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Knots and Links

Intuitively we all know what a knot is, a loop of string in space
that may be tangled in some way. They were a part of various
cultures long before they became of interest to the mathematical
community.

1. The Celtic book of Kells has many complicated knot drawings.

2. The Viking legend of Hildr contains the Borromean rings.

3. Tibetan Buddhism uses the endless knot as a religious symbol.

4. The hammer of Thor, Mjölnir, occasionally depicts the
Whitehead link.

Other knots can be found in Islamic, Jewish, and Japanese
cultures, with some examples being well over 1000 years old.
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Knots and Links

Mathematically knots are relatively new. Early investigations
occurred in the 1700s and early 1800s, but the theory picked up
popularity in the mid and late 1800s for two reasons.

1. Many problems in electromagnetism involved charged loops of
wire that may be linked together.

2. Vortex theory, an early attempt at explaining the structure of
atoms, used knots and links to describe chemical properties.

Vortex theory was eventually disproved by J. J. Thompson,
ironically as he was attempting to provide evidence for it. Knots
were not entirely abandoned and were absorbed into topology in
the early 20th century.
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Knots and Links

Why might we care about knots and links? Two theorems I like.

Theorem (Lickorish-Wallace, 1960)

Every compact orientable connected three dimensional manifold
can be obtained by taking the 3-sphere S3 and cutting out a link L
and gluing it back together with some twists.1

Theorem (Steinitz-Tait, 1877, 1922)

Every connected planar graph with signed edges can be
represented by a knot diagram. Conversely, every knot diagram can
be represented by two connected graphs with signed edges that are
related to each other as planar duals.

1In technical terms, this is a Dehn surgery.
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Knots and Links

So what is a knot? A knot is a smooth or polygonal embedding
γ : S1 → R3. A knot diagram is a projection of a knot onto the
plane where we mark the overlapping points in some way so that
we can easily identify which part is going over and which is under.

Figure: Knot Diagram
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We’ll say two knots are equivalent if we can smoothly deform one
into the other without tearing or cutting.

Knot diagrams turn geometric and analytical objects (functions
and embeddings) into combinatorial ones. In the 1920s it was
shown that the notion of knot equivalence can be demonstrated
using these diagrams and the three Reidemeister moves.
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Knots and Links

Figure: Type I Move Figure: Type II Move
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Knots and Links

Figure: Type III Move
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Knots and Links

In practice we now have a means of distinguishing two knot
diagrams. The number of moves can be quite high, however. Even
if one of the diagrams is a simple circle with no other crossings, if
the other diagram has n crossing it may take more than 1026 × n11

Reidemeister moves to undo it.2

Determining if a knot diagram represents an unknotted circle then
takes roughly 310

26×n11 steps and we quickly approach the
transcomputational problem as n increases.3

Instead of doing this we invent invariants, which are usually
algebraic objects attached to knot diagrams that do not change
with the three Reidemeister moves. We’ll be working with two of
these.

2This is the best known bound at the time of this writing.
3See the Bremermann limit for details on transcomputation.
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The Jones Polynomial

The Jones polynomial assigns a Laurent polynomial, a polynomial
in q and q−1 with integer coefficients, to knot diagrams and is an
invariant. We can define it pictorially using the Kauffman bracket
in terms of smoothings.

0

1

Figure: Smoothing Crossings
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The Jones Polynomial

The Kauffman bracket is defined recursively. Given a knot (or link)
diagram L we write:

⟨∅⟩ = 1 (1)

⟨S1 ⊔ L⟩ = (q + q−1)⟨L⟩ (2)

⟨L⟩ = ⟨Ln, 0⟩ − q⟨Ln, 1⟩ (3)

where S1 ⊔ L represents the disjoint union of L and a circle. The
Jones polynomial JL(q) is obtained from ⟨L⟩ by normalizing it by a
factor ±qk for a particular k that depends on the diagram. The
computation of this factor is linear in the number of crossings so
we can restrict our attention to the Kauffman bracket.
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The Jones Polynomial

If we follow this recursive formula we end up with 2n different ways
of completely smoothing the diagram so that there are no
crossings left.

If we label the crossings 1 to n then every possible smoothing
uniquely corresponds to a number between 1 and 2n. Write your
number 1 ≤ k ≤ 2n in binary. If the mth bit is 0 do a 0-smoothing
at the mth crossing, otherwise do a 1-smoothing. The resulting 2n

pictures is called the cube of resolutions for the diagram.
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The Jones Polynomial
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Figure: Cube of Resolutions for the Trefoil
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The Jones Polynomial
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Figure: Cube of Resolutions for the Figure-Eight
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The Jones Polynomial

The Kauffman bracket is obtained by counting the cycles in the
smoothings and summing over them with appropriates weights.
We obtain the formula

⟨L⟩ =
2n∑
k=1

(−q)w(k)(q + q−1)c(k) (4)

where w(k) is the Hamming weight, the number of 1’s that occur
in the binary expansion of k , and c(k) is the number of cycles
corresponding to the kth complete smoothing.
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The Jones Polynomial

Several algorithms exist for the computation of the Jones
polynomial and Kauffman bracket, and the complexity is known to
be NP-Hard. The computation has been studied in the quantum
aspect and a polynomial-time additive approximation method
exists.

The algorithm we’ll discuss is one of the simplest, but it lends itself
to a clever speed-up trick and a means of computing Khovanov
homology as well, which we’ll soon discuss.
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We first define PD code. Take a knot diagram and pick a starting
point. Trace your finger around the knot and label the arcs in
increasing order. At each under crossing write X[a,b,c,d] where
a is arc you’re walking on, b is the strand to your right, c is the
strand in front, and d is the strand to the left.

0

1

2

3

4

5

Figure: Trefoil with Arcs Labeled
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The Jones Polynomial
The PD code of the diagram is the ordered sequence of quadruples
X[a,b,c,d] for each under crossing. For the trefoil on the
previous page we get X[1,5,2,4], X[3,1,4,0], X[5,3,0,2].

The Kauffman bracket is now computed with a symbolic calculus.

0

1

a b

cd
a b

cd

a b

cd

Figure: Motive for the Symbolic Calculus
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The Jones Polynomial

The Kauffman relation tells us to replace X[a,b,c,d] with
P[a,b]P[c,d]− qP[a,d]P[b,c]. The Kauffman bracket
becomes a product of these formal polynomials:

n∏
k=1

(P[ak,bk]P[ck,dk]− qP[ak,dk]P[bk,cd]) (5)

After expanding we have formal products of ordered pairs P[a,b].
We simplify via P[a,b]P[b,c] 7→ P[a,c] and
P[a,b]P[a,b] 7→ P[a,b]. The Kauffman relation then tells us to
remove cycles and replace them with q + q−1. This amounts to
P[a,a] 7→ q + q−1.
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The Jones Polynomial

This gives us a quick algorithm to implement, but we can improve
it. Rather than smoothing all of the crossings at once and
expanding we pick one and resolve it using

X[a,b,c,d] 7→ P[a,b]P[c,d]− qP[a,d]P[b,c]

We then choose the next crossing X[e,f,g,h] with the most
numbers in common with X[a,b,c,d]. We perform the same
replacement and simplify. We then add the next crossing with the
most numbers in common with the ones we’ve already worked with.

By adding crossings in this way we grow our computational front
minimally, ensuring we have less work to do in the end. This
simple trick can dramatically improve performance.
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The Jones Polynomial

We’ve implemented several algorithms for the Jones polynomial.
Using this we were able to tabulate the invariant for all prime
knots up to 19 crossings, over 352 million knots.

We also examined the strength of the invariant. Below is the
legend for the table on the next page.

Keyword Description

Cr Crossing number, largest number of crossings considered.
Unique Number of polynomials that occur for one knot.
Almost Number of polynomials that occur for two knots.
Total Total number of distinct polynomials in list.
Knots Total number of knots in list.
FracU Unique / Total
FracT Total / Knots
FracK Unique / Knots

Table: Legend for the Statistics Table
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The Jones Polynomial

Cr Unique Almost Total Knots FracU FracT FracK

03 1 0 1 1 1.000000 1.000000 1.000000
04 2 0 2 2 1.000000 1.000000 1.000000
05 4 0 4 4 1.000000 1.000000 1.000000
06 7 0 7 7 1.000000 1.000000 1.000000
07 14 0 14 14 1.000000 1.000000 1.000000
08 35 0 35 35 1.000000 1.000000 1.000000
09 84 0 84 84 1.000000 1.000000 1.000000
10 223 13 236 249 0.944915 0.947791 0.895582
11 626 77 710 801 0.881690 0.886392 0.781523
12 1981 345 2420 2977 0.818595 0.812899 0.665435
13 6855 1695 9287 12965 0.738129 0.716313 0.528731
14 25271 7439 37578 59937 0.672495 0.626958 0.421626
15 105246 35371 170363 313230 0.617775 0.543891 0.336002
16 487774 173677 829284 1701935 0.588187 0.487260 0.286600
17 2498968 894450 4342890 9755328 0.575416 0.445181 0.256164
18 13817237 4863074 24116048 58021794 0.572948 0.415638 0.238139
19 82712788 27409120 141439472 352152252 0.584793 0.401643 0.234878

Table: Statistics for the Jones Polynomial
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Khovanov Homology

Khovanov homology is our next invariant, which generalizes the
Jones polynomial. We replace a polynomial with a homological
object. The Khovanov bracket is defined via

[[∅]] = 0 → Z → 0 (6)

[[S1 ⊔ L]] = V ⊗ [[L]] (7)

[[L]] = F
(
0 → [[Ln, 0]] → [[Ln, 1]]{1} → 0

)
(8)

where V is a graded vector space of graded dimension q + q−1 4

and F is the flatten operation that takes a double complex into a
chain complex by direct sums along diagonals.

4Free modules work too.
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Khovanov Homology

The differential between [[Ln, 0]] and [[Ln, 1]]{1} is defined
pictorially. We use the cube of resolutions of the knot or link
diagram, for example. Recalling our previous binary notation, if
two strings differ in only one place then there is an edge between
them in the cube of resolutions.

The edge describes a cobordism (a pair of pants) that either fuses
two cycles into one or splits a cycle into two. Fusing amounts to a
homomorphism between V ⊗ V and V , whereas splitting needs a
map from V to V ⊗ V .
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Khovanov Homology

These are the homomorphisms.

m(v− ⊗ v−) = 0 (9)

m(v− ⊗ v+) = v− (10)

m(v+ ⊗ v−) = v− (11)

m(v+ ⊗ v+) = v+ (12)

∆(v−) = v− ⊗ v− (13)

∆(v+) = v+ ⊗ v− + v− ⊗ v+ (14)

The differential is defined by an alternating sum of these
homomorphisms along strings of equal hamming weight.
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The Jones Polynomial
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Figure: Cube of Resolutions for the Trefoil

27 / 50



Khovanov Homology

The differential does indeed square to zero and we get a homology
out of this. The r th homology group Khr (L) is the direct sum of
homogeneous parts Khrs(L) and the Khovanov polynomial of the
diagram is the Poincaré polynomial of the homology

KhL(q, t) =
∑
r , s

qr tsdim
(
Khrs(L)

)
(15)

The Jones polynomial is recovered via

JL(q) = KhL(q, −1) (16)
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Khovanov Homology

The symbolic calculus can be modified for Khovanov homology
and the Khovanov polynomial.

By experimenting with the JavaKh library we were able to tabulate
the Khovanov polynomial of all prime knots up to 17 crossings.
This took about two months, 19 crossings would have taken two
years. We’re currently trying to speed up the computations to
make this more approachable.

29 / 50



Khovanov Homology

Cr Unique Almost Total Knots FracU FracT FracK

03 1 0 1 1 1.000000 1.000000 1.000000
04 2 0 2 2 1.000000 1.000000 1.000000
05 4 0 4 4 1.000000 1.000000 1.000000
06 7 0 7 7 1.000000 1.000000 1.000000
07 14 0 14 14 1.000000 1.000000 1.000000
08 35 0 35 35 1.000000 1.000000 1.000000
09 84 0 84 84 1.000000 1.000000 1.000000
10 225 12 237 249 0.949367 0.951807 0.903614
11 641 71 718 801 0.892758 0.896380 0.800250
12 2051 326 2462 2977 0.833063 0.827007 0.688949
13 7223 1636 9539 12965 0.757207 0.735750 0.557115
14 27317 7441 39222 59937 0.696471 0.654387 0.455762
15 118534 36867 182598 313230 0.649153 0.582952 0.378425
16 578928 187639 919835 1701935 0.629382 0.540464 0.340159
17 3167028 1001101 5033403 9755328 0.629202 0.515965 0.324646

Table: Statistics for the Khovanov Polynomial
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HOMFLY-PT

Slight digression, the HOMFLY-PT polynomial was also
investigated. It too generalizes the Jones polynomial (and also the
Alexander polynomial).

It is different than the Khovanov polynomial, there are knots with
different HOMFLY-PT polynomials but the same Khovanov
polynomial, and vice-versa.

Using the regina library we’ve tabulated the HOMFLY-PT
polynomial of all prime knots up to 19 crossings.
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HOMFLY-PT

Cr Unique Almost Total Knots FracU FracT FracK

03 1 0 1 1 1.000000 1.000000 1.000000
04 2 0 2 2 1.000000 1.000000 1.000000
05 4 0 4 4 1.000000 1.000000 1.000000
06 7 0 7 7 1.000000 1.000000 1.000000
07 14 0 14 14 1.000000 1.000000 1.000000
08 35 0 35 35 1.000000 1.000000 1.000000
09 84 0 84 84 1.000000 1.000000 1.000000
10 241 4 245 249 0.983673 0.983936 0.967871
11 730 34 765 801 0.954248 0.955056 0.911361
12 2494 210 2724 2977 0.915565 0.915015 0.837756
13 9475 1302 11044 12965 0.857932 0.851832 0.730814
14 39401 7170 48329 59937 0.815266 0.806330 0.657374
15 186799 38833 238614 313230 0.782850 0.761785 0.596364
16 979987 209669 1266261 1701935 0.773922 0.744013 0.575808
17 5559808 1157938 7175287 9755328 0.774855 0.735525 0.569925
18 33722920 6480965 42857755 58021794 0.786857 0.738649 0.581211
19 213355372 36387952 264839694 352152252 0.805602 0.752060 0.605861

Table: Statistics for the HOMFLY-PT Polynomial
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Khovanov Homology

Back to Khovanov homology. While it has been conjectured that
the Jones polynomial distinguishes the unknot, it is known that
Khovanov homology does.

Theorem (Kronheimer-Mrowka, 2011)

If a knot has the same Khovanov homology as the unknot, then it
is equivalent to the unknot.

It is now known the Khovanov homology also detects the trefoils,
figure eight, and the cinquefoils. These results will motivate our
work discussed later.
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Contact Topology

Before diving into the results, lets discuss contact topology. The
theory derives itself from physics, classical Hamiltonian mechanics
in particular. Particles in n dimensions can be described by 2n
coordinates, their position and momentum. This is the phase space
coordinates.

By considering hypersurfaces of constant kinetic energy we obtain
2n − 1 dimensional objects. The properties of these manifolds are
axiomatize to create contact structures.
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Contact Topology

A contact manifold is a smooth 2n + 1 dimensional manifold X
together with a collection of smooth charts (Ui , φi ) and one-forms
αi such that the charts cover the manifold and the αi satisfy

αi ∧ (dαi )
n = 0 (17)

and such that αi and αk agree whenever Ui and Uk overlap.
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Contact Topology

The kernels of the one-forms describe co-dimension one planes in
the tangent space of each point in the manifold. This strange
condition on the α is called maximal non-integrability. It means
there is no hypersurface of dimension greater than n that is
everywhere tangent to this collection of planes.

The Darboux theorem tells us locally any such manifold has a
chart (U , φ) where the one-form α is given by:

α =
n∑

k=1

dφ2k − φ1dφ2k+1 (18)
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Contact Topology

For R3 this tells us we get a contact structure by using a single
global chart and the one-form

α = dz − ydx (19)

This is the standard contact structure on R3. At each point
(x , y , z) we see that ∂y and ∂x + y∂z span the kernel of α
meaning we can explicitly draw the hyperplane distribution.
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Contact Topology

x

y

z

Figure: Standard Contact Structure on R3
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Contact Topology

While it is impossible for a surface to be everywhere tangent, it is
possible for curves, or knots, to be. A Legendrian knot is a smooth
embedding γ : S1 → R3 such that α(γ̇(t)) = 0 for each t ∈ S1.

This restriction takes away a degree of freedom from the knot
since the y coordinate must satisfy

dz − ydx = 0 (20)

⇒ y =
dz

dx
(21)

⇒ y(t) =
dz/dt

dx/dt
(22)

⇒ y(t) =
ż(t)

ẋ(t)
(23)
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Contact Topology

Figure: Legendrian Unknot
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Contact Topology
For this to be well defined when ẋ(t) = 0 we also need ż(t) to
approach zero as well. The value y is also finite, and since the
circle is compact the range of y is also bounded. Hence in a knot
diagram there will be no vertical tangencies and instead we obtain
cusps.

Figure: Legendrian Unknot Diagram
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Contact Topology

Two Legendrian knots are equivalent if we can smoothly deform
one into the other, keeping the knot Legendrian at each stage of
the deformation.

It is possible for two knots to be topologically equivalent but
different as Legendrian embeddings. To distinguish Legendrian
knots then requires Legendrian invariants. The two simplest are
the Thurston-Bennequin tb and rotation numbers rot. A
Legendrian simple knot is a knot where all Legendrian
embeddings are uniquely determined by these two invariants.

It is known that are torus knots are Legendrian simple.
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Contact Topology

The contact structure also allows us to describe transverse knots,
those that are everywhere transverse to the distribution of
hyperplanes. We can also define transverse invariants and
transversally simple knots.

The twist knot knots with a positive number of twist serve as our
example of transversally simple knots.
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Results and Conjectures

The knots where Khovanov homology is known to uniquely
distinguish are all Legendrian simple. We’ve conjectured that all
such knots may be detectable.

We computed the Jones polynomial of all prime knots of up to 19
crossings and compared these with the Jones polynomial of torus
knots. At the end of this computation four matches were found.
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Results and Conjectures

Torus Knot Non-Torus Knot Jones Polynomial

T (2, 5) dciaFHjEbg −q14 + q12 − q10 + q8 + q4

T (2, 7) fJGkHlICEABd −q20 + q18 − q16 + q14 − q12 + q10 + q6

T (2, 11) gHlImJnKBDFAce −q32 + q30 − q28 + q26 − q24 + q22 − q20 + q18 − q16 + q14 + q10

T (2, 5) iNHlPJqCoKFmdABgE −q14 + q12 − q10 + q8 + q4

Table: Knots whose Jones polynomial matches that of a Torus Knot

From this the unknot conjecture cannot be generalized to torus
knots or Legendrian simple knots. In each case the Khovanov
polynomials are different.

Theorem
If a prime knot K has less than or equal to 19 crossings and has
the same Khovanov polynomial, or Khovanov homology, as a torus
knot, than it is equivalent to it.

45 / 50



Results and Conjectures

A similar search was performed with the twist knots for
transversally simple knots. A lot more matches were found but in
each case the Khovanov polynomials differed.

Twist Knot Non-Twist Knot Jones Polynomial

m2 eikGbHJCaFd q4 − q2 + 1− q−2 + q−4

m3 dgikFHaEjbc −q12 + q10 − q8 + 2q6 − q4 + q2

m3 gfJKHlaIEBCD −q12 + q10 − q8 + 2q6 − q4 + q2

m3 hGJaMlCdEKBfI −q12 + q10 − q8 + 2q6 − q4 + q2

m5 bhDGijCkaef −q16 + q14 − q12 + 2q10 − 2q8 + 2q6 − q4 + q2

m6 cefIgbajkDh q12 − q10 + q8 − 2q6 + 2q4 − 2q2 + 2− q−2 + q−4

m6 femIbaJKLCGHd q12 − q10 + q8 − 2q6 + 2q4 − 2q2 + 2− q−2 + q−4

m6 jpIFNMrClqOhkEDabg q12 − q10 + q8 − 2q6 + 2q4 − 2q2 + 2− q−2 + q−4

m7 cgjFHIaDEkb −q20 + q18 − q16 + 2q14 − 2q12 + 2q10 − 2q8 + 2q6 − q4 + q2

m8 knIHoBjCDQrMPaeLgF q16 − q14 + q12 − 2q10 + 2q8 − 2q6 + 2q4 − 2q2 + 2− q−2 + q−4

m9 jopIFMrDlqNhkEabcg −q24 + q22 − q20 + 2q18 − 2q16 + 2q14 − 2q12 + 2q10 − 2q8 + 2q6 − q4 + q2

Table: Knots whose Jones polynomial matches that of a Twist Knot
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Results and Conjectures

Theorem
If a prime knot K has 19 or fewer crossings and the same
Khovanov homology or Khovanov polynomial as a twist knot, then
it is equivalent to it.

An interesting thing to note is that not all twist knots are
transversally or Legendrian simple. This may lead one to conjecture
that Khovanov homology is able to detect twist knots in general.
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Results and Conjectures
We also looked through the conjectured Legendrian simple knots in
the Legendrian knot atlas. Once again many matches were found
for the Jones polynomial, but the Khovanov polynomials were all
different.

Ng Knot Matching Knot Jones Polynomial

m(62) glfoJcbKMNDaHIe q10 − 2q8 + 2q6 − 2q4 + 2q2 − 1 + q−2

m(62) hknEGmDbJLaIfc q10 − 2q8 + 2q6 − 2q4 + 2q2 − 1 + q−2

m(62) gKHlmIdJCEABf q10 − 2q8 + 2q6 − 2q4 + 2q2 − 1 + q−2

m(62) ehkjmGIaFlcbd q10 − 2q8 + 2q6 − 2q4 + 2q2 − 1 + q−2

m(73) hgelkIbaJFcd −q18 + q16 − 2q14 + 3q12 − 2q10 + 2q8 − q6 + q4

m(74) gfkHlbjIDaec −q16 + q14 − 2q12 + 3q10 − 2q8 + 3q6 − 2q4 + q2

m(948) gnoqKDjIMrpEaHblfc q2 − 3 + 4q−2 − 4q−4 + 6q−6 − 4q−8 + 3q−10 − 2q−12

m(949) lFKJIOAEnDCpBhmG q−4 − 2q−6 + 4q−8 − 4q−10 + 5q−12 − 4q−14 + 3q−16 − 2q−18

m(10128) eHPNqGJlBFoiaDCkM −q20 + q18 − 2q16 + 2q14 − q12 + 2q10 − q8 + q6

m(10128) edjkaGIlFbch −q20 + q18 − 2q16 + 2q14 − q12 + 2q10 − q8 + q6

m(10136) igDKHJaEbFC q6 − 2q4 + 2q2 − 2 + 3q−2 − 2q−4 + 2q−6 − q−8

10145 eoHKqGJnCFmPDibaL −q20 + q18 − q16 + q14 + q4

10145 kNJIpHLFECoMGABd −q20 + q18 − q16 + q14 + q4

10161 hOqrljsnMeipFAgkbcd −q22 + q20 − q18 + q16 − q14 + q12 + q6

Table: Conjectured Legendrian Simple Knots
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Future Work

We were able to implement several algorithms and get
computations for the Jones, HOMFLY-PT, and Alexander (not
discussed here) polynomials in a reasonable amount of time. All
three invariants have been tabulated to prime knots up to 19
crossings.

The Khovanov computation was still too slow. The previous
tabulation effort stopped at 16, and we’ve been able to push this
to 17. By introducing parallel computing and making some
optimizations we may be able to get to 19 crossings in a few
months, instead of a few years.
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The End

Thank You!
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