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The fundamental group is the group of equivalence classes of
curves up to homotopy with the operation of concatenation. That
is, given a topology space (X , τ) and a point x0 ∈ X , we define:

π̃1(X , x0) = { f ∈ C 0(S1,X ) | f ((1, 0)) = x0 } (1)

Here C 0(S1,X ) is the set of continuous functions from S1 to X .
We define the equivalence relation R on π̃1(X , x0) by f ' g if and
only if f is homotopic to g . The set π1(X , x0) is the set of
equivalence classes π̃1(X , x0)/R. The group operation is that of
concatenating curves, it is often denoted ∗.
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The higher order homotopy groups πn(X , x0) are obtained by
considering mappings of Sn into X . The group operation is
obtained more easily if we think of Sn as the quotient space
[0, 1]n/∂[0, 1]n. The group operation is obtained by concatenation
along the last coordinate of [0, 1]n.

For a path connected space (X , τ), for any two points x0, x1 ∈ X ,
the homotopy groups πn(X , x0) and πn(X , x1) are isomorphic.
Because of this, when considering spheres, we just write πn(Sm)
and omit the base point.
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Computing the fundamental group of the circle is a well-known
problem that takes up part of an algebraic topology course. The
universal cover of S1 is the real line, and the group of deck
transformations of this covering are integer shifts of the real line,
x 7→ x + n for some n ∈ Z. The fundamental group is isomorphic
to the group of deck transformations, showing that π1(S1) ' Z.
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For higher order homotopy groups, the nth homotopy group of a
path connected, locally path-connected, semi-locally simply path
connected topological space (X , τ) is isomorphic to the nth

homotopy group of the universal cover of (X , τ). Any continuous
function f : Sn → X lifts to a continuous function f̃ : Sn → X̃ ,
where (X̃ , τ̃) is the universal cover of (X , τ), since Sn is simply
connected for n > 1. Any homotopy applied to f̃ may be projected
down to a homotopy on f . Since the universal cover of S1 is R,
which is contractible, πn(S1) is trivial for all n > 1.
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We so far have πn(S1) for all n ≥ 1. Let us now compute πn(Sm)
for all n < m. Any continuous function f : Sn → Sm, with n < m,
is homotopic to a continuous function f̃ : Sn → Sm that is not
surjective. Sm minus a point is homeomorphic to Rm by the
stereographic projection about the deleted point. Since Rm is
contractible, this induces a homotopy between f̃ and a constant
mapping, which shows f is homotopic to a point. Hence, πn(Sm) is
trivial for n < m.
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Next on the list is πn(Sn). We have computed the case when
n = 1. Given a path connected space (X , τ) there is a
homomorphism h : πn(X )→ Hn(X ) called the Hurewicz
homomorphism. The Hurewicz theorem says the following:

Theorem
If (X , τ) is a path connected topological space, and if
hn : πn(X )→ Hn(X ) is the Hurewicz homomorphism, then if
n = 1, h induces an isomorphism between H1(X ) and the
Abelianization of π1(X ), and if n > 1 and πm(X ) is trivial for all
m < n, then h is an isomorphism.

We have shown that Sn has trivial m homotopy groups for m < n
meaning πn(Sn) is isomorphic to Hn(Sn), which is Z.

7 / 15



We now have πn(Sm) for n ≤ m. Homology can no longer assist us
since the homology groups of a manifold are zero beyond the
dimension of the manifold. If this were true of homotopy groups
we’d have a rather trivial problem at hand. To compute π3(S2)
we’ll need a few concepts.

A fiber bundle is an ordered quadruple (E ,B, p,F ) where
p : E → B is a continuous surjective function such that for all
x ∈ B the fiber p−1[{x}] is homeomorphic, with the subspace
topology, to F . Moreover, p satisfies the local trivialization
property that for all x ∈ B there is an open subset U ⊆ B with
b ∈ U such that π−1[U ] is homeomorphic to U × F .
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A Fibration is a generalization of a fiber bundle, it is an ordered
triple (E ,B, p) such that for any space X and any homotopy
H : X × [0, 1]→ B and for any continuous function f̃0 lifting H0,
there is a homotopy H̃ : X × [0, 1]→ E that lifts H. That is,
p ◦ H̃ = H. If E is path connected, the fibers of any two points of
B are homotopy equivalent. This homotopy equivalence class is
usually referred to as the fiber F . Fiber bundles (E ,B, p,F ) are
hence a special case of fibrations where the fibers of all points of B
are not just homotopy equivalent, but are homeomorphic.
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There is a long exact sequence of homotopy groups of a fibration.
For simplicity, let us think of fiber bundles (E ,B, p,F ) rather than
the more abstract fibrations. So the fibers of B are all
homeomorphic, rather than just homotopy equivalent. There are
homomorphisms:

· · · → πN+1(F )→ πN+1(E )→ πN+1(B)→ πN(F )→ · · · (2)

that make this a long exact sequence. We can compute π3(S2)
using this sequence and the Hopf Fibration.

10 / 15



We may identify S3 with the unit quaternions, p ∈ H with
||p|| = 1. We can then define the following continuous function
f : H→ R3:

f
(
(a, b, c , d)

)
=

(
2(ac + bd), 2(bc − ad), a2 + b2 − c2 − d2

)
(3)

where (a, b, c, d) = p ∈ H. If ||p|| = 1, then ||f (p)|| = 1 showing
that this is also a map from S3 to S2. With a bit of work one can
see that the fiber of every point in S2 is a circle, showing that this
is a fiber bundle (S3, S2, f , S1).
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The long exact homotopy sequence then yields:

π3(S1)→ π3(S3)→ π3(S2)→ π2(S1) (4)

But we know π3(S1) = 0 and π2(S1) = 0 meaning π3(S3) is
isomorphic to π3(S2). Since we’ve computed π3(S3) using the
Hurewicz theorem, we have π3(S2) ' Z.
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Equations can be boring and I’d like to visually describe S3 being
foliated by circles. To do this we attempt to foliate R3 with circles
first. We start with the unit circle in the xy plane. Next we place a
torus of inner radius ε around this circle. Instead of thinking of it
as a torus, we think of it as the union of planar circles each of
which making the same very small angle with the xy plane. Next
we consider a larger torus around our S1 in the xy plane, again
thinking of it as the union of planar circles, but now making a
larger angle with the xy plane. We continue doing this, growing
the torii, thinking of it as circles making larger angles with the xy
plane.

We nearly foliate all of R3 with circles until we reach the point
where the angle between the circles and the xy plane is π

2 . In this
instance the circles are really the z axis, and they all lie on top of
each other. We then realize that S3 is R3 with a point at infinity
and the z axis is really a circle containing the point at infinity.
This foliates the entirety of S3 with circles.
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The following is courtesy of Niles Johnson’s Sage code, released
under the GNU General Public License, version 2.

Figure: Visualization of the Hopf Fibration 14 / 15



The Freudenthal suspension theorem tells us the diagonals of the
homotopy groups of spheres eventually stabilize.

Theorem
If (X , τ) is a path connected topological space with πk(X ) trivial
for all k ≤ n for some n ∈ N, the πn(X ) is isomorphic to
πn+1(ΣX ), where Σ is the suspension of X .

The suspension of Sn is Sn+1 giving us the following corollary:

Theorem
πn+k(Sn) is isomorphic to πn+k+1(Sn+1) for all n > k + 1.

Below these diagonals is all zero, as we’ve seen, but above these
diagonals is almost random. The computations involve spectral
sequences. One result of note is that πn(Sm) is always finite except
for the diagonals and super diagonals described by the previous
theorem.
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