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Let’s find the equation of the tangent line of f(x) = 2x − 3x3 + x5 at x0 = 1.
The difference quotient for any real number x ∈ R is:

f(x + h)− f(x)

h
(1)

This is the slope of the secant line passing through the points (x, f(x)) and
(x + h, f(x + h)). Using f(x) = 2x− 3x3 + x5 we get:

2(x + h)− 3(x + h)3 + (x + h)5 −
(
2x− 3x3 + x5

)
h

(2)

As h approaches zero, this secant line better approximates the tangent line.
This is shown in Fig. 1. In fact, the limit as h tends to zero is the tangent line.
The limit as h tends to zero is also the definition of the derivative:

df

dx
(x) = f ′(x) = lim

h→0

f(x + h)− f(x)

h
(3)

The notations df
dx (x) and f ′(x) are equivalent. In physics one often sees ḟ(x)

(read aloud as f dot of x ), and this too means the derivative of f at x.

Let’s use the sum rule for differentiation, which says that if g0 and g1 are
differentiable functions, then:

d

dx

(
g0(x) + g1(x)

)
=

dg0
dx

(x) +
dg1
dx

(x) (4)

Applying this to f , we have:

df

dx
(x) =

d(2x)

dx
+

d(−3x3)

dx
+

d(x5)

dx
(5)

Next we use the fact that constants can be factored out of the derivative. This
gives us:

df

dx
(x) = 2

d(x)

dx
− 3

d(x3)

dx
+

d(x5)

dx
(6)
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To wrap this up, we apply the power rule. This says, for a function of the form
g(x) = xn, the derivative can be computed as: g′(x) = nxn−1. That is:

d(xn)

dx
= nxn−1 (7)

Using this, the derivative of f becomes:

df

dx
(x) = 2

d(x)

dx
− 3

d(x3)

dx
+

d(x5)

dx
(8)

= 2− 3(3x2) + 5x4 (9)

= 2− 9x2 + 5x4 (10)

Since we now know that f ′(x) = 2−9x2 + 5x4, we can compute the slope of the
tangent line of f at x0 = 1 by evaluating f ′ at 1. We get:

f ′(1) = 2− 9(1)2 + 5(1)4 = 2− 9 + 5 = −2 (11)

So the slope of at x0 = 1 is −2. The tangent line has the formula:

yT = m(x− x0) + y0 (12)

We know the slope is m = f ′(x0) = f ′(1) = −2, so we now have:

yT = −2(x− x0) + y0 (13)

When we plug in x = x0 we see that the right hand side becomes y0. We want
the tangent line of f at x0 to have both the same slope as f at x0, and the same
height. That is, we want yT and f to meet at x = x0. To do this, we see that
we need y0 = f(x0). Since we chose x0 = 1, we can compute this:

y0 = f(x0) = f(1) = 2(1)− 3(1)3 + (1)5 = 2− 3 + 1 = 0 (14)

So y0 = 0, and thus the tangent line is:

yT = −2(x− x0) (15)

This is plotted in Fig. 2.
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Figure 1: Secant Line for f
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Figure 2: Tangent Line for f
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I, the copyright holder of this work, release it into the public domain. This
applies worldwide. In some countries this may not be legally possible; if so: I
grant anyone the right to use this work for any purpose, without any conditions,
unless such conditions are required by law.

The source code used to generate this document is free software and released
under version 3 of the GNU General Public License.
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