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Let’s compute the tangent line of f(x) = x2 at x0 = 0.2. The difference
quotient for any real number x ∈ R is:

f(x + h)− f(x)

h
(1)

For our function f(x) = x2 we get:

(x + h)2 − x2

h
(2)

This gives us the slope of the secant line between the points (x, f(x)) and
(x + h, f(x + h)). This is shown in Fig. 1. For small values of h the secant line
approximates the tangent line, and the limit as h tends to zero is precisely the
tangent line. The limit of the difference quotient is also the definition of the
derivative of f at x:

df

dx
(x) = f ′(x) = lim

h→0

f(x + h)− f(x)

h
(3)

Let’s explicitly evaluate the derivative of our function f(x) = x2 for any real
number x ∈ R. We’ll then use this to calculate the equation of the tangent line.
We have:

f ′(x) = lim
h→0

f(x + h)− f(x)

h
(4)

= lim
h→0

(x + h)2 − x2

h
(5)

= lim
h→0

x2 + 2xh + h2 − x2

h
(6)

= lim
h→0

2xh + h2

h
(7)

= lim
h→0

(2x + h) (8)

= 2x (9)

So, we have f ′(x) = 2x. Let’s use this. The slope of the tangent line at the point
x0 is given by f ′(x0). We’ve chosen x0 = 0.2, so we have f ′(x0) = f ′(0.2) =

1
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Figure 1: Secant Line for f

2(0.2) = 0.4. That is, the slope of the tangent line is 0.4. The tangent line has
the formula:

yT = f ′(x0)(x− x0) + y0 (10)

Where y0 = f(x0). For x0 = 0.2, we have y0 = 0.04. So the tangent line is:

yT = 0.2(x− x0) + 0.04 (11)

This is plotted in Fig. 2.
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Figure 2: Tangent Line for f
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