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Classical Mechanics

It’s been known for some time that the speed of light is not
infinite. Newton observed that a finite light speed would explain
discrepancies in orbits of Jupiter’s moons with the classical theory
of gravity. This observation can accurately compute the speed of
light as well.
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Classical Mechanics

Nothing in classical mechanics says there is a universal speed limit,
and there is no indication that the speed of light itself must be
constant.

The original idea of aether tries to model light after sound, and
sound can have variable speed depending on the medium it is
travelling through. We’ll abuse this a lot to get a very rough
estimate of a black hole as far as Newtonian mechanics is
concerned. It is not a physically realistic assumption.
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Classical Mechanics

If you take a ball and throw it in the air, it comes back. If you had
an absolute cannon of an arm, perhaps you could throw the ball at
11,186 meters per second. It would certainly go a lot high, but
would it ever come back?
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Classical Mechanics

Let’s use the universal law of gravitation, which is a classical law
(no general relativity here), but is accurate in many scenarios. The
potential energy is given by an inverse law:

U = −GMm

r
(1)

Where G is the universal gravitational constant, M is the mass of
the earth, m is the mass of the ball, and r is the distance from the
ball to the center of the earth. Kinetic energy is given by:

K =
1

2
mv2 (2)

where v is the speed (norm of velocity) of the speed.
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Classical Mechanics

Let’s try to throw the ball at a speed such that the ball will slow
down to 0 m/s at infinity. The potential energy at infinity is zero,
since 1

r → 0 as r →∞. Invoking conservation of energy:

U0 + K0 = U∞ + K∞ (3)

U0 + K0 = 0 + 0 (4)

−GMm

R
+

1

2
mv2

0 = 0 (5)

v0 =

√
2GM

R
(6)

Where R is the radius of the Earth. This value v0 is escape
velocity, the speed at which is needed for an object to escape the
influence of a bodies gravitational pull.
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Black Holes

In the previous slides we were considering the Earth. The radius
was constant, as was the mass, and we solved for the escape
velocity. Instead, let’s suppose the mass M is fixed, and the escape
velocity v0 is constant as well. The variable to solve for is the
radius R.

R =
2GM

v2
0

(7)

What would happen if we chose v0 = c , the speed of light (ignore
the title of this current slide, please)?
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Black Holes

The result is a black hole. The gravitational pull is so strong that
even light can’t escape, so the result is blackness. The formula
obtained is the Schwarzschild radius:

R =
2GM

c2
(8)

Fun-fact, this is the same formula you get after doing all the
rigorous general relativity calculations (Assuming a few conditions,
such as the black hole is not rotating).

We’re going to try and draw a black hole using the world of
classical mechanics.
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Euler’s Method

Given a vector-valued ordinary differential equation:

dr(t)

dt
= f
(
r(t)
)

(9)

one of the simplest means of solving this numerically is Euler’s
method. Replacing the differentials with small displacements, we
get:

∆r(t)

∆t
≈ f
(
r(t)

)
(10)
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Euler’s Method

Given initial conditions r(t0) = r0 we can further expand this as
follows:

∆r(t) ≈ f
(
r(t)

)
∆t (11)

r(t0 + ∆t)− r(t0) ≈ f
(
r(t0)

)
∆t (12)

r(t1) ≈ r(t0) + f
(
r(t0)

)
∆t (13)

as ∆t gets smaller, the accuracy of the approximation improves.
We then obtain a sequence rn of approximate values of r(tn):

r(tn+1) ≈ r(tn) + f
(
r(tn)

)
∆t (14)
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Euler’s Method

The previous slide is great for first order differential equations, but
the equations of motions in classical mechanics deal with second
order vector-valued differential equations. This stems from
Newton’s second law:

F = ma = m
d2r(t)

dt2
(15)

where a(t) is the acceleration, and F is the force.
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Euler’s Method

Let’s extend Euler’s method to second order differential equations.

d2r(t)

dt2
= f
(
r(t)

)
(16)

with initial conditions r(t0) and ṙ(t0) known to us. We start by
defining the velocity:

v(t) =
dr(t)

dt
(17)

The differential equations can be approximated by:

∆v(t)

∆t
≈ f
(
r(t)

)
(18)

so long as the time step ∆t is small.
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Euler’s Method

We mimic the method from before and obtain:

v(t1) = v(t0) + f
(
r(t0)

)
∆t (19)

where v(t0) = ṙ(t0). We can now update the position vector:

r(t1) = r(t0) + v(t0)∆t (20)

And in general, we obtain two sequences:

v(tn+1) = v(tn) + f
(
r(tn)

)
∆t (21)

r(tn+1) = r(tn) + v(tn)∆t (22)

This idea immediately extends to higher order differential
equations. The local error in these methods is roughly proportional
to the square of the step size ∆t. The global error grows linearly.
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Runge-Kutta Method

The raytracing we’ll do for black holes uses Euler’s method with a
lot steps (hundreds of thousands) with a small ∆t. We would be
able to use a larger step size if the error bounds were proportional
to higher powers of ∆t, and this is where the Runge-Kutta method
comes in to play.

For the sake of time, I won’t give the derivation (which is much
longer than Euler’s method), but remark that the error is
proportional to ∆t4. The Runge-Kutta programs required far fewer
iterations, while achieving similar accuracy.
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Results
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The End

Thanks!
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