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Differentiating trigonometric functions requires two bits of information. Firstly,
the trigonometric identities. Second, the small angle approximations for sine
and cosine. Memorizing trigonometric formulas is, in my opinion, a bad idea.
It is easy to forget if some part of the formula needs + or − sign, and this could
ruin the rest of your work. There are two other approaches. First, you could
simply consult a textbook or online reference for the required formula. This is
fine. Memorizing formulas does not demonstrate mastery of mathematics, and
it’s silly to pretend that quick references to these equations don’t exist. Most
working mathematicians do not memorize these formulas.

The second way of obtaining trigonometric formulas is by deriving them using a
quick and easy trick. This is the way many mathematicians actually incorporate
these trigonometric identities into their work. Either they look them up, or they
quickly derive them using the trick we’re about to learn. The trick requires
complex numbers. Complex numbers are usually taught in high school in the
United States, but this may not be a global phenomenon, so here’s a quick crash
course in complex numbers.

A complex number is a number z = x+ iy where x and y are real numbers, and
i is the imaginary unit. Because of this, the value x is called the real part, and
the value y is called the imaginary part. The only algebraic property we give to
i is that i2 = −1. Just like real numbers, we can do arithmetic with complex
numbers. First we ask how do we add them? We simply use some factoring.

(a+ ib) + (c+ id) = a+ ib+ c+ id (1)

= a+ c+ ib+ id (2)

= (a+ c) + i(b+ d) (3)

Since a, b, c, and d are real numbers, a + c is a real number, and b + d is a
real number. So (a+ c) + i(b+ d) is in the form x+ iy where x and y are real
numbers, which is precisely how we defined complex numbers. Multiplication is
almost as easy. We just need to use the distributive property of multiplication.
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We have:

(a+ ib)(c+ id) = ac+ i2bd+ iad+ ibc (4)

= ac+ i2bd+ i(ad+ bc) (5)

= (ac− bd) + i(ad+ bc) (6)

Here we used the fact that i2 = −1. Again we have the expression in the form
x+ iy for real numbers x and y. This is just about all we need to know about
complex numbers in order to derive every trigonometric identity. The last bit
of information needed is called Euler’s Formula. The proof of this is not hard,
but requires Taylor Series, which is something we don’t see until the end of a
calculus course. At the end of this document I’ll present the proof, but if you
don’t care to read it that’s fine too. The formula says:

eiθ = cos(θ) + i sin(θ) (7)

Where θ is any real number. This formula is really bizarre! It says the ex-
ponential function and the trigonometric functions are somehow related when
we use complex numbers. Now, let’s use it. Suppose we want to simplify the
expressions cos(a+ b) and sin(a+ b). How can we do this? We look at Euler’s
formula. Remember from exponential rules that ea+b = eaeb. We can use this
to simplify sin(a+ b) and cos(a+ b).

ei(a+b) = cos(a+ b) + i sin(a+ b) (Euler’s Formula)

ei(a+b) = eia+ib (Distribute i)

= eiaeib (Exponential Property)

=
(

cos(a) + i sin(a)
)(

cos(b) + i sin(b)
)

(Euler’s Formula)

To simplify this last expression, we simply use the rule for multiplying complex
numbers. We treat the expression like we normally would using the distributive
property, but whenever we see i2 we can replace it with −1. This gives us:(

cos(a) + i sin(a)
)(

cos(b) + i sin(b)
)

=
(

cos(a) cos(b)− sin(a) sin(b)
)

+ i
(

cos(a) sin(b) + cos(b) sin(a)
)

(8)

But wait! From the very beginning, this whole thing is equal to cos(a + b) +
i sin(a+ b). So we have:

cos(a+ b) + i sin(a+ b)

=
(

cos(a) cos(b)− sin(a) sin(b)
)

+ i
(

cos(a) sin(b) + cos(b) sin(a)
)

(9)

The real part of the left hand side is cos(a + b) and the real part of the right
hand side is cos(a) cos(b) − sin(a) sin(b). Since we have equality, the real parts
must be equal. That is:

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b) (10)
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Similarly, the imaginary part of the left hand side is sin(a+b) and the imaginary
part of the right hand side is cos(a) sin(b)+cos(b) sin(a). Since we have equality,
the imaginary parts must be equal. That is:

sin(a+ b) = cos(a) sin(b) + cos(b) sin(a) (11)

If this last step is confusing, the fact that equality means the real and imaginary
parts must be the same, consider the following. A complex number z = x+ iy
can be thought of as a point in the plane with coordinates (x, y). If we have
two points in the plane (a, b) and (c, d), what would it mean for these points to
be equal? They should have the same x coordinate and the same y coordinate,
otherwise they’d be different points! That is, (a, b) = (c, d) is true precisely when
a = c and b = d. Let’s translate this back to complex number. a+ ib = c+ id is
true precisely when a = c and b = d. That is, two complex numbers are equal
precisely when their real parts are equal and their imaginary parts are equal.

A common problem one finds in a calculus textbook when learning about in-
tegration involves the functions cos2(x) and sin2(x) (particularly, the problem
asks to solve

∫
cos2(x)dx. We haven’t seen integration yet, so don’t worry about

this). The problem becomes easier if we know the square formula for sine and
cosine. Let’s use Euler’s method to derive it. We want to simplify cos2(x) and
sin2(x). We have:

ei2x = cos(2x) + i sin(2x) (Euler’s Formula)

ei2x =
(
eix
)2

(Exponential Property)(
eix
)2

=
(

cos(x) + i sin(x)
)2

(Euler’s Formula)

=
(

cos2(x)− sin2(x)
)

+ i2 cos(x) sin(x) (12)

Comparing the real and imaginary parts, we obtain the following formulas:

cos(2x) = cos2(x)− sin2(x) (13)

sin(2x) = 2 cos(x) sin(x) (14)

Now you say, hold on! We wanted a formula for cos2(x) and sin2(x). We get
that by applying the trigonometric identity cos2(x) + sin2(x) = 1. From this,
sin2(x) = 1− cos2(x). We get:

cos(2x) = cos2(x)− sin2(x) (15)

= cos2(x)−
(
1− cos2(x)

)
(16)

= cos2(x)− 1 + cos2(x) (17)

= 2 cos2(x)− 1 (18)

Solving for cos2(x), we get:

cos2(x) =
cos(2x) + 1

2
(19)
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For sin2(x) we again use the fact that sin2(x) = 1− cos2(x).

sin2(x) = 1− cos2(x) (20)

= 1− cos(2x) + 1

2
(21)

=
1− cos(2x)

2
(22)

So, the formula for sin2(x) is:

sin2(x) =
1− cos(2x)

2
(23)

The moral of the story is that you should not feel like mathematics is a game
of memorization. Memorizing tables of trigonometric functions is tedious and
not very helpful, and working mathematicians do not do this! They do one
of two things: Look up the desired formula, or quickly use Euler’s formula to
derive the result they need. With practice, using Euler’s formula to calculate a
certain trigonometric formula can be done very quickly in your head. If complex
numbers seem too scary right now, looking up the formula in a textbook is fine.

As stated, to compute the derivative of cos(x) and sin(x) requires a few trigono-
metric identities, and the small angle approximations. These approximations
are widespread in engineering and physics since they can be very accurate when
used correctly, and make problems much easier to solve. If |x| is small (say, less
than 0.1 radians), then:

sin(x) ≈ x (24)

cos(x) ≈ 1− x2

2
(25)

With this we can compute the derivative of sin(x). We look at the difference
quotient:

lim
h→0

sin(x+ h)− sin(x)

h

= lim
h→0

cos(x) sin(h) + cos(h) sin(x)− sin(x)

h
(26)

= lim
h→0

cos(x) sin(h)

h
+ lim
h→0

cos(h) sin(x)− sin(x)

h
(27)

= cos(x) lim
h→0

sin(h)

h
+ sin(x) lim

h→0

cos(h)− 1

h
(28)

= cos(x) lim
h→0

h

h
+ sin(x) lim

h→0

1− h2

2 − 1

h
(29)

= cos(x) + sin(x) lim
h→0

−h
2

(30)

= cos(x) (31)
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The last few steps come from the small angle approximations. From this, we
have:

d

dx
sin(x) = cos(x) (32)

Now let’s look at cos(x).

lim
h→0

cos(x+ h)− cos(x)

h
(33)

= lim
h→0

cos(x) cos(h)− sin(x) sin(h)− cos(x)

h
(34)

= lim
h→0

cos(x) cos(h)− cos(x)

h
− lim
h→0

sin(x) sin(h)

h
(35)

= cos(x) lim
h→0

cos(h)− 1

h
− sin(x) lim

h→0

sin(h)

h
(36)

= cos(x) lim
h→0

1− h2

2 − 1

h
− sin(x) lim

h→0

h

h
(37)

= cos(x) lim
h→0

−h
2
− sin(x) (38)

= − sin(x) (39)

Putting this together, we have:

d

dx
cos(x) = − sin(x) (40)

For those who want to see why Euler’s formula is true, stick around. For those
who don’t, this concludes this short article. The function ex can be written as
the following series:

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ · · · (41)

n! is the factorial function:

n! = n · (n− 1) · (n− 2) · · · 3 · 2 · 1 (42)

The sin and cos functions have similar formulas:

cos(x) =

∞∑
n=0

(−1)n
x2n

(2n)!
(43)

sin(x) =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
(44)

What happens when we evaluate eix? We get:

eix =

∞∑
n=0

(ix)n

n!
(45)

=

∞∑
n=0

in
xn

n!
(46)
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Now we need to know what happens when i is raised to integer powers. By
definition, i0 = 1, i1 = i, and i2 = −1. What happens with higher powers? We
have:

i3 = i2 · i = −1 · i = −i (47)

We can use this new formula to compute i4. We get:

i4 = i3 · i = −i · i = (−1) · (−1) = 1 (48)

That is, i4 = i0 = 1. The integer powers of i cycle around in increments of four.
Note that if n is divisible by four, then in = 1, and if n is even but not divisible
by four, then in = −1. Similarly, the odd powers cycle between i and −i.

Next we remark that an even number is of the form 2n for some integer n, and
an odd number looks like 2n+ 1. We plug this in to our series and get:

eix =

∞∑
n=0

(−1)n
x2n

(2n)!
+ i

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
(49)

But the real sum is the series for cos! Similarly the imaginary sum is the series
for sin. Thus we conclude:

eix = cos(x) + i sin(x) (50)

and Euler’s formula is derived.
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