Domains of Functions - Example 5

Ryan Maguire

September 28, 2023

Consider the following function:

$$
\begin{equation*}
f(x)=\frac{\sin (x)}{x} \tag{1}
\end{equation*}
$$

This function is well-defined everywhere except for $x=0$. However, the small angle approximation, often used by physicists, states that if x is a small real number, then $\sin (x) \approx x$. The symbol \approx means is approximately equal to. We can verify this from the graph of the two functions close to the origin. By examining Fig. 1 we see that for small values the graphs of $\sin (x)$ and x are nearly identical. Using this we have, for small x, the following:

$$
\begin{equation*}
\frac{\sin (x)}{x} \approx \frac{x}{x}=1 \tag{2}
\end{equation*}
$$

And indeed the limit of $f(x)$ as x approaches zero is 1 , even though $f(0)$ is undefined. With this we can define a new function by filling in where $f(x)$ is undefined. This is the sinc function, and it's use is widespread in physics, engineering, and signal processing.

$$
\operatorname{sinc}(x)= \begin{cases}\frac{\sin (x)}{x}, & x \neq 0 \tag{3}\\ 1, & x=0\end{cases}
$$

Since the limit of $\operatorname{sinc}(x)$ as x approaches zero is 1 , and $\operatorname{since} \operatorname{sinc}(0)=1$, we have from the limit definition of continuity that $\operatorname{sinc}(x)$ is continuous at 0 . This function is shown in Fig. 2.

Figure 1: Small Angle Approximation

Figure 2: The sinc function

I, the copyright holder of this work, release it into the public domain. This applies worldwide. In some countries this may not be legally possible; if so: I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

The source code used to generate this document is free software and released under version 3 of the GNU General Public License.

