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The Alexander Polynomial

One of the oldest invariants in knot theory, the Alexander
polynomial is not-so-easy to describe, but very easy to compute.
The original definition involves a certain infinite cyclic cover of the
complement of a knot embedded into R3 (see [Lic97, p. 53]), but
the computation can be explained fairly quickly using knot
diagrams.

For a planar diagram of a knot there will be N crossings and N + 2
faces using Euler’s formula. Create a N × (N + 2) adjacency
matrix and fill the entries with affine combinations of terms in the
set { 1, −1, t, −t } based on the orientation of the crossings.
[Liv93, p. 49] contains the details.

Cross out two columns corresponding to faces that do not share a
border and take the determinant. The result is the Alexander
polynomial up to a multiple of tn.
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The Alexander Polynomial

Creating the Alexander matrix runs in O(N2) time, where N is the
number of crossings. The way determinants are taught in linear
algebra yields a terrifying O(N!) computation, but LU
decomposition can speed this up to O(N3). The Alexander
polynomial is hence a polynomial time invariant.

We can speed the computation up even further using tangles
([Bar15]) and implementations exist in [Cul23] and [Mag23c].
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The Alexander Polynomial

Having such a quick computation means we can tabulate the
invariant for the 352+ million prime knots up to crossing number
19 in less than a day.

This speed comes at a cost, the invariant is not very good at
distinguishing knots. Many distinct knots have the same Alexander
polynomial. Furthermore, we have the following classical theorem
(see [Kaw96]).

Theorem
If p ∈ Z[t, t−1] is a Laurent polynomial such that p(t) = p(t−1)
and p(1) = ±1, then there is a knot K such that ∆K (t) = p(t)
where ∆K is the Alexander polynomial of K.

So Alexander polynomials are not uncommon.
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The Jones Polynomial

The Jones polynomial is a knot invariant that is often called
stronger than the Alexander polynomial, but the two are not
directly comparable. There are knots with the same Alexander
polynomial but different Jones polynomials (61 and 946 in the
Rolfsen table), but there are also knots with the same Jones
polynomial and different Alexander polynomials (the Figure-Eight
41 and the non-alternating knot K11N19).

At the end of this talk we will justify why the Jones polynomial is
said to be stronger, but keep those examples in your back pocket!
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The Jones Polynomial

The original definition uses the Temperley-Lieb algebra, braid
groups, and the Markov trace [Jon14], but it is computationally
beneficial to think in terms of the Kauffman bracket. This is
defined in terms of smoothings of crossings.

0

1

Figure: Smoothing a Crossing
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The Jones Polynomial

The Kauffman bracket ⟨L⟩ of a link diagram L is defined
recursively as follows1

⟨∅⟩ = 1 (1)

⟨S1 ⊔ L⟩ = (q + q−1)⟨L⟩ (2)

⟨L⟩ = ⟨Ln, 0⟩ − q⟨Ln, 1⟩ (3)

(4)

where S1 ⊔ L denotes the disjoint union of a circle and L unlinked
in R3, Ln, 0 denotes the zero smoothing at the nth crossing, and
similarly Ln, 1 denotes the one smoothing at the nth crossing.

1This follows the conventions in [Bar02] which differ slightly from the
original in [Kau87].
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The Jones Polynomial

This is indeed well-defined and invariant under the type II and type
III Reidemeister moves. Type I moves scale the result by q−1 and
−q2, depending on the sign of the introduced crossing.

There are two ways to make the resulting polynomial invariant
under type I moves. We can normalize by the writhe, writing

JL(q) = (−q)n+−2n−⟨L⟩ (5)

where n+ and n− are the number of positive and negative
crossings in the diagram, respectively.

Alternatively we could scale ⟨L⟩ by the monomial qk such that the
zeroth term has degree zero. That is, multiply by q−mindeg(⟨L⟩) so
that the result is an actual polynomial, instead of a Laurent
polynomial.
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The Jones Polynomial

There are pros and cons to both definitions. The far more common
definition, JL, has the nice property that JL(q) = Jm(L)(q

−1) where
m(L) is the mirror of L, the result of composing the embedding for
L with the reflection z 7→ −z .

The alternative definition means we can skip a writhe
computation, but this runs in O(N) so it is not a big deal.
However, since p(q) = q−mindeg(⟨L⟩)⟨L⟩ is a valid polynomial, this
alternative method defines a meromorphic map
z 7→ z − p(z)/p′(z) and induces a Newton fractal in the complex
plane with Newton basins and a Julia set.

The topology of these sets are dependent only on the polynomial
p, and are hence knot invariants themselves.
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The Jones Polynomial

Figure: Newton Fractal for the Right-Handed Trefoil
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The Jones Polynomial

Figure: Unreduced Newton Fractal for the Right-Handed Trefoil
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The Jones Polynomial

Computationally the Jones polynomial is at most O(N) away from
the Kauffman bracket, so we will restrict our algorithmic efforts to
computing ⟨L⟩.

The definition gives us a recursive algorithm that is extremely
simple to implement. This can be done in just a handful of lines
using C or Python. The simplicity comes at a cost, the algorithm
is not only exponential in time, but also in space. After about a
dozen crossings one may need several gigabytes of memory for the
computation, and 17 crossings and higher is not feasible on most
personal computers.
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The recursion tree can be expanded into an iterative formula using
induction. For your N crossing link diagram each number between
0 and 2N − 1 uniquely corresponds to a smoothing of all crossings
in the figure.

Given 0 ≤ n ≤ 2N − 1 write n in binary. If the mth bit is a zero,
perform a zero smoothing at the mth crossing. Otherwise perform
a one smoothing. Do this for each bit in the number.
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The Kauffman bracket is then computed via

⟨L⟩ =
2N−1∑
n=0

(−q)w(n)(q + q−1)c(n) (6)

where w(n) is the Hamming weight, the number of ones in the
binary expansion of n, and c(n) is the cycle counting function,
which counts the number of cycles in the plane that result from
the complete smoothing corresponding to the number n.
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The Jones Polynomial
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Figure: Cube of Resolutions for the Trefoil
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The Jones Polynomial
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Figure: Cube of Resolutions for the Figure-Eight
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The Jones Polynomial

By representing knots and links with extended Gauss codes we can
use this summation to devise explicit algorithms for the Kauffman
bracket. This is done in [Mag23a].

While still running in O(2N) time the space requirements have
been drastically reduced to O(N). A 32 crossing knot can be dealt
with on a laptop, though the computation will take several minutes
to a few hours or days, depending on the CPU.
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The Jones Polynomial

This invariant has been tabulated for all prime knots up to 19
crossings in [Magb] using the algorithms in [Mag23a] and [Bur18].

We take a moment to outline one more algorithm since it will be of
use to us for the computation of Khovanov homology. It uses a
symbolic calculus by manipulating planar diagram codes, or PD
codes. So first, what are PD codes?
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The Jones Polynomial

Take a knot diagram and orient it, labeling the arcs from 0 to
2N − 1 in increasing order. Trace your finger along the drawing
and at each under crossing write down X[a,b,c,d] where a is the
arc behind you, b is to your right, c is the arc in front, and d is the
one on the left.

The result is a string of N 4−tuples. The algorithm starts by
observing what the Kauffman relation does to PD code.
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The Jones Polynomial
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Figure: Resolving a Crossing with PD Code
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The Jones Polynomial

The Kauffman relation tells us to perform the symbolic
replacement

X[a,b,c,d] 7→ P[a,b]P[c,d]− qP[a,d]P[b,c] (7)

We do this for every crossing and obtain the product

⟨L⟩ =
N−1∏
k=n

(P[an,bn]P[cn,dn]− qP[an,dn]P[bn,cn]) (8)

where X[an,bn,cn,dn] represents the nth crossing.
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The Jones Polynomial

After expanding this we obtain a polynomial whose coefficients are
formal products of ordered pairs. We reduce further and obtain a
Laurent polynomial with integer coefficients by appealing to the
Kauffman relations.

Should we see the product P[a,b]P[a,b] we may replace it with
P[a,b] since both expressions tell us the arcs a and b are now
connected. Similarly, we may replace P[a,b]P[b,c] with P[a,c].

Lastly, P[a,a] tells us we have a cycle. Should we find such an
expression we replace it with q + q−1.
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The Jones Polynomial

Expanding the product on the previous page results in 2N terms,
meaning this algorithm is still exponential. Fortunately there is a
trick to significantly speed up our computation.

Instead of expanding the product all at once, we pick a crossing
and perform the smoothing
X[a,b,c,d] 7→ P[a,b]P[c,d]− qP[a,d]P[b,c]. We then pick
the crossing that has the most arcs in common with X[a,b,c,d]

and smooth that one. That is, we look for the crossing
X[e,f,g,h] such that a,b,c,d and e,f,g,h have as many terms
in common as possible.
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The Jones Polynomial

We combine the products and simplify using the previous relations.
By adding the crossings in such a way we grow our computational
front as slowly as possible, meaning we have less work to do in the
end.

This idea is implemented in [Kata] and [Mag23a] and gives a
considerable speed boost for many knot diagrams.
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Khovanov Homology

The other benefit is that it can be generalized and allow us to
compute Khovanov homology. Khovanov homology is a link
invariant that associates a chain complex to a link diagram, the
homology of which is a link invariant.

Following [Bar02] we again consider the cube of resolutions and
associate to each vertex a vector space (or module) V⊗c(n) where
V is a graded vector space (or free module) of graded dimension
q + q−1. The chain groups are obtained by direct sums over the
vertices of the same Hamming weight. The chain maps are defined
by summing over local maps defined on the edges of the cube.
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The Jones Polynomial
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Figure: Cube of Resolutions for the Trefoil
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Khovanov Homology

The resulting homology can be decomposed into homogeneous
parts [Katb], and the Khovanov polynomial is defined by the
resulting Poincaré polynomial

KhL(q, t) =
∑
n,m

qntmdim
(
Khnm(L)

)
(9)

The Jones polynomial is recovered via

JL(q) = KhL(q, −1) (10)

In [Bar06] an explicit algorithm is outlined for the computation and
this is implemented in [Gre23].2

2Work in progress implementations in C can be found in [Mag23b] and
[Mag23c].
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Khovanov Homology

The Khovanov polynomial of all prime knots up to 17 crossings has
been tabulated and is available in [Magc].

The computation took 6 weeks using fairly powerful hardware. 19
crossings would have taken about 3 years. Optimizations for low
crossing knots are underway, as is experimenting with
parallelization. This may allow the computation to be done in
months, instead of years.
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HOMFLY-PT Polynomial

The final invariant to be experimented with is the HOMFLY-PT
polynomial. Like Khovanov homology, it generalizes the Jones
polynomial, but also generalizes the Alexander polynomial. It is
defined via

P(S1) = 1 (11)

αP(Ln,+)− α−1P(Ln,−) = zP(Ln, 0) (12)

Where Ln,+ denotes the nth crossing as a positive crossing, Ln,−
denotes swapping the strands over each other to a negative
crossing, and Ln, 0 is the orientation preserving smoothing.
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HOMFLY-PT Polynomial

The Jones and Alexander polynomial, JK and ∆K , respectively, are
recovered via

JK (q) = P(q−2, q − q−1) (13)

∆K (q) = P(1, q − q−1) (14)

So the computation is at least as hard as the Jones polynomial,
and indeed it is NP-Hard [Jae88].
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HOMFLY-PT Polynomial

Three algorithms exist, of which I’m still in the early stages of
experimenting.

1. Kauffman’s skein template algorithm [Kau90].

2. Gouesbet, Meunier-Guttin-Cluzel, and Letellier’s algorithm
using Gauss codes [Gou99].

3. Burton’s modification of Kauffman’s algorithm [Bur18].

Burton’s algorithm gives the best performance, and he provided a
C++ implementation as well [Bur24]. Slight experiments with this
code have led to the tabulation of the HOMFLY-PT polynomial of
all prime knots up to 19 crossings [Maga].
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Results

Keyword Description

Cr Crossing number, largest number of crossings considered.
Unique Number of polynomials that occur for one knot.
Almost Number of polynomials that occur for two knots.
Total Total number of distinct polynomials in list.
Knots Total number of knots in list.
FracU Unique / Total
FracT Total / Knots
FracK Unique / Knots

Table: Legend for the Statistics Table
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Results

Cr Unique Almost Total Knots FracU FracT FracK

03 1 0 1 1 1.000000 1.000000 1.000000
04 2 0 2 2 1.000000 1.000000 1.000000
05 4 0 4 4 1.000000 1.000000 1.000000
06 7 0 7 7 1.000000 1.000000 1.000000
07 14 0 14 14 1.000000 1.000000 1.000000
08 35 0 35 35 1.000000 1.000000 1.000000
09 84 0 84 84 1.000000 1.000000 1.000000
10 223 13 236 249 0.944915 0.947791 0.895582
11 626 77 710 801 0.881690 0.886392 0.781523
12 1981 345 2420 2977 0.818595 0.812899 0.665435
13 6855 1695 9287 12965 0.738129 0.716313 0.528731
14 25271 7439 37578 59937 0.672495 0.626958 0.421626
15 105246 35371 170363 313230 0.617775 0.543891 0.336002
16 487774 173677 829284 1701935 0.588187 0.487260 0.286600
17 2498968 894450 4342890 9755328 0.575416 0.445181 0.256164
18 13817237 4863074 24116048 58021794 0.572948 0.415638 0.238139
19 82712788 27409120 141439472 352152252 0.584793 0.401643 0.234878

Table: Statistics for the Jones Polynomial
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Results

This raises the question, if Kn is the number of prime knots with
at most n crossings, and if Jn is the number of unique Jones
polynomials for prime knots up to n crossings, does Jn/Kn

converge to zero?
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Results

Cr Unique Almost Total Knots FracU FracT FracK

03 1 0 1 1 1.000000 1.000000 1.000000
04 2 0 2 2 1.000000 1.000000 1.000000
05 4 0 4 4 1.000000 1.000000 1.000000
06 7 0 7 7 1.000000 1.000000 1.000000
07 14 0 14 14 1.000000 1.000000 1.000000
08 35 0 35 35 1.000000 1.000000 1.000000
09 84 0 84 84 1.000000 1.000000 1.000000
10 225 12 237 249 0.949367 0.951807 0.903614
11 641 71 718 801 0.892758 0.896380 0.800250
12 2051 326 2462 2977 0.833063 0.827007 0.688949
13 7223 1636 9539 12965 0.757207 0.735750 0.557115
14 27317 7441 39222 59937 0.696471 0.654387 0.455762
15 118534 36867 182598 313230 0.649153 0.582952 0.378425
16 578928 187639 919835 1701935 0.629382 0.540464 0.340159
17 3167028 1001101 5033403 9755328 0.629202 0.515965 0.324646

Table: Statistics for the Khovanov Polynomial
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Results

We can ask the same question for Khovanov homology. Labeling
Khn and Kn in a similar way, does Khn/Kn converge to zero?

Note, as expected, Khn > Jn. This simply reiterates the fact that
KhL(q, −1) = JL(q) for any link L.

While 41 and K11n19 have the same Jones polynomial (but
different Alexander polynomials), their Khovanov polynomials
differ, further cementing the claim that the knots are different.
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Results

Cr Unique Almost Total Knots FracU FracT FracK

03 1 0 1 1 1.000000 1.000000 1.000000
04 2 0 2 2 1.000000 1.000000 1.000000
05 4 0 4 4 1.000000 1.000000 1.000000
06 7 0 7 7 1.000000 1.000000 1.000000
07 14 0 14 14 1.000000 1.000000 1.000000
08 35 0 35 35 1.000000 1.000000 1.000000
09 84 0 84 84 1.000000 1.000000 1.000000
10 241 4 245 249 0.983673 0.983936 0.967871
11 730 34 765 801 0.954248 0.955056 0.911361
12 2494 210 2724 2977 0.915565 0.915015 0.837756
13 9475 1302 11044 12965 0.857932 0.851832 0.730814
14 39401 7170 48329 59937 0.815266 0.806330 0.657374
15 186799 38833 238614 313230 0.782850 0.761785 0.596364
16 979987 209669 1266261 1701935 0.773922 0.744013 0.575808
17 5559808 1157938 7175287 9755328 0.774855 0.735525 0.569925
18 33722920 6480965 42857755 58021794 0.786857 0.738649 0.581211
19 213355372 36387952 264839694 352152252 0.805602 0.752060 0.605861

Table: Statistics for the HOMFLY-PT Polynomial
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Results

Most surprising, defining Hn to be the number of unique
HOMFLY-PT polynomials for prime knots up to n crossings, we
see that Hn/Kn is not monotonic. Also surprising is how high the
ratio is for 19 crossings.

It would be intriguing to know what the lim sup and lim inf are.
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Results
Future work

1. Finish FastKH reimplementation.
▶ Parallelize batch computations.
▶ Parallelize individual computations?
▶ Avoid arbitrary precision arithmetic.
▶ C vs. Java, will there be noticeable performance differences?

2. Rewrite Alexander algorithms.
▶ The ones used are in Sage, Python, and Mathematica. My C

routines are in the early stages. Gotten nice speed
improvements so far.

3. Fixed parameter tractability for Khovanov homology?

4. Speed tests!
▶ More than half a dozen Jones polynomial algorithms.
▶ A few Alexander polynomial algorithms.
▶ Three HOMFLY-PT algorithms.
▶ Which are the fastest for general knots?

5. Do all of this again for 20 crossings!
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The End

Thank You!
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Birkhäuser Verlag, 1996.

Lickorish, W.
An Introduction to Knot Theory.
Springer, 1997.

46 / 48



References VI

Livingston, Charles.
Knot Theory.
Mathematical Association of America, 1993.

Maguire, Ryan.
HOMFLY-PT Polynomial Database.
http://knots.dartmouth.edu/homfly_polynomial/.
Accessed: 2023-10-16.

Maguire, Ryan.
Jones Polynomial Database.
http://knots.dartmouth.edu/jones_polynomial/.
Accessed: 2023-10-10.

Maguire, Ryan.
Khovanov Polynomial Database.
http://knots.dartmouth.edu/khovanov_polynomial/.
Accessed: 2023-10-10.

47 / 48

http://knots.dartmouth.edu/homfly_polynomial/
http://knots.dartmouth.edu/jones_polynomial/
http://knots.dartmouth.edu/khovanov_polynomial/


References VII

Maguire, Ryan.
Jones Polynomial Implementations.
https://github.com/ryanmaguire/jones_polynomial/,
2023.

Maguire, Ryan.
Knot Data.
https://github.com/ryanmaguire/knot_data/, 2023.

Maguire, Ryan.
The Mathematicians Programming Library.
https://github.com/ryanmaguire/libtmpl/, 2023.

48 / 48

https://github.com/ryanmaguire/jones_polynomial/
https://github.com/ryanmaguire/knot_data/
https://github.com/ryanmaguire/libtmpl/

