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The Cassini Mission
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The Cassini Mission

The Cassini orbiter was a space probe sent to Saturn back in the
90s. Launched in 1997, it took about 7 years to get there, arriving
in 2004 (the distance to Saturn is about 1 billion miles).

Before burning up in the atmosphere of Saturn, Cassini spent 13
years orbiting the planet collecting data on the rings, poles, and
more. In this talk we’ll discuss some of the details of the radio
science mission.
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The Cassini Mission

As Cassini orbited Saturn, occasionally its rings got between the
the probe and Earth. This phenomenon is called an occultation.
Radio waves sent to Earth are then diffracted by the rings, and one
observes a diffraction pattern on Earth. The goal is to reconstruct
the ring profile from this diffracted pattern using Fourier optics.
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Fourier Optics and the Fresnel Transform

The rings of Saturn are very circular, so the optical transmittance
can be approximated by T (ρ, ϕ) = T (ρ), where ϕ is the azimuth
angle in the ring plane, and ρ is the radial distance from a point in
the plane to the core of Saturn. Fourier optics tells us that the
diffracted profile can be computed via:

T̂ (ρ0) =

∫ ∞

0

∫ 2π

0
ρT (ρ)

e iψ(ρ, ρ0, ϕ, ϕ0)

D
dρdϕ (1)

where D is the distance from the point (ρ, ϕ) to the observer (the
Cassini probe), and ψ is the Fresnel kernel.
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Fourier Optics and the Fresnel Transform

This double integral is quite hard to work with, but can be
approximated by a single integral using the stationary phase
approximation. We observe for an integral of the form:

I =

∫ b

a
e iϕ(t)dt (2)

where ϕ grows faster-than-linear, most of the contribution comes
from where ϕ is roughly stationary. That is, as ϕ grows faster and
faster, e iϕ(t) starts to oscillate rapidy, meaning the regions under
the curve start to cancel each other out and contribute little to the
integral.
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Fourier Optics and the Fresnel Transform

By applying this to the Fresnel transform, we get:

T̂ (ρ0) = K

∫ ∞

0
T (ρ)e iψ(ρ,ϕs ,ρ0,ϕ0)dρ (3)

where ϕs is the stationary value of ψ, where ∂ψ/∂ϕ is zero, and K
is (roughly) some constant. T̂ is the measured quantity, and T is
the transmittance of the rings, the value we wish to solve for.
These integral equations generally yield very hard inverse problems.
We try some approximations.
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Fourier Optics and the Fresnel Transform

The Fresnel kernel has the form:

ψ = kD
(√

1− 2ξ + η + ξ − 1
)

(4)

where:

ξ =
cos(B)

D

(
ρ cos(ϕ)− ρ0 cos(ϕ0)

)
(5)

η =
ρ2 + ρ20 − 2ρρ0 cos(ϕ− ϕ0)

D2
(6)

Where B is the angle made with the ring plane and the line from
the observer (Cassini) to the detector (Earth).
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The Fresnel Approximation

A decent approximation to the stationary value ϕs is ϕs = ϕ0. We
can improve this by applying one iteration of Newton’s method to
the Fresnel kernel ψ. This yields the Fresnel approximation. The
constant and linear term for ψ ends up being zero, and by
truncating the power series for ψ to the quadratic we get:

T̂ (ρ0) = K

∫ ∞

0
T (ρ)e i

π
2

(
ρ−ρ0

F

)2
dρ (7)

where F is the so-called Fresnel scale. The constant K can be
expressed in terms of the Fresnel scale as well, yielding:

T̂ (ρ0) =
1− i

F

∫ ∞

0
T (ρ)e i

π
2

(
ρ−ρ0

F

)2
dρ (8)
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The Fresnel Approximation

As long as F can be treated as constant (a usually safe
assumption), this final equation is a convolution of T with the
simplified Fresnel kernel. The convolution theorem, which states
that the Fourier transform of a convolution is the product of the
individual Fourier transforms, then tells us how to invert this
equation for T . We get:

T (ρ) =
1 + i

F

∫ ∞

0
T̂ (ρ0)e

−i π
2

(
ρ−ρ0

F

)2
dρ0 (9)

Note the similarity of this inversion with the Fourier transform.
The Fresnel transform and the Fourier transform are very closely
related.
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The Fresnel Approximation

For certain geometrical scenarios the approximation does not hold
and one has to perform something like Newton’s method or
Halley’s method to get an accurate value for the stationary phase
approximation.

This is slow. We use Legendre polynomials to speed up this
calculation.
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Legendre Polynomials

Legendre polynomials are defined as an orthogonal system of
polynomials on the interval [−1, 1]. That is, Pn(x) is a sequence
of polynomials satisfying:∫ 1

−1
Pn(x)Pm(x) = 0 (10)

whenever n ̸= m. The Sturm-Liouville equation that defines them
is:

(1− x2)P ′′
n (x)− 2xP ′

n(x) + n(n + 1)Pn(x) = 0 (11)
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Legendre Polynomials

The generating function of the Legendre polynomials is:

∞∑
n=0

Pn(x)t
n =

1√
1− 2xt + t2

(12)

We’re seen something like this already. Recall the formula for the
Fresnel kernel:

ψ = kD
(√

1− 2ξ + η + ξ − 1
)

(13)

The partial derivative of ψ with respect to ϕ, evaluated at ϕ = ϕ0,
can then be represented via the derivative of the generating
function. In particular, the stationary value can be efficiently
approximated by Legendre polynomials.
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Legendre Polynomials

By using quartic or octic expansions, we can roughly the same
speed as the quadratic Fresnel approximation, but still be able to
apply the approximation in more extreme geometries (such as low
B values). The speed improvements over the full Newton-method
computation is about 100x or more, depending on the data set.
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