Domains of Functions - Example 2

Ryan Maguire

September 28, 2023

When an expression involves logarithmic functions such as the natural log we need to be careful that the input is positive. The \log base b (with $b>1$) of a real number x returns the number y such that $x=b^{y}$. Since b^{y} can never be negative, $\log _{b}(x)$ has no meaning for negative values of x. For 0 , we can say $\log _{b}(0)=-\infty$ since $b^{-\infty}=0$ (more precisely, b^{x} tends to zero as x approaches $-\infty)$, but $-\infty$ is not a real number and so 0 must be excluded from the input of $\log _{b}$. A plot of 2^{x} is given in Fig. 1 indicating that 2^{x} is never negative and tends to 0 as x tends to $-\infty$.

Consider the expression below:

$$
\begin{equation*}
f(x)=\frac{1}{x \ln (x)} \tag{1}
\end{equation*}
$$

There are a few restrictions on x for $f(x)$ to be well-defined. Firstly, we have a division so we need the denominator to be non-zero. We must avoid $x \ln (x)=0$. If $x \ln (x)=0$, then either $x=0$ or $\ln (x)=0$. For any $b>1, \log _{b}(x)=0$ is true precisely when $x=1$. If we want $1=b^{y}$, we use that fact that for any non-zero real number b it is true that $b^{0}=1$. This gives us $\log _{b}(1)=0$. So, in particular, $\ln (1)=0$. To avoid a division-by-zero in our expression we need $x \neq 0$ and $x \neq 1$. There is another restriction. We need that $\ln (x)$ is well-defined as well. This occurs when $x>0$. So, in total we need $x \neq 0, x \neq 1$, and $x>0$. The requirement $x>0$ excludes 0 so we can rid ourselves of the first requirement, and need $x>0$ and $x \neq 1$. We can write the domain of f as:

$$
\begin{equation*}
D=(0,1) \cup(1, \infty) \tag{2}
\end{equation*}
$$

The function is plotted in Fig. 2.

Figure 1: The function 2^{x}

Figure 2: The function $f(x)=1 / x \ln (x)$

I, the copyright holder of this work, release it into the public domain. This applies worldwide. In some countries this may not be legally possible; if so: I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

The source code used to generate this document is free software and released under version 3 of the GNU General Public License.

