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The fundamental theorem of calculus relates integration and differentiation. It
can be used to rigorously find the anti-derivative of various functions, and to
explicitly solve the area under certain curves. The proof isn’t too bad either,
but first let’s get some intuition as to why it is true. The theorem states that if
f : [a, b]→ R is a continuous function, and if F : [a, b]→ R is defined by:

F (x) =

∫ x

a

f(t) dt (1)

Then F is differentiable, and:

dF

dx
(x) = f(x) (2)

Written more concisely:
d

dx

∫ x

a

f(t) dt = f(x) (3)

Intuitively this makes sense, we just need to understand the picture. d
∫ x

a
f(t)dx

asks how much more area do we get if we increment x infinitesimally so. That
is, if we increment from x to x + dx for an infinitesimally small dx, how much
more area do we have? Well, the height at the point x times the displacement,
or f(x)dx. The value d

dx

∫ x

a
f(t)dt then asks for the ratio of this change with

respect to the increment dx. Informally we have f(x)dx/dx and the dx cancel,
leaving f(x). So, the rate of change of the area under f as a function of x is
simply the height of f , or f(x). This geometrically makes sense (See Fig. 1).
Unfortunately, all of this is very imprecise and may have passed as a proof in
the 1600’s, but not in modern times. We need to be more rigorous. We start
with the mean value theorem for integrals.

Theorem 1. If f : [a, b] → R is a continuous function, a < b, then there is a
point c ∈ [a, b] such that:

f(c) =
1

b− a

∫ b

a

f(x) dx (4)

Proof. Note that
∫ b

a
f(x)dx is just a number. Label this number A (for Area).

Define g : [a, b]→ R to be:

g(x) = f(x)(b− a)−A (5)
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Figure 1: Intuition for the Fundamental Theorem of Calculus
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Figure 2: Drawing for the Mean Value Theorem for Integrals

Since f is continuous, g is continuous. But since f is continuous, by the extreme
value theorem there are points xmin and xmax in [a, b] where f(x) achieves its
minimum and maximum, respectively. Then g(xmin) will be non-positive since
the upper Riemann sum is always greater than or equal f(xmin)(b − a), and
g(xmax) will be non-negative. By the intermediate value theorem, since g is
continuous, there is some point c ∈ [a, b] where g(c) = 0. But then:

f(c)(b− a)−
∫ b

a

f(x) dx = 0 (6)

Which completes the proof.

See Fig. 2 for a visual. We can now prove the fundamental theorem of calculus.
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We have:

d

dx

∫ x

a

f(t) dt = lim
h→0

1

h

(∫ x+h

a

f(t) dt−
∫ x

a

f(t) dt
)

(7)

= lim
h→0

1

h

∫ x+h

x

f(t) dt (8)

= lim
h→0

1

h
f(ch)(x + h− x) (9)

= lim
h→0

1

h
f(ch)h (10)

= lim
h→0

f(ch) (11)

Here, ch is a value between x and x + h such that:

f(ch) =
1

x + h− x

∫ x+h

x

f(t) dt (12)

which exists by the mean value theorem for integrals. Since ch ∈ [x, x + h], as
h tends to zero, ch tends to x. But f is continuous, and therefore:

lim
h→0

f(ch) = f(x) (13)

Which completes the proof.
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The source code used to generate this document is free software and released
under version 3 of the GNU General Public License.
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