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The definition of continuity is as follows:

Definition 1 A real-valued function that is continuous at a point x0 ∈ R is a
function f : R→ R such that for all ε > 0 there exists a δ > 0 such that for all
x ∈ R with |x− x0| < δ it is true that |f(x)− f(x0)| < ε.

Let’s prove f(x) =
√
x is continuous at every point x0 ∈ [0,∞). First, let’s

handle x0 = 0 separately. We want |x − 0| < δ implies |
√
x −
√

0| < ε. In
other words, we want |x| < δ implies |

√
x| < ε. Choosing δ = ε2, if x < δ (we

can drop the absolute value sign since x ∈ [0,∞), so x is never negative), then
x < ε2, and therefore

√
x < ε. Now, for x0 > 0.

Want: |x− x0| < δ ⇒ |f(x)− f(x0)| < ε (1)

Substituting the formula for f :

Want: |x− x0| < δ ⇒ |
√
x−
√
x0| < ε (2)

Using the trick of conjugates for square roots, if
√
x+
√
x0 6= 0 we can write:

√
x−
√
x0 = (

√
x−
√
x0)

√
x+
√
x0√

x+
√
x0

(3)

=
(
√
x−√x0)(

√
x+
√
x0)√

x+
√
x0

(4)

=
x− x0√
x+
√
x0

(5)

Since x0 > 0, we have
√
x +
√
x0 > 0, and so this trick is valid. Next we note

for every x ≥ 0 it is true that
√
x ≥ 0, and therefore

√
x +
√
x0 ≥

√
x0. But

then:
1√

x+
√
x0
≤ 1
√
x0

(6)

We update our wish-list:

Want: |x− x0| < δ ⇒ |x− x0|√
x0

< ε (7)
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Since we only care about |x− x0| < δ, we have:

|x− x0|√
x0

<
δ
√
x0

(8)

We update our wish-list one last time:

Want: |x− x0| < δ ⇒ δ
√
x0
≤ ε (9)

Choosing δ = ε
√
x0 fulfills everything on our list.

Now that we have a candidate for δ, let’s show that it works. Let ε > 0. Choose
δ = ε

√
x0. If |x− x0| < δ, then:

|x− x0| < ε
√
x0 (Definition of δ)

⇒ |x− x0|√
x0

< ε (Division by a Positive Number)

⇒ |x− x0|√
x+
√
x0

< ε (Since 1√
x+

√
x0
≤ 1√

x0
)

⇒ |
√
x−
√
x0| < ε (Conjugate the Expression)

⇒ |f(x)− f(x0)| < ε (Definition of f)

So given x0 > 0 and any ε > 0 there is a δ > 0 such that for all x ∈ (0, ∞) with
|x− x0| < δ it is true that |f(x)− f(x0)| < ε.

Before ending, let’s briefly discuss uniform continuity. Functions such as f(x) =
ax+ b with x ∈ R or f(x) = 1/x with x ∈ [1,∞) have the property that, given
ε > 0, one can choose a δ > 0 that is independent of x0, and such that |x−x0| < δ
implies |f(x)− f(x0)| < ε. For f(x) = ax + b, a 6= 0, we can choose δ = ε/|a|,
and for f(x) = 1/x with x ∈ [1,∞) we can choose δ = ε. Other functions,
like f(x) = x2 with x ∈ R or f(x) = 1/x with x ∈ (0,∞) do not have this
property. The choice of δ depends not only on ε, but on the point of interest
x0. For x2 we get formulas like δ = min(x0/2, 5ε/2x0) and for f(x) = 1/x
we got δ = min(x0/2, εx

2
0/2). That is, the formula for δ depends on ε and

x0. This is perfectly fine within the definition of continuity. Functions where
δ does not need to depend on x0 are called uniformly continuous. Intuitively,
these functions have the property that they don’t get too steep. The function
x2 gets steeper and steeper as x increases, and so it is not uniformly continuous.
Examining the function f(x) = 1/x, when we consider x ∈ [1,∞), the steepest
the function gets is at x = 1. We find a δ that works at this value, and because
the function is steepest there, this δ works for every other x ∈ [1,∞). When
we look at f(x) = 1/x on (0,∞), there is no steepest point. The function gets
steeper and steeper as x gets closer to zero, and this is why δ depends on both
the point of interest and ε.

2



With the above discussion in mind, is f(x) =
√
x uniformly continuous on

x ∈ [0,∞)? We might say no because the formula we got is δ = ε
√
x0 and

this depends on x0. On the other hand, the intuition behind uniform continuity
requires the function to never get too steep. The steepest f(x) =

√
x gets is at

x0 = 0, but we demonstrated that the ε− δ problem works at x0 = 0. So, is
√
x

uniformly continuous?

The answer is yes, but our method of searching for a δ did not yield anything
fruitful. Let’s try again. We need the following inequality: |

√
b−
√
a| ≤

√
|b− a|.

This is proved in two steps.

Theorem 1. If a and b are real numbers, and if a ≥ 0 and b ≥ 0, then:

√
a+ b ≤

√
a+
√
b (10)

Proof. Since a ≥ 0 and b ≥ 0, we have 0 ≤ 2
√
a
√
b. But then:

a+ b ≤ a+ 2
√
a
√
b+ b (11)

= (
√
a+
√
b)2 (12)

And therefore a + b ≤ (
√
a +
√
b)2. And if x and y are real numbers with

x ≥ 0, y ≥ 0 and x2 ≤ y2, then it is true that x ≤ y. Using this, since
a+ b ≤ (

√
a+
√
b)2, we have that

√
a+ b ≤

√
a+
√
b.

Theorem 2. If a and b are real numbers, and if a ≥ 0 and b ≥ 0, then:

|
√
b−
√
a| ≤

√
|b− a| (13)

Proof. For simplicity, let’s assume b > a. If a > b we just need to mirror our
argument, and if a = b this simply says 0 ≤ 0, which is true. So assume a < b.
We now want to prove

√
b −
√
a ≤

√
b− a. We’ll use the previous result that√

a+ b ≤
√
a+
√
b.

√
b−
√
a = (

√
b−
√
a)

√
a+
√
b

√
a+
√
b

(14)

=
b− a
√
a+
√
b

(15)

≤ b− a√
b+ a

(16)

≤ b− a√
b− a

(17)

=
√
b− a (18)

And therefore
√
b−
√
a ≤
√
b− a.
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Let’s use this.
Want: |x− x0| < δ ⇒ |

√
x−
√
x0| < ε (19)

But |
√
x−√x0| ≤

√
|x− x0|, so we update our wish-list:

Want: |x− x0| < δ ⇒
√
|x− x0| < ε (20)

Since we only care about |x− x0| < δ, we can update our wishlist once again:

Want: |x− x0| < δ ⇒
√
δ ≤ ε (21)

We can now choose δ = ε2. Note, this is the same δ we chose for the case x0 = 0.
This is where f(x) =

√
x is steepest, and since this δ works at x0 = 0, it will

work everywhere else.

Let’s prove this. Let ε > 0. Choose δ = ε2. If |x− x0| < δ, then:

|x− x0| < ε2 (Definition of δ)

⇒
√
|x− x0| < ε (Since

√
is an Increasing Function)

⇒ |
√
x−
√
x0| < ε (Since |

√
x−√x0| ≤

√
|x− x0|)

⇒ |f(x)− f(x0)| < ε (Definition of f(x))

And hence the square root function is uniformly continuous.
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The source code usXed to generate this document is free software and released
under version 3 of the GNU General Public License.
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