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Many of the notions of curvature require only a semi-Riemannian
metric and a choice of affine connection.

It is almost universal amongst physicists and mathematicians to
work with the unique Levi-Civita connection that a given
semi-Riemannian metric induces.

We’ll discuss several types of curvatures, and their uses in
describing the Einstein field equations.
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Preliminaries

A manifold is a topological space (M, τ) that is:

I Hausdorff

I Second Countable

I Locally Euclidean

Some authors replace second countability with a plethora of other
not-necessarily-equivalent notions. Paracompactness is a common
one, others like the notion of σ-compactness. If the space is
required to be connected, all of these ideas are the same1

Most authors omit the topology τ altogether.

1I believe there are 50+ alternatives to second countability one can use if
the space is connected, but I’ve forgotten the reference. So don’t quote me.
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Preliminaries

A chart in a manifold (M, τ) is an ordered pair (U , ϕ) where
U ∈ τ is an open subset and ϕ : U → Rn is a continuous injective
open mapping for some n ∈ N. The dimension of the chart is this
value n.

Theorem (Brauer’s Invariance of Domain)

If f : Rn → Rn is a continuous injective mapping, and if U ⊆ Rn is
open, then f [U ] is open.

This would make f a continuous injective open mapping, meaning
it is a homeomorphism onto the image. This has two corollaries.

Theorem
Rn is homeomorphic to Rm if and only if n = m.
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Preliminaries

Theorem
If (M, τ) is locally Euclidean, if x ∈ M, and if (U , ϕ) and (V, ψ)
are charts in M with x ∈ U and x ∈ V, then the charts have the
same dimension.

The proof is performed by examining the map ϕ ◦ ψ−1 and noting
it induces a homeomorphism from an open subset of Rn to an
open subset of Rm, meaning n = m.

This says that dimension is locally constant. If the manifold is
connected, dimension is a constant. The only way to have a
manifold with a 1 dimensional component and a 2 dimension
component is via disjoint unions, like the disjoint union of a line
and a sphere.
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Preliminaries

Examining this composition map allows us to define
differentiability. With very few exceptions (topological vector
spaces where the Fréchet derivative is definable) functions between
topological spaces have no notion of differentiability. Manifolds
have the ability to define such things.

Given two charts (U , ϕ) and (V, ψ) where U ∩ V 6= ∅, the function
ϕ ◦ ψ−1 is a continuous function from an open subset of Rn to
another open subset of Rn. It is then perfectly valid to ask if this
function has partial derivatives, or second partial derivatives, and
so on. One can even ask if the function is smooth, having all
partial derivatives of all orders.

If ϕ ◦ ψ−1 and ψ ◦ ϕ−1 are smooth, we say the charts (U , ϕ) and
(V, ψ) are smoothly compatible. We’ll say this is vauously true if
U ∩ V = ∅.
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Preliminaries

An atlas on a manifold (M, τ) is a collection of charts (Uα, ϕα)
such that

⋃
α Uα = M.

A smooth atlas is an atlas where all charts are smoothly
compatible. A maximal smooth atlas is a smooth atlas with,
intuitively, as many smoothly compatible charts possible. A smooth
manifold is a topological manifold with a maximal smooth atlas.

Given two smooth manifolds M and N, a smooth function is a
function F : M → N such that for every x ∈ M there is a chart
(U , ϕ) in M and a chart (V, ψ) in N such that x ∈ U , F [U ] ⊆ V,
and the function ψ ◦ F ◦ ϕ−1 is smooth.
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Preliminaries

A side-note, the F [U ] ⊆ V criterion is important. Without it the
function F : R→ R defined by

F (x) =

{
0 x ≤ 0

1 x > 0
(1)

would be considered smooth, but it’s not even continuous!

A diffeomorphism is a function F : M → N that is bijective,
smooth, and such that F−1 is smooth. For dimensions 0, 1, 2, and
3, every topological manifold has a maximal smooth atlas that is
unique up to diffeomorphism. Things get weird in dimension 4 and
higher where it is possible for the same manifold to have different
smooth structures and for some manifolds to have zero smooth
structures. Some compact manifolds need not be smoothable.
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Preliminaries

Smooth manifolds have a notion of tangent spaces. Given a
smooth manifold M and a point x ∈ M the tangent space at x is
denoted TxM. This can be described via derivations, which are
functions D : C∞(M, R)→ R, that take in smooth functions and
output real numbers, such that:

D(af + bg) = aD(f ) + bD(g) (2)

D(fg) = f (x)D(g) + D(f )g(x) (3)

That is, D is linear and Liebnizean. If M is an n dimensional
manifold, the set of all derivations at x ∈ M forms an n
dimensional real vector space.
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Preliminaries

If (U , ϕ) is a chart containing x ∈ M then the partial derivative
operators ∂ϕk , k = 0, . . . , n − 1, form a basis for TxM:

∂ϕk(f ) =
∂

∂xk

(
f ◦ ϕ−1

)
(4)

Note, since f ∈ C∞(M, R), it is smooth, and f ◦ ϕ−1 is a smooth
function from an open subset of Rn to R so it is valid to take the
partial derivative in the kth component.
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The tangent bundle of a manifold is formed by taking all TxM for
each x ∈ M and gluing them together in a natural way. For M = R
the tangent bundle is R2, and for M = S1 the tangent bundle is
S1 × R. These are called trivial tangent bundles. Most tangent
bundles are not of the form Rn ×M, the easiest example is S2.

The tangent bundle is denoted TM and is a smooth manifold of
dimension 2n. A vector field on a manifold is a smooth function
V : M → TM such that for all x ∈ M the element V (x) is of the
form V (x) = (x , v). That is, V assigns to every element x ∈ M a
tangent vector v ∈ TxM that starts at the point x . The image
V (x) is often denoted Vx .
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Preliminaries

A Riemannian metric is a function g that assigns to every x ∈ M a
function gx : TxM × TxM → R that mimics the dot product in
Euclidean space. That is, for all v0, v1,w ∈ TxM and a0, a1 ∈ R
we have:

gx(a0v0 + a1v1, w) = a0gx(v0, w) + a1gx(v1, w) (5)

gx(w , a0v0 + a1v1) = a0gx(w , v0) + a1gx(w , v1) (6)

gx(v0, v1) = gx(v1, v0) (7)

gx(w , w) > 0 w 6= 0 (8)

The first two say gx is bilinear, the third equation makes gx
symmetric, and the last condition is called positive-definiteness.
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Preliminaries

The algebraist can summarize this by stating that gx is a
symmetric positive-definite bilinear form. But if you’re like me and
forget these words half the time, then remember the Euclidean dot
product.2

The metric g should also be smooth. That is, for all x ∈ X and for
every smooth vector field V , W on M the function f : M → R
defined by f (x) = gx(Vx , Wx) should be smooth.

2That’s how I made the previous slide.
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Preliminaries

Riemannian metrics give us a means of smoothly measuring angles
between tangent vectors on a manifold at a given tangent space.
Namely, one can define, for two tangent vectors v ,w ∈ TxM, the
function:

∠(v , w) = cos−1
( gx(v , w)

gx(v , v) gx(w , w)

)
(9)
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Preliminaries

Pseudo-Riemannian metrics are formed by replacing the
positive-definite requirement with non-degeneracy. That is, for all
non-zero tangent vectors v ∈ TxM, there is a tangent vector
w ∈ TxM such that gx(v , w) 6= 0. Positive-definiteness implies
non-degenerate, given v 6= 0 simply choose w = v .
Pseudo-Riemannian metrics are thus a generalization of
Riemannian metrics.
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Preliminaries

Tangent vectors are derivations on C∞(M, R). Cotangent vectors
are functions that take in tangent vectors and return real numbers
in a linear way. Much like tangent vectors can be represented
explicitly with charts, so can cotangent vectors. Given (U , ϕ) we
can define:

dϕk(∂ϕ`) =

{
0 k 6= `

1 k = `
(10)
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Preliminaries

Theorem (Sylvester’s Law of Inertia)

If M is a smooth manifold of dimension N, if g is a
pseudo-Riemannian metric on M, and if x ∈ M, then there is a
chart (U , ϕ) and a fixed integer 0 ≤ n < N such that for all
v ,w ∈ TxM we have:

gx(v , v) =
n−1∑
k=0

dϕk(v)2 −
N−1∑
k=n

dϕk(v)2 (11)

The signature of the metric g is the tuple (1, . . . , 1, −1, . . . , −1)
where there are n positives and N − n negatives.3

3Why is it called Sylvester’s Law of Inertia? Excellent question.
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Preliminaries

Pseudo-Riemannian metrics allow one to define affine connections,
which are tools for transporting tangent vectors around a manifold
in a parallel fashion, and defining things like curvature. Let X(M)
denote the set of all smooth vector fields on M. An affine
connections is a function ∇ : X(M)×X(M)→ X(M) such that for
all X ,Y ,Z ∈ X(M), a, b ∈ R, and f , g ∈ C∞(M, R) we have:

∇aX+bY Z = a∇XZ + b∇Y Z (12)

∇Z (aX + bY ) = a∇ZX + b∇ZY (13)

∇fXY = f∇XY (14)

∇X (fY ) = DXY + f∇XY (15)

where DX f is the directional derivative of f in the direction of X .
This is an attempt to axiomatize the contravariant derivative that
occurs in multi-variable analysis.
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Preliminaries

The general affine connection is rarely discussed in mathematics
and physics. Two more desirable properties are usually added,
torsion-free and compatibility. Torsion is defined in terms of the
Lie bracket. Given two vector fields X ,Y ∈ X(M) the Lie bracket
is another vector field [X , Y ] defined by:

[X , Y ] = XY − YX (16)

The composition XY need not be a vector field because of second
order terms that make it not linear, but −YX always kills those
factors. Hence [X , Y ] is a vector field.
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Preliminaries

A torsion free connection is a connection ∇ such that for all
X , Y ∈ X(M) we have:

∇XY −∇Y X − [X , Y ] = 0 (17)
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Preliminaries

Compatibility with the metric is defined in terms of parallel
translation. Say you have a tangent vector v at a point x ∈ M and
you want to move it along a curve γ : [0, 1]→ M, γ(0) = x , in a
manner that is parallel. This equates to solving for a vector field X
using differential equations in coordinates, and you seek the
solution to:

∇γ′(t)X = 0 (18)

Xγ(0) = v (19)
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Preliminaries

An affine connection that is compatible with g is one such that
parallel transport is an isometry. That is, if v ,w ∈ TxM, if
γ : [0, 1]→ M is a smooth curve, and if v ′,w ′ are the results of
parallel transport of v and w , respectively, for 1 second, then:

gγ(0)(v , w) = gγ(1)(v ′, w ′) (20)

A Levi-Civita connection is an affine connection that is torsion free
and compatible with the metric.
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Preliminaries

Theorem (Fundamental Theorem of Semi-Riemannian
Geometry)

If M is a smooth manifold, and if g is a pseudo-Riemannian metric
on M, then there is a unique Levi-Civita connection ∇ on M.

Lastly, a Lorentzian metric is a pseudo-Riemannian metric on M
with signature (N − 1, 1), or (+1, . . . , +1, −1). The negative
dimension is taken to be time. The Lorentzian norm (it’s not a
true norm) is given by:

|| · ||2 =
N−2∑
k=0

dx2
k − dt2 (21)

And that’s it, no more preliminary stuff. On to physics!
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General Relativity and Curvature

In physics it is common to work in a coordinate chart (U , ϕ) and
express all physical quantities in terms of this chart. The
semi-Riemannian metric g becomes a matrix gµν with entries
gµν = g(∂ϕµ, ∂ϕν), which is called the metric tensor in general
relativity. Other tensors and tensor fields will be described similarly.
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General Relativity and Curvature

The first tensor to describe is the stress-energy tensor Tµν . It is
the gravitational analogue of the stress tensor from Newtonian
mechanics and describes the density and flux of energy in the
manifold (M, g), which is always chosen to be Lorentzian.

The Einstein field equations relate the stress-energy tensor and the
metric tensor to Ricci curvature and scalar curvature.
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General Relativity and Curvature

The Ricci curvature is described in terms of the Riemann curvature
tensor field (It’s a tensor field, not a tensor). Given the affine
connection ∇ on the semi-Riemannian manifold, the Riemann
curvature tensor field is defined in one of two equivalent ways. It is
a function R : X(M)3 → X(M)

R(X ,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X ,Y ]Z (22)

Where [X ,Y ] is the Lie bracket. We can also write this as:

R(X ,Y ) = [∇X ,∇Y ]−∇[X ,Y ] (23)

again using the Lie bracket. With this we see that the Riemann
curvature tensor field measures the failure of the second derivative
to commute.
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General Relativity and Curvature

If ∇ is a Levi-Civita connection (torsion free and compatible with
the metric), then there are several identities the Riemann curvature
tensor field enjoys. These identities can be combined with the
Einstein field equations to prove the local conservation of energy
and momentum, classical laws of Newtonian mechanics which still
hold in general relativity.

I R is trilinear over C∞(M,R).

I the Bianchi identity holds:

R(X ,Y )Z + R(Y ,Z )X + R(Z ,X )Y = 0 (24)

The Bianchi identity cyclicly permutes the vector fields. It is the
Bianchi identity that helps one prove conservation of momentum
and energy.

27 / 37



General Relativity and Curvature

The quadruple product relates the Riemann curvature tensor field
to the semi-Riemannian metric. It is defined as:

(X ,Y ,Z ,T ) = g
(
R(X ,Y )Z ,T

)
(25)

There are several identities for this operation, which are again
useful for the proof of various theorems in the framework of
general relativity.

(X ,Y ,Z ,T ) = −(Y ,X ,Z ,T ) (26)

(X ,Y ,Z ,T ) = −(X ,Y ,T ,Z ) (27)

(X ,Y ,Z ,T ) = (Z ,T ,X ,Y ) (28)

Lastly, an analogue of the Bianchi identity:

(X ,Y ,Z ,T ) + (Y ,Z ,X ,T ) + (Z ,X ,Y ,T ) = 0 (29)
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General Relativity and Curvature

These identities combine to give the following theorem.

Theorem
If (U , ϕ) is a chart in a spacetime (M, g), if ∇ is the unique
Levi-Civita connection on M, and if T is the stress-energy tensor,
then:

N−1∑
n=0

∇∂ϕnTn,m = 0 (30)

This is the analogue of the conservation of momentum and energy
laws that occur in Newtonian mechanics. The proof is about a
page and simply uses the identities of the Riemannian curvature
tensor field, the quadruple product, and the Einstein field
equations which will be stated soon.
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General Relativity and Curvature

The Einstein field equations relate the stress-energy tensor to the
Ricci and scalar curvatures. The Ricci curvature is defined in terms
of the Riemann curvature tensor field. There are two ways of doing
this.

In the Riemann setting (g is positive-definite), fix p ∈ M and
x = zn ∈ TpM to be unit length. Since TpM is an n dimensional
real inner product space, we may extend zn via the Gram-Schmidt
procedure to an orthonormal basis. Label these other elements
z1, . . . , zn−1. The Ricci curvature about p is defined as:

Ricp(x) =
1

n − 1

n∑
k=1

gp
(

R(x , zk)x , zk

)
(31)

It is a theorem that this result is independent of the choice of basis.
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General Relativity and Curvature

In the semi-Riemannian setting TpM is not an inner product space
since g can, in general, fail to be positive definite. Such is the case
in spacetimes with signature (+,+,+,−). Fix two vector fields Y
and Z . Given a vector field X , the mapping X 7→ R(X ,Y )Z is
linear at each tangent space. Because of this one may define the
trace of this mapping. This is the Ricci curvature tensor.

Ricp(Y ,Z ) = tr
(
Xp 7→ Rp(Xp,Yp)Zp

)
(32)

In local coordinates (U , ϕ) it can be given by a matrix Rµν .
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General Relativity and Curvature

The Ricci curvature can be completely described by the sectional
curvature, which is one of the older notions of curvature dating
back to a time when differential geometry dealt solely with regular
surfaces and curves. The sectional curvature of a 2-dimensional
subspace δ of the tangent space TpM is given by:

Kδ =
(v ,w , v ,w)

A(v ,w)
=

gp
(
R(v ,w)v ,w

)√
||v ||2 ||w ||2 − gp(v ,w)2

(33)

where v and w are two tangent vectors that span δ, and A(v ,w) is
the area of the parallelogram with sides v and w . Kδ is
independent of choice of basis since a change of basis can be made
by a combination of moves (x , y) 7→ (y , x), (x , y) 7→ (λx , y),
λ 6= 0, and (x , y) 7→ (x + λy , y). These operations are reflection,
scaling, and shearing, respectively. All of these are invariant under
formula above showing Kδ is independent of basis.
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General Relativity and Curvature

For constant curvature manifolds the Ricci curvature is given by a
simple formula:

Rµν = (n − 1)Kgµν (34)

where K is the constant curvature of the manifold. It is probably
not the case that the spacetime we live in is constant curvature.
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General Relativity and Curvature

The scalar curvature is defined directly by the Ricci curvature.
Given the Riemannian definition, Ricp(x), given a basis
{z1, . . . , zn} of TpM, the scalar curvature is defined by:

K (p) =
1

n

n∑
k=1

Ricp(zk) (35)

It is independent of choice of basis. With respect to the second
definition, we can define:

K (p) = tr(Rµν) (36)
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General Relativity and Curvature

The Einstein tensor is defined in terms of the Ricci and scalar
tensors. We have:

Gµν = Rµν −
1

2
Kgµν (37)

Where Rµν is the Ricci tensor, K is the scalar curvature, and gµν is
the metric tensor. The Einstein field equations are:

Gµν + Λgµν = κTµν (38)

Where Tµν is the stress-energy tensor. Λ is the cosmological
constant, and κ is the Einstein gravitational constant.
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General Relativity and Curvature

In practice, one measures the stress-energy tensor and the Einstein
tensor and wishes to solve for the metric in the Einstein field
equation. A common simplification is to suppose the spacetime
you are working in is a vacuum containing no mass-energy. The
Einstein field equations simplify to:

Gµν + Λgµν = 0 (39)

Expanding the Einstein tensor in terms of the Ricci and scalar
curvature, we get:

Rµν −
1

2
Kgµν + Λgµν = 0 (40)
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General Relativity and Curvature

This is a purely geometrical problem. Depending on the value of Λ
there are several known spacetimes with metrics that satisfy the
Einstein field equations.

I Minkowski spacetime M3,1

I Milne spacetime

I Schwarzschild vacuum spacetime

I Kerr vacuum

The value of Λ was originally thought to be zero, and Einstein
retracted it from the equation. In the late 1990’s it was discovered
the inflation of the universe is accelerating, indicating the constant
may be positive. One possible value involves the Hubble constant,
given by:

Λ = 1.1056× 10−52m−2 (41)
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