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Many of the notions of curvature require only a semi-Riemannian
metric and a choice of affine connection.

It is almost universal amongst physicists and mathematicians to
work with the unique Levi-Civita connection that a given
semi-Riemannian metric induces.

We’ll discuss several types of curvatures, and their uses in
describing the Einstein field equations.

2 / 16



In physics it is common to work in a coordinate chart (U , ϕ) and
express all physical quantities in terms of this chart. The
semi-Riemannian metric g becomes a matrix gµν with entries
gµν = g(∂ϕµ, ∂ϕν), which is called the metric tensor in general
relativity. Other tensors and tensor fields will be described similarly.
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The first tensor to describe is the stress-energy tensor Tµν . It is
the gravitational analogue of the stress tensor from Newtonian
mechanics and describes the density and flux of energy in the
manifold (M, g), which is always chosen to be Lorentzian.

The Einstein field equations relate the stress-energy tensor and the
metric tensor to Ricci curvature and scalar curvature.

4 / 16



The Ricci curvature is described in terms of the Riemann curvature
tensor field (It’s a tensor field, not a tensor). Given the affine
connection ∇ on the semi-Riemannian manifold, the Riemann
curvature tensor field is defined in one of two equivalent ways. It is
a function R : X(M)3 → X(M)

R(X ,Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X ,Y ]Z (1)

Where [X ,Y ] is the Lie bracket. We can also write this as:

R(X ,Y ) = [∇X ,∇Y ]−∇[X ,Y ] (2)

again using the Lie bracket. With this we see that the Riemann
curvature tensor field measures the failure of the second derivative
to commute.
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If ∇ is a Levi-Civita connection (torsion free and compatible with
the metric), then there are several identities the Riemann curvature
tensor field enjoys. These identities can be combined with the
Einstein field equations to prove the local conservation of energy
and momentum, classical laws of Newtonian mechanics which still
hold in general relativity.

I R is trilinear over C∞(M,R).

I The Bianchi identity holds:

R(X ,Y )Z + R(Y ,Z )X + R(Z ,X )Y = 0 (3)

The Bianchi identity cyclicly permutes the vector fields. It is the
Bianchi identity that helps one prove conservation of momentum
and energy.
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The quadruple product relates the Riemann curvature tensor field
to the semi-Riemannian metric. It is defined as:

(X ,Y ,Z ,T ) = g
(
R(X ,Y )Z ,T

)
(4)

There are several identities for this operation, which are again
useful for the proof of various theorems in the framework of
general relativity.

(X ,Y ,Z ,T ) = −(Y ,X ,Z ,T ) (5)

(X ,Y ,Z ,T ) = −(X ,Y ,T ,Z ) (6)

(X ,Y ,Z ,T ) = (Z ,T ,X ,Y ) (7)

Lastly, an analogue of the Bianchi identity:

(X ,Y ,Z ,T ) + (Y ,Z ,X ,T ) + (Z ,X ,Y ,T ) = 0 (8)
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These identities combine to give the following theorem.

Theorem
If (U , ϕ) is a chart in a spacetime (M, g), if ∇ is the unique
Levi-Civita connection on M, and if T is the stress-energy tensor,
then:

N−1∑
n=0

∇∂ϕnTn,m = 0 (9)

This is the analogue of the conservation of momentum and energy
laws that occur in Newtonian mechanics. The proof is about a
page and simply uses the identities of the Riemannian curvature
tensor field, the quadruple product, and the Einstein field
equations which will be stated soon.
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The Einstein field equations relate the stress-energy tensor to the
Ricci and scalar curvatures. The Ricci curvature is defined in terms
of the Riemann curvature tensor field. There are two ways of doing
this.

In the Riemann setting (g is positive-definite), fix p ∈ M and
x = zn ∈ TpM to be unit length. Since TpM is an n dimensional
real inner product space, we may extend zn via the Gram-Schmidt
procedure to an orthonormal basis. Label these other elements
z1, . . . , zn−1. The Ricci curvature about p is defined as:

Ricp(x) =
1

n − 1

n∑
k=1

gp
(
R(x , zk)x , zk

)
(10)

It is a theorem that this result is independent of the choice of basis.
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In the semi-Riemannian setting TpM is not an inner product space
since g can, in general, fail to be positive definite. Such is the case
in spacetimes with signature (+,+,+,−). Fix two vector fields Y
and Z . Given a vector field X , the mapping X 7→ R(X ,Y )Z is
linear at each tangent space. Because of this one may define the
trace of this mapping. This is the Ricci curvature tensor.

Ricp(Y ,Z ) = tr
(
Xp 7→ Rp(Xp,Yp)Zp

)
(11)

In local coordinates (U , ϕ) it can be given by a matrix Rµν .
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The Ricci curvature can be completely described by the sectional
curvature, which is one of the older notions of curvature dating
back to a time when differential geometry dealt solely with regular
surfaces and curves. The sectional curvature of a 2-dimensional
subspace δ of the tangent space TpM is given by:

Kδ =
(v ,w , v ,w)

A(v ,w)
=

gp
(
R(v ,w)v ,w

)√
||v ||2 ||w ||2 − gp(v ,w)2

(12)

where v and w are two tangent vectors that span δ, and A(v ,w) is
the area of the parallelogram with sides v and w . Kδ is
independent of choice of basis since a change of basis can be made
by a combination of moves (x , y) 7→ (y , x), (x , y) 7→ (λx , y),
λ 6= 0, and (x , y) 7→ (x + λy , y). These operations are reflection,
scaling, and shearing, respectively. All of these are invariant under
formula above showing Kδ is independent of basis.
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For constant curvature manifolds the Ricci curvature is given by a
simple formula:

Rµν = (n − 1)Kgµν (13)

where K is the constant curvature of the manifold. It is probably
not the case that the spacetime we live in is constant curvature.
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The scalar curvature is defined directly by the Ricci curvature.
Given the Riemannian definition, Ricp(x), given a basis
{z1, . . . , zn} of TpM, the scalar curvature is defined by:

K (p) =
1

n

n∑
k=1

Ricp(zk) (14)

It is independent of choice of basis. With respect to the second
definition, we can define:

K (p) = tr(Rµν) (15)
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The Einstein tensor is defined in terms of the Ricci and scalar
tensors. We have:

Gµν = Rµν −
1

2
Kgµν (16)

Where Rµν is the Ricci tensor, K is the scalar curvature, and gµν is
the metric tensor. The Einstein field equations are:

Gµν + Λgµν = κTµν (17)

Where Tµν is the stress-energy tensor. Λ is the cosmological
constant, and κ is the Einstein gravitational constant.
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In practice, one measures the stress-energy tensor and the Einstein
tensor and wishes to solve for the metric in the Einstein field
equation. A common simplification is to suppose the spacetime
you are working in is a vacuum containing no mass-energy. The
Einstein field equations simplify to:

Gµν + Λgµν = 0 (18)

Expanding the Einstein tensor in terms of the Ricci and scalar
curvature, we get:

Rµν −
1

2
Kgµν + Λgµν = 0 (19)
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This is a purely geometrical problem. Depending on the value of Λ
there are several known spacetimes with metrics that satisfy the
Einstein field equations.

I Minkowski spacetime M3,1

I Milne spacetime

I Schwarzschild vacuum spacetime

I Kerr vacuum

The value of Λ was originally thought to be zero, and Einstein
retracted it from the equation. In the late 1990’s it was discovered
the inflation of the universe is accelerating, indicating the constant
may be positive. One possible value involves the Hubble constant,
given by:

Λ = 1.1056× 10−52m−2 (20)

16 / 16


