
Pade Approximants and the Remez Exchange
Algorithm

Ryan Maguire

January 24, 2023

1 / 16

Outline

I Taylor / Maclaurin Series

I Chebyshev Polynomials

I The Remez Exchange Algorithm

I Pade Approximants

2 / 16

Polynomial Approximations

If you have an analytic real-valued function you could, in principle,
compute the function to arbitrary precision using the Taylor series.

f (x) =
∞∑
n=0

f (n)(x0)

n!
(x − x0)n (1)

where f (n) denotes the nth derivative of f , and f (0)(x0) is simply
f (x0). This is likely familiar to any student of Calculus.

3 / 16

Polynomial Approximations

Given a fixed N ∈ N one might ask what is the best polynomial
approximation of degree N of a function f on some interval [a, b]?
There are a few ways to phrase what best should mean.

I Is easy to understand and implement.

I Minimizes the root-mean-square error.

I Minimizes the sup norm of f on [a, b].

4 / 16

Polynomial Approximations

The anwer to 1.) is probably the Taylor / Maclaurin series. It is
rather easy to understand and implement, and does a good job
approximating a function near the point x0. There are several
theorems, like the alternating series test, that also give bounds on
the error.

Least-squares methods give the answer to 2.), and statisticians,
applied mathematicians, and physics make frequent use of this.

We want to deal with the third problem. The issue with only caring
about the RMS error is that there may be parts of [a, b] where the
approximation is horrible. Minimizing the sup norm means your
approximation is good for all numbers under consideration.

5 / 16

Chebyshev Polynomials

To solve this we use the Remez exchange algorithm. This involves
Chebyshev polynomials, so it’d be useful to discuss these briefly.
The defining characteristic is:

Tn

(
cos(θ)

)
= cos(nθ) (2)

but it is easier to work with their recurrence relation:

Tn+2(x) = 2xTn+1(x)− Tn(x) (3)

where T0(x) = 1 and T1(x) = x .

6 / 16

Chebyshev Polynomials

These polynomials come from a Sturm-Liouville system:

(1− x2)ÿ − xẏ + n2y = 0 (4)

On the interval [−1, 1] the weight is w(x) = (1− x2)−
1
2 meaning

we can approximate smooth functions on [−1, 1] via:

f (x) =
∞∑
n=0

anTn(x) =
∞∑
n=0

Tn(x)

∫ 1

−1

f (x)Tn(x)√
1− x2

dx (5)

and stopping this sum at some appropriate integer N ∈ N.

7 / 16

Chebyshev Polynomials

Chebyshev polynomials have been well-studied and their use is
widespread. Evaluation of special functions, like Bessel functions
and Fresnel integrals, often involves Chebyshev expansions at some
point.

The Remez algorithm that we’ll be discussing uses the extrema of
these polynomials. From Tn(cos(θ)) = cos(nθ) we can see that the
|Tn(x)| attains it’s maximums at:

xk = cos
(kπ

n

)
(6)

for 0 ≤ k ≤ n.

8 / 16

The Remez Exchange Algorithm
Now we want to find the best polynomial approximation of a
smooth function f on some interval [a, b]. We can linearly
translate this back to [−1, 1], the domain of the Chebyshev
polynomials, and then translate back at the end, so for ease we
suppose a = −1 and b = 1. We start with N + 2 samples
x0, . . . , xN+1, where N is the desired degree of the polynomial.
These are taken to be the extrema of TN+1(x). We then set up
the following (N + 2)× (N + 2) system of linear equations:(N∑

n=0

bkxn
k

)
+ (−1)kε = f (xk) (7)

for each 0 ≤ k ≤ N + 1. The variable ε is the approximate
supremum error for the polynomial p(x) defined by:

p(x) =
N∑

k=0

bkxk (8)

9 / 16

The Remez Exchange Algorithm

Solving this system of equations gives us a guess p0(x) = p(x) to
the minimax polynomial, the polynomial which minimizes the sup
norm. We compute p1 as follows.

Compute |f (x)− p0(x)| and find approximations to the local
extrema. This is done by applying Newton’s method to the
samples xk . These new values are our new samples yk . We replace
the xk with these yk and repeat the process from the previous slide.

10 / 16

The Remez Exchange Algorithm

As we apply more iterations, the value ε starts to stabilize to some
constant. Once this happens we are done, and we have found the
minimax polynomial. The error in this approximation is given by ε.

To be precise, we are done when the local extrema of f (x)− pn(x)
are all of the same magnitude and oscillate. It is a well-known
theorem that the minimax polynomial of f on [a, b] of degree N is
the unique polynomial that achieves this property. This is the
equioscillation theorem.

11 / 16

The Remez Exchange Algorithm
As an example, the coefficients for arctan(x2) on a small interval.

1.000000000000000000000 (9)

0.333333333333329318027 (10)

−0.199999999998764832476 (11)

0.142857142725034663711 (12)

−0.111111104054623557880 (13)

0.090908871334365065619 (14)

−0.076918762050448299949 (15)

0.066610731373875312066 (16)

−0.058335701337905734864 (17)

0.049768779946159323601 (18)

−0.036531572744216915527 (19)

0.062858201153657823623 (20)

Note these approximate the Taylor coefficients very well.
12 / 16

Pade Approximants

Now, for some history. In the 7th century, Indian mathematician
Bhaskara I. writes:

I briefly state the rule (for finding the bhujaphala and
the kotiphala, etc.) without making use of the Rsine-
differences 225, etc. Subtract the degrees of a bhuja (or
koti) from the degrees of a half circle (that is, 180 de-
grees). Then multiply the remainder by the degrees of the
bhuja or koti and put down the result at two places. At
one place subtract the result from 40500. By one-fourth
of the remainder (thus obtained), divide the result at the
other place as multiplied by the ’anthyaphala (that is, the
epicyclic radius). Thus is obtained the entire bahuphala
(or, kotiphala) for the sun, moon or the star-planets. So
also are obtained the direct and inverse Rsines.

13 / 16

Pade Approximants

Let’s be thankful for modern notation, and write:

sin(x) ≈ 4x(180− x)

40500− x(180− x)
(21)

where x is in degrees. This approximation beats the Taylor
polynomial of similar degree by a good margin. Bhaskara did not
write where this formula came from, but it is possible to reverse
engineer it.

14 / 16

Pade Approximants

The Taylor polynomial of degree N can be described as the unique
polynomial p that satisfies:

dn

d xn
p(x0) =

dn

d xn
f (x0) (22)

for 0 ≤ n ≤ N. The (N,M) Pade approximant is computed via:

R(x) =

∑N
n=0 an(x − x0)n

1 +
∑M

m=1 bm(x − x0)m
(23)

and requiring that:

dn

d xn
R(x0) =

dn

d xn
f (x0) (24)

for 0 ≤ n ≤ N + M.

15 / 16

Pade Approximants

This requirement leads to an (N + M + 1)× (N + M + 1) system
of equations (with the N + 1 unknowns a0, . . . , aN and the M
unknowns b1, . . . , bM). Solving this gives us the coefficients of the
Pade approximant, which can be efficiently evaluated using
Horner’s method twice and one division.

The Pade approximant is often more accurate than the Taylor
polynomial of similar degree. The method is used frequent in
software libraries when quadruple precision (2−112 ≈ 10−34 relative
error) is required.

16 / 16

