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A smooth manifold is a locally Euclidean Hausdorff topological
space that is second countable such that there is an atlas A
consisting of smoothly compatible charts.

Diffeomorphisms are smooth bijective functions with smooth
inverses.

Things like distance and volume are not preserved by
diffeomorphisms, indeed these concepts aren’t even well-defined for
the general smooth manifold.
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A smooth vector field on a manifold M is a smooth section of the
tangent bundle X : M → TM.

Let’s define a generalized metric to be a function g on M such
that for all p ∈ M, gp : TpM → R is a smooth symmetric bilinear
form. By smooth it is meant that for all smooth vector fields
X ,Y : M → TM the function gp(Xp,Yp), which is a function from
M to R, is smooth.

At this point there is no requirement of positive definiteness or
non-degeneracy.
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A Riemannian metric on a manifold M is a generalized metric g
that is positive-definite. That is, for all p ∈ M and for all
v ∈ TpM, gp(v , v) ≥ 0 and gp(v , v) = 0 if and only if v is the zero
tangent vector.

A semi-Riemannian metric is a generalized metric that is
non-degenerate. That is, for all p ∈ M and all non-zero v ∈ TpM,
there is a w ∈ TpM such that gp(v ,w) 6= 0.
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By Sylvester’s Law of Inertia (I have absolutely no idea why it is
called that), for each p ∈ M there is a basis of TpM such that the
matrix representation of the symmetric bilinear form gp is diagonal
and consists entirely of 1, 0, and −1 on the diagonal.

By Sylvester’s Conservation of Inertia (again, no idea why the
name), the number of 1’s, 0’s, and −1’s is a constant. This allows
one to define the signature of a generalized metric. This is the
ordered triple (a, b, c) where a ∈ N is the number of 1’s in such a
representation, b ∈ N is the number of 0’s, and c ∈ N is the
number of −1’s.
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An N ∈ N dimensional Riemannian manifold is just a smooth
manifold with a generalized metric of signature (N, 0, 0). A
semi-Riemannian manifold is a smooth manifold with a generalized
metric of signature (n, 0,m) with n + m = N, n,m ≥ 0.

Many of the results about Riemannian manifolds hold for
semi-Riemannian, and many do not not. In this talk we’ll discuss
some of these central ideas.

Note, since a semi-Riemannian metric g is non-degenerate by
definition, the number b in the signature (a, b, c) of g is always
zero. Because of this many authors write the signature of g to be
(a, c).
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An affine connection on a smooth manifold is a function
∇ : X(M)× X(M)→ X(M) such that:

I ∇ is bilinear.

I ∇ is C∞(M,R) linear in the first component. That is,
∇fXY = f∇XY .

I ∇ is Liebnizean in the second component. That is,
∇X fY = (Xf )Y + f∇XY .

A torsion-free affine connection is one compatible with the Lie
Bracket. That is:

∇XY −∇Y X = [X ,Y ] (1)
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Given a generalized metric g on a smooth manifold M, a
compatible affine connection is an affine connection ∇ such that
for all smooth vector fields X ,Y ,Z we have:

Xgp(Yp,Zp) = gp(∇XY ,Z ) + gp(Y ,∇XZ ) (2)

A Levi-Civita connection on a smooth manifold with a
(generalized) metric g is an affine connection that is torsion free
and compatible with g .
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A theorem dating back to the early 1900’s states if M is a smooth
manifold with a Riemannian metric, then there is a unique
Levi-Civita connection on M. This generalizes to the
semi-Riemannian case.

Theorem (Fundamental Theorem of Semi-Riemannian
Geometry)

If M is a smooth manifold, and if g is a semi-Riemannian metric,
then there is a unique Levi-Civita connection on M.

This does not generalize to generalized metrics, the non-degenaracy
is needed. Indeed, take g to be the zero metric with signature
(0,N, 0). Then any affine connection is compatible with g since
the compatibility equation reduces to 0 = 0 + 0, which is true.
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For both Riemannian and semi-Riemannian the fundamental
theorem generalizes as follows. Define any function
F : X(M)× X(M)→ X(M). We have the following.

Theorem (Generalized Fundamental Theorem of
Semi-Riemannian Geometry)

If M is a smooth manifold with a semi-Riemannian metric g , then
there is a unique affine connection that is compatible with g such
that for all X ,Y ∈ X(M) we have:

∇XY −∇Y X − [X ,Y ] = F (X ,Y ) (3)

That is, there is a unique affine connection compatible with g with
the prescribed torsion.

The proof is the same as the proof of the previous theorem. One
takes the Koszul formula, shows that any such metric mush satisfy
it, and that the equation does indeed define an affine connection
compatible with g .
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Affine connections can be defined locally on curves, and need not
be defined on the entirety of M. A smooth curve γ in M is called a
geodesic with respect to ∇ if:

∇γ̇ γ̇ = 0 (4)

This makes sense for Riemannian, semi-Riemannian, or generalized
metrics, meaning there is always a way to define geodesics.
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What differs is the use of geodesics to define a distance function (a
regular metric-space metric) on M induced by g . For Riemannian
metrics g one may define:

d(p, q) =

 inf
γ:p→q

∫
γ

√
gγ(t)(

˙γ(t), ˙γ(t))dt p connected to q

1 else

(5)
Positive-definiteness shows that this is well-defined, and with a bit
of work one can show this transforms (M, d) into a metric space.
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It is not so easy to extend this idea to semi-Riemannian manifolds,
at least without modification. Take a Lorentz manifold, which is a
semi-Riemannian manifold with metric (N − 1, 0, 1). Given p ∈ M
there are points v ∈ TpM such that gp(v , v) = 0 but v 6= 0. The
set of all such points is called the light-cone of p since the set of
points satisfies the equation:

( N−2∑
n=0

dx2
n

)
− dt2 = 0 (6)

Solving for dt as a function of the other one-forms dxn gives the
equation of a cone. Abusing notation, it is the light-cone since we
have:

N−2∑
n=0

(dxn
dt

)2
= 1 (7)

That is, the velocity vector has norm 1 which in natural units
corresponds to the speed of light.
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The formula for distance between points does not work with a
Lorentzian metric. There are vectors v ∈ TpM with gp(v , v) < 0,
the so-called time-like vectors which represent movement at less
than the speed of light. The square root of gγ(t)(v̇(t), v̇(t)) is not
a real number so this formula does not make sense. Moreover,
when it does make sense it may not define a metric. Points that
differ by a light-like curve (a curve with gγ(t)(γ̇(t), γ̇(t)) = 0) will
have a distance between them of zero.
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Another celebrated theorem of Riemannian geometry does not hold
in semi-Riemannian geometry.

Theorem (Hopf-Rinow Theorem)

If (M, g) is a connected Riemannian manifold, then the following
are equivalent (d being the metric induced by g):

1. Closed bounded subsets of M are compact.

2. (M, d) is a complete metric space.

3. M is geodesically complete.

Geodesically complete means geodesics may flow for all time. This
theorem is false for (and not well-posed) for semi-Riemannian
manifolds. However, even if we omit the second statement,
conditions 1 and 3 are not equivalent in a semi-Riemannian
manifold.
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Let M = R2 \ {(0, 0)}. Define g on M as follows:

g = 2
dx dy

x2 + y2
(8)

The function λ : M → M defined by λ((x , y)) = (2x , 2y) is an
isometry. Let Γ be the subgroup of the isometry group of (M, g)
generated by λ. There is a properly discontinuous group action of
Γ on M and the space M/Γ is, topologically, the torus T2. In
particular, M/Γ is compact and hence any metric on M/Γ that
induces it’s topology must be bounded. The induced metric gives a
Lorentz surface, and this ordered pair (M/Γ, g̃) is called the
Clifton-Pohl torus.
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The Clifton-Pohl torus is not geodesically complete, even though it
is compact. The geodesic:

γ(t) =
( 1

1− t
, 0
)

(9)

in M induces a geodesic γ̃ in M/Γ, but this induced curve cannot
flow for time t ≥ 1.
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A theorem that surprised me goes as follows. First, a classic result
about Riemannian metrics.

Theorem
If M is a smooth manifold, then there is a Riemannian metric g on
M and (M, g) is a Riemannian manifold.

This fails for semi-Riemannian.

Theorem
There is no Lorentz metric (signature (1, 0, 1)) on S2.
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What’s truly surprising is that the existence of metrics of a given
signature is entirely related to the algebraic topology of the
underlying manifold.

A real smooth vector bundle over a smooth manifold M is an
ordered pair (E , π) where E is a smooth manifold and π : E → M
is a smooth surjection such that for all p ∈ M, π−1[{p}] has the
structure of a finite dimensional real vector space. Moreover, for all
p ∈ M there is an open subset U ⊆ M with p ∈ U such that
U × RN is diffeomorphic to π−1[U ]. This is an immediate
generalization of the tangent bundle of a smooth manifold.

For connected vector bundles, the dimension of the vector space of
the fiber of p is a constant for all p ∈ M. This is the rank of the
vector bundle.
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Theorem
A smooth manifold M has a metric with signature (p, 0, q) if and
only if there are smooth real vector bundles (E , πE ) and (F , πF ) of
ranks p and q, respectively, such that TM ' E ⊕ F .

For the case of Lorentzian manifolds, p = N − 1 and q = 1. That
is, we wish to write TM as the product of a rank N − 1 and a line
bundle.
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Theorem
A smooth manifold M has a Lorentz metric if and only if M is
non-compact, or M has Euler characteristic zero.

The torus has Euler characteristic zero, and we’ve already given a
Lorentz metric on it. There are others, such that the Lorentz
metric induced by the Minkowski metric on R2 by the group action
of Z2 of integer translations. The sphere has Euler characteristic 2
and is compact, so there is no Lorentz metric on it.
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