N−1∑
n=0

bn(p)
∂

∂ϕn
(3)
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Basic Definitions

The composition X (Yf ) is then:

X
( N−1∑

m=0

bn
∂f

∂ϕm

)
=

N−1∑
n=0

an
∂

∂ϕn

( N−1∑
m=0

bn
∂f

∂ϕm

)
(4)

=
N−1∑
n=0

N−1∑
m=0

(
an
∂bm

∂ϕn

∂f

∂ϕm
+ anbm

∂2f

∂ϕn∂ϕm

)
(5)

So XYf involves second order derivatives, which is not Liebnizian.
If we subtract YXf and invoke the Clairaut formula, we see that
XY − YX involves only first order derivatives, and hence is a
vector field. This is called the Lie Bracket of X with respect to Y ,
[X ,Y ] = XY − YX .
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Basic Definitions

A Riemannian metric on a smooth manifold (M, A) is a function g
on M such that for all p ∈ M, gp is a symmetric bilinear form that
is positive-definite. That is, for all u0, u1, v0, v1 ∈ TpM and
a, b, c, d ∈ R we have:

gp(u0, u1) = gp(u1, u0) (6)

gp(au0 + bu1, cv0 + dv1) = acgp(u0, v0) + adgp(u0, v1)+

bcgp(u1, v0) + bdgp(u1, v1) (7)

gp(u0, u0) ≥ 0 (8)

gp(u0, u0) = 0 iff u0 = 0 (9)
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Basic Definitions

Moreover, the function g should vary smoothly with p. That is, for
any two smooth vector fields X and Y , the function f : M → R
defined by:

f (p) = gp(Xp,Yp) (10)

should be smooth. Such a function g is called a Riemannian
metric, and a Riemannian manifold is an ordered triple (M, A, g)
where (M, A) is a smooth manifold and g is a Riemannian metric
on (M, A).
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Basic Definitions

The covariant derivative in Rn gives us a way of specifying the
derivative of one vector field with respect to another. Given
X =

∑
an(x)∂xn and Y =

∑
bm(x)∂xm, the covariant derivative

of Y with respect to X is:

N−1∑
n=0

N−1∑
m=0

an
∂bm

∂xn

∂

∂xm
(11)

This is the part of XY that does not involve second order terms.
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Affine Connections
An affine connection of a smooth manifold (M, A) axiomatizes the
properties of the covariant derivative. This is a function
∇ : X(M)× X(M)→ X(M), where X(M) is the set of all smooth
vector fields on (M, A), with the following properties:

I ∇ is bilinear.

I ∇ is C∞(M,R) linear in the first coordinate:

∇fXY = f∇XY (12)

I ∇ is Liebnizean in the second coordinate:

∇X fY = (Xf )Y + f∇XY (13)

Recall that since X is a smooth vector field, Xf is a smooth
function, so (Xf )Y is the product of a smooth function with a
smooth vector field, which is again a smooth vector field. The
third condition is thus the sum of two vector fields, which is a
vector field, meaning all of this is well defined.

9 / 20



Affine Connections

All of this is defined for smooth manifolds and no Riemannian
metric is yet needed. Affine connections are called torsion free if
they are related to the Lie bracket:

∇XY −∇Y X = [X ,Y ] (14)

Given a Riemannian manifold (M, A, g), the connection is said to
be compatible with g if for all smooth vector fields X ,Y ,Z we
have

Xg(Y ,Z ) = g(∇XY , Z ) + g(Y , ∇XZ ) (15)

A Levi-Civita connection is an affine connection that is torsion free
and is compatible with the metric g .
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Affine Connections

Theorem (Fundamental Theorem of Riemannian Geometry)

Every Riemannian manifold (M, A, g) has a unique Levi-Civita
connection ∇.
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Parallel Transport

Given a smooth curve γ : [0, 1]→ M, if γ is injective, then the
image γ

[
[0, 1]

]
defines a submanifold with boundary in M. The

velocity vector γ̇(t0) is defined as the derivation
γ̇(t0) : C∞(M,R)→ R given by:

γ̇(t0)(f ) =
d

dt

(
f ◦ γ

)
(16)

Note that f ◦ γ is a function from [0, 1] to R so we may
differentiate in the usual sense. γ̇ defines a vector field on a closed
submanifold with boundary of M. It is always possible to extend a
smooth vector field on a closed submanifold to a smooth vector
field on all of M. This follows from a partition of unity argument.
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Parallel Transport

Theorem
If (M, A) is a smooth manifold, if ∇ is an affine connection on M,
if γ is a smooth injective curve in M, if X and Y are smooth
extensions of γ̇, and if Z is a smooth vector field, then for all
p ∈ M such that p = γ(t) for some t ∈ [0, 1], we have:

∇XpZp = ∇YpZp (17)

Because of this we may abuse notation and write ∇γ̇Z to mean
the derivative of the vector field Z along the curve γ.
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Parallel Transport

A vector field that is parallel along a curve γ is a smooth vector
field X such that ∇γ̇X = 0. Given a curve γ and a tangent vector
v ∈ Tγ(0)M we can solve for a vector field that is parallel along γ
in local coordinates by solving a system of differential equations.
This allows one numerically solve for how a given tangent vector
will be transported along a curve.
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The Foucault Pendulum

Let’s use these ideas on S2.

Given a Riemannian manifold (M, A, g) and a smooth embedding
f : X → M of a smooth manifold (X , AX ) it is possible to endow
(X , AX ) with a metric via pull-back. Give x ∈ X , u0, u1 ∈ TxX ,
let p = f (x) and v0 = dfx(u0), v1 = dfx(u1), where dfx is the
differential push-forward of f at the point x . We may define g̃x via:

g̃x(u0, u1) = gp(v0, v1) (18)

Since the differential push-forward of a smooth vector field is a
smooth vector field, if g is smooth, then so is g̃ . This gives
(X , AX , g̃) the structure of a Riemannian manifold.
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The Foucault Pendulum

The round metric on S2 is obtained via pull-back. R3 has the
standard dot product:

〈x|y〉 =
N−1∑
n=0

xnyn (19)

The inclusion mapping ι : S2 → R3 is a smooth embedding, and
hence induces a metric on S2 via pull-back of the dot product.
This Riemannian metric on S2 is called the round metric.
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The Foucault Pendulum

There is a correspondence between vector fields on S2 and
functions X : S2 → R3 such that for all p ∈ S2 we have
〈p|Xp〉 = 0. A smooth vector field is in particular a smooth
function X : S2 → R3 with this property. The function
∇ : X(S2)× X(S2)→ X(S2) defined by:

∇XpYp(f ) = dYp(Xp)(f ) + 〈Xp|Yp〉f (p) (20)

determines a Levi-Civita connection on S2.
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The Foucault Pendulum

Now imagine it is 1851, you are in Paris, and have a 67 meter long
pendulum attached to the dome of the French Panthéon. You have
it swinging north-to-south. You then ask what will the angle be
after one full rotation of the Earth.

It is easy to convince your self that if you were in Brazil on the
equator and performed this experiment, the angle would not
deviate at all. It is also easy to believe that if you performed this
experiment next to polar bears at the north pole the pendulum
would simply rotate with the Earth a full 2π radians.
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The Foucault Pendulum

The path the pendulum traverses is a circle of constant latitude.
We can cover this in a single coordinate chart via stereographic
projection about either the north or south pole. In these
coordinates x and y correspond to east-west and south-north
directions, respectively. The system of differential equations we
need to solve is:

ẍ(t) = −x + 4πẏ(t) sin(φ) (21)

ÿ(t) = −y − 4πẋ(t) sin(φ) (22)

Here φ is the angle of latitude of Paris. This converts into a single
complex differential equation:

z̈(t) + 4πi sin(φ)ż(t) + z(t) = 0 (23)
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The Foucault Pendulum

We can solve directly:

z(t) = exp
(
− 2πi sin(φ)t

)(
A exp(it) + B exp(−it)

)
(24)

where A and B are constants corresponding to the initial tangent
vector v (which is north-south). Here, t is measured in days. The
angle of deviation after one rotation of the Earth is then
−2π sin(φ). The latitude of Paris is 48 degrees and 51 minutes, or
about 0.85 radians. The resulting deviation is −4.73, or about
−271.1 degrees. The pendulum will be oscillating in the east-west
direction.
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