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Outline

I Spacetimes and causality.

I Cotangent bundles and spherical cotangent bundles.

I Causality in globally hyperbolic 2 + 1 dimensional spacetimes.
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Spacetimes and Causality

An n + 1 dimensional spacetime is a Lorentz manifold (M, g) (a
semi-Riemannian manifold with signature (n, 1), or (1, n) in some
physics communities) with a chosen time orientation. That is, at
each point a future direction is chosen and this choice is done
continuously.

A time-like curve is a differentiable curve γ such that
g
(
γ̇(t), γ̇(t)

)
< 0 for all t. A light-like curve is one such that

g
(
γ̇(t), γ̇(t)

)
= 0 for all t. Lastly, causal curve satisfy

g
(
γ̇(t), γ̇(t)

)
≤ 0.
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Spacetimes and Causality

Causal curves represent the transmittance of real data since we
may not exceed the speed of light. To see this, given a point
p ∈ M we may find a chart (U , ϕ) with p ∈ U such that:

g = −dt2 +
n∑

k=1

dx2
k (1)

where dxk = dϕk and dt = dϕn+1. If γ is causal, this says:

n∑
k=1

dx2
k (γ̇) ≤ dt2(γ̇) (2)

⇒
n∑

k=1

dx2
k

dt2
≤ 1 (3)
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Spacetimes and Causality

The sum of the squares of the components is the square of the
norm of the velocity vector, so the square of the speed.

In natural units one takes the speed of light to be c = 1, so this
final inequality states that the speed of the curve never exceeds
that of light.

Causally related points in a spacetime (M, g) are those that can
be connected by a causal curve.
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Spacetimes and Causality

There are lots of spacetimes one can ponder, most of which are
not physically relevant (but perhaps still fun to think about). Two
reasonable restrictions are often placed on our manifolds.

I There is no time travel.

I Given two points p and q, the intersection of the causal future
J+
p and causal past J−

q is compact.

The set J+
p is the set of all points in M that can be reached by a

causal future directed curve from p. Similarly J−
q is the set of

points that can be reached by causal past directed curves from q.
Such a spacetime is called globally hyperbolic.
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Spacetimes and Causality

The structure of globally hyperbolic spacetimes is well understood.

Theorem (Geroch’s Splitting Theorem, 1979)

If (M, g) is a globally hyperbolic spacetime, then M is
homeomorphic to S × R where S is a Cauchy surface, a
hypersurface such that every inextensible light-like geodesic
intersects S exactly once.

This is a topological theorem and does not give us any smooth or
geometrical information, but it is useful nonetheless. It seriously
restricts the possible structure of globally hyperbolic spacetimes.
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Spacetimes and Causality

A strenghthening of this theorem exists.

Theorem (Bernal, A. and Sanchez, M., 2003)

If (M, g) is a globally hyperbolic spacetime, then there is a
Riemannian Cauchy surface S (a Cauchy surface such that the
restriction of g to S is a Riemannian metric) such that M is
diffeomorphic to S × R.
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Spherical Cotangent Bundles

This talk aims to discuss the Topological Low Conjecture for 2 + 1
dimensional globally hyperbolic spacetimes. Moreover, spacetimes
where the Cauchy surface S has a universal cover diffeomorphic to
R2.

To do this requires the notion of linking in the spherical cotangent
bundle of a Cauchy surface. The cotangent bundle T ∗M is
constructed in a similar manner to the tangent bundle TM using
local trivialization and smoothly gluing copies of Rn to each point
in Mn. By removing the zero section we may quotient by the
action of multiplication by positive real numbers and obtain the
spherical cotangent bundle ST ∗M.

9 / 21



Spherical Cotangent Bundles

Given a smooth manifold (no Riemannian or semi-Riemannian
metric needed) there is a standard method of inventing a
symplectic form on T ∗M which restricts to a contact form on
ST ∗M. The construction is made quite explicit with the existence
of a Riemannian metric g .

The metric induces a map g̃ : TM → T ∗M as follows. Given a
vector field X ∈ X(M) we define:

g̃(X )(p, v) = g(Xp, v) (4)

This is a one-form, at each point p it takes in tangent vectors and
returns real numbers, and since g is a Riemannian metric this
varies smoothly. Thus g̃ maps vector fields to one-forms so it is a
function g̃ : TM → T ∗M.
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Spherical Cotangent Bundles

Locally in some chart (U , ϕ) we may represent g̃ as a matrix with
components g̃i , j . The Liouville form Ω is then:

Ω =
n∑

i=1

n∑
j=1

g̃i , jdxi ∧ dvj +
n∑

k=1

n∑
i=1

n∑
j=1

∂g̃i , j
∂xk

vidxj ∧ dxk (5)

where we represent ϕ by (x1, . . . , xn, v1, . . . , vn). The restriction
of this to ST ∗M yields a contact structure. Note since we have a
Riemannian metric STM lives as a subspace of TM by considering
points (p, v) with gp(v , v) = 1. ST ∗M similarly lives as a
subspace of T ∗M.
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Spherical Cotangent Bundles
For the sake of visualization it helps to know the topological
structure of spherical cotangent bundles. A trivializable tangent
(or cotangent) bundle is one that is homeomorphic to M × Rn.
Similarly a trivializable spherical tangent (or cotangent) bundle is
one that may be written as M × Sn−1. Four results help.

Theorem
If the Euler characteristic of M is non-zero, then TM is not
trivializable.

Theorem
If M1 and M2 have trivializable tangent (or cotangent) bundles,
then M1 ×M2 does as well.

Theorem
Parallelizable manifolds yield trivializable bundles.

Theorem
A parallelizable manifold is orientable.
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Spherical Cotangent Bundles

The only closed orientable surface with euler characteristic zero is
the torus, which happens to be parallelizable. The plane is also
parallelizable. For n dimensional parallelizable manifolds M the
spherical cotangent bundle ST ∗M is homeomorphic to M × Sn−1.

For the torus we get T3, the three-torus, and for the plane we have
R2 × S1, the thickened torus. Both of these spaces have methods
of visualizing which helps us create drawings.
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Causality and Linking

Robert Low first conjectured that for causally related points p, q in
(certain) 2 + 1 dimensional spacetimes (X , g) the skies, which live
in the space of all future directed inextensible null pre-geodesics, of
these points are topologically linked.

This can be made quite explicit in 2 + 1 dimensional Minkowski
space which is given by the semi-Riemannian metric on R3 g
defined by:

g = dx2 + dy2 − dt2 (6)

The future direction at each point is up, i.e. the positive t
direction (which coincides with the z axis in R3).
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Causality and Linking

Given two points p, q ∈M2, 1 that are causally related either there
exists a light ray between them or not. If there is the skies
intersect, which is non-trivial. Otherwise the skies form two nested
circles in the Cauchy surface R2 (the larger circle is the one for the
event further in the past).

To make life simpler we can suppose p and q have the same
spacial component and only differ in time. That is, p = (x , y , t0)
and q = (x , y , t1) with t0 < t1. In this case the two skies are
actually concentric circles in R2 centered at (x , y).
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Causality and Linking

The skies embed naturally into ST ∗R2, which is diffeomorphic to
the thickened torus as follows. The plane is homeomorphic to the
open unit disk via:

f (x , y) =
(x , y)

1 +
√

x2 + y2
(7)

We may parameterize the thickened torus by elements of the unit
disk D2 and points on the circle S1. Given a curve in the plane we
use f to map it to the disk, and then examine angles given by the
unit normal to the curve. This gives us a point in the disk and an
angle on the circle, yielding a unique point in the thickened torus.
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Causality and Linking
For two concentric circles we end up with a parameterization of the
Hopf link. This is shown below.

Figure: Linking Detects Causality
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Causality and Linking

It is possible to get other links. For two distinct points in the same
Cauchy surface (which are hence not causally related) it is also
easy to show that the skies form unlinked disjoint circles.

If one considers the Riemannian metric induced by pullback of the
mapping F : R2 → R by:

F (x , y) =
1

1 + x2 + y2
(8)

(This is a surface in R3 so we may steal the standard metric) and
warp product this with R one gets a Minkowski-like space with a
bump around the origin. Causally related points can yield different
topological links, such as the Whitehead link, in this scenario.
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Causality and Linking

The topological Low conjecture does hold for 2 + 1 dimensional
globally hyperbolic spaces where the Cauchy surface admits a
covering by an open domain in R2. In 3 + 1 and higher dimensions
this is false, Low himself found a counterexample. Here one must
replace topological linking with Legendrian linking, where we
consider the Liouville form on the spherical cotangent bundle of
the Cauchy surface.

This becomes hard to visualize, even for the Minkowski space M3,1

since the spherical cotangent bundle is a five dimensional
topological manifold. For M3,1 it is R3 × S2.
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Causality and Linking

Theorem (Chernov, Nemirovski 2008)

If (X , g) is a globally hyperbolic spacetime, if M is a spacelike
(Riemannian) Cauchy surface of dimension m ≥ 2, and if M has a
smooth covering by an open subset of Rm, then two causally
related points p, q ∈ X have Legendrian linked skies in ST ∗M.

This hints to us that Legendrian knot and link theory may be much
richer than its topological counterpart.
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Thanks!
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