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A result known back to the times of Euclid (300 B.C.E) states that if a and b
are real numbers, and if ab = 0, then either a = 0, or b = 0 (or both). The proof
is quite simple. If a is not zero, then we can divide both sides of ab = 0 by a,
and we obtain b = 0. Similarly, if b is not zero, then we can divide both sides of
ab = 0 by b and obtain a = 0. Hence, if ab = 0, then at least one of these must
be zero. We can use this result to find for which real numbers a formula may
be undefined.

Let’s consider the following expression:

f(x) =
1

x(1− x2)
(1)

For what subset of the real numbers is this formula well-defined? The only
problem we could encounter is a division-by-zero. The denominator of the ex-
pression is x(1 − x2), so we need to exclude real numbers where this evaluates
to zero. Using the statement from the first paragraph, if x(1 − x2) = 0, then
either x = 0, or 1 − x2 = 0. The expression 1 − x2 = 0 has two solutions, 1
and −1. We can see this by factoring, obtaining 1− x2 = (1 + x)(1− x). So, in
total, there are 3 real numbers where this formula is not well-defined: 0, 1, and
−1. Using the notation from set theory, we can write the domain of f via:

D = (−∞,−1) ∪ (−1, 0) ∪ (0, 1) ∪ (1,∞) (2)

The function is plotted in Fig 1.
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Figure 1: Graph of the function f
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I, the copyright holder of this work, release it into the public domain. This
applies worldwide. In some countries this may not be legally possible; if so: I
grant anyone the right to use this work for any purpose, without any conditions,
unless such conditions are required by law.

The source code used to generate this document is free software and released
under version 3 of the GNU General Public License.

3


