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The definition of continuity is as follows:

Definition 1 A real-valued function that is continuous at a point x0 ∈ R is a
function f : R→ R such that for all ε > 0 there exists a δ > 0 such that for all
x ∈ R with |x− x0| < δ it is true that |f(x)− f(x0)| < ε.

Let’s prove that f(x) = x2 is continuous at x0 = 1. As always, we have the
following wish-list:

Want: |x− 1| < δ ⇒ |f(x)− f(1)| < ε (1)

Since we have an expression for f , we may as well substitute that in:

Want: |x− 1| < δ ⇒ |x2 − 1| < ε (2)

Let’s now search for a candidate for δ. Remember, ε is given to us. If we factor
the expression |x2−1| we get |(x−1)(x+1)|, and using the product rule for the
absolute value function we can simplify this to |x− 1||x+ 1|. After this step we
see that δ can now appear in the expression for ε. Again, we have the following
wish-list:

Want: |x− 1| < δ ⇒ |x− 1||x+ 1| < ε (3)

Since we’re only going to look at values of x satisfying |x − 1| < δ, we get the
following inequality:

|x− 1||x+ 1| < δ|x+ 1| (4)

If we can somehow make this new expression, δ|x+ 1|, bounded by ε, then we’d
be done! That is, we’d have the following string of inequalities:

|x2 − 1| = |x− 1||x+ 1| < δ|x+ 1| ≤ ε (5)

And from that we can conclude |x2 − 1| < ε. So how do we make δ|x + 1| ≤ ε
a valid inequality? The expression |x+ 1| gets arbitrarily large as x gets bigger
and bigger, and so δ|x + 1| ≤ ε is not true for all x. So what to do? Well, we
don’t care about all x, we only care about x values that are close to the point
of interest, x0 = 1 in this example. So, let’s look no further than 1 away from
this point to begin with. That is, we are restricting ourselves to δ ≤ 1. With
this newly imposed restriction, we have:

|x− 1| < δ ⇒ −δ < x− 1 < δ ⇒ −1 < x− 1 < 1⇒ 0 < x < 2 (6)
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Intuitively, if x has a distance of less than 1 from the point x0 = 1 on the
number line, than x must be between 0 and 2. Since x is between 0 and 2, the
expression |x + 1| is never larger than 3 (the largest it will be is when x = 2).
In other words, since we introduced this new restriction that δ ≤ 1, we can now
write the following inequality:

δ|x+ 1| < 3δ (7)

If we can make 3δ ≤ ε, we’d be done! It is tempting to write choose δ = ε/3,
but hold on! We already imposed δ ≤ 1. What if ε/3 is greater than this value?
So we must choose the smaller of these two. Choose δ = min(1, ε/3).

All of this was a search for a candidate δ. Now that we have such a candidate,
let’s show that it works. Let ε > 0. Choose δ = min(1, ε/3). If |x − 1| < δ,
then:

|x− 1| < min
(

1,
ε

3

)
(Definition of δ)

⇒ |x− 1| < ε

3
(Definition of min)

⇒ 3|x− 1| < ε (Multiplication by a Positive Number)

But since |x− 1| < min(1, ε/3), we have |x− 1| < 1, and hence |x+ 1| < 3. But
then:

|x+ 1||x− 1| < 3|x− 1| (Since |x+ 1| < 3)

⇒ |x+ 1||x− 1| < ε (Since 3|x− 1| < ε)

⇒ |x2 − 1| < ε (Simplify the Expression)

⇒ |f(x)− f(1)| < ε (Definition of f)

And hence f(x) = x2 is continuous at x0 = 1.
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I, the copyright holder of this work, release it into the public domain. This
applies worldwide. In some countries this may not be legally possible; if so: I
grant anyone the right to use this work for any purpose, without any conditions,
unless such conditions are required by law.

The source code used to generate this document is free software and released
under version 3 of the GNU General Public License.
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