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Let’s show that f(x) = x is continuous for all x ∈ R. We’ll start with the
definition of continuity.

Definition 1 A real-valued function that is continuous at a point x0 ∈ R is a
function f : R→ R such that for all ε > 0 there exists a δ > 0 such that for all
x ∈ R with |x− x0| < δ it is true that |f(x)− f(x0)| < ε.

This is very wordy, but precise. Intuitively if we vary x by no more than δ from
the point x0, then f(x) varies no more than ε from f(x0). That is:

Slogan
Small perturbations in x result in small perturbations in f(x).

The other slogan to live by is that nearby points go to nearby points. Both
of these phrases give intuitive meanings to continuity, but we need the formal
definition to actually apply it to problems. The crucial thing to note is that
continuity is defined point-wise. That is, a function can be continuous at one
point and not the other. A function can even be continuous at only one point
on the entire real line and discontinuous everywhere else.

Let’s now show that f(x) = x is continuous. This is different then problems
we are used to. In elementary algebra we solve for variables. Now, we need to
prove that no matter what ε > 0 is given to us, we can find a δ > 0 such that
|x − x0| < δ implies |f(x) − f(x0)| < ε. Do not get confused by the modes of
thinking that apply in other areas of mathematics. We are not trying to solve
for ε, it is given to us. Our job is to find the δ. The trick is to work backwards.
Suppose we found such a δ > 0. What would this say? Well, we’d have:

|x− x0| < δ ⇒ |f(x)− f(x0)| < ε (1)

Let’s now substitute f(x) = x, obtaining:

|x− x0| < δ ⇒ |x− x0| < ε (2)

Now we ask ourselves what value δ > 0 would make this true? The clear candi-
date is δ = ε. This would then read:

|x− x0| < ε⇒ |x− x0| < ε (3)
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Read aloud, if |x − x0| < ε, then |x − x0| < ε. This is a tautology. So δ = ε
works. It’s not the only δ we could have chosen. Indeed, any positive value less
than ε would work. Suppose we chose δ = ε/2. What would this say then?

|x− x0| < δ ⇒ |x− x0| <
ε

2
(4)

Well, if |x− x0| < ε/2, then |x− x0| < ε since ε/2 < ε. That is, we would have
the following chain of inequalities:

|x− x0| < δ ⇒ |x− x0| <
ε

2
< ε (5)

⇒ |x− x0| < ε (6)

So δ = ε/2 is a valid choice. Do not get trapped in the mindset of finding the
best δ. The choice δ = ε is, in a sense, the best choice since any larger value
wouldn’t work. But who cares? Just find a δ that works! The freedom to choose
smaller values than necessary often makes the problem significantly easier.
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grant anyone the right to use this work for any purpose, without any conditions,
unless such conditions are required by law.

The source code used to generate this document is free software and released
under version 3 of the GNU General Public License.
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