Second Fundamental Theorem of Calculus

Ryan Maguire

September 29, 2023

The second fundamental theorem of calculus is (in my opinion) more pictorial than the first. Indeed, if you sit and think on what it is saying for a while you may convince yourself that the second fundamental theorem of calculus is obvious. To convince you of this, I'll need some pictures. First, the statement:

$$
\begin{equation*}
\int_{a}^{b} \frac{\mathrm{~d} f}{\mathrm{~d} x}(x) \mathrm{d} x=f(b)-f(a) \tag{1}
\end{equation*}
$$

If you prefer f^{\prime} notation, then:

$$
\begin{equation*}
\int_{a}^{b} f^{\prime}(x) \mathrm{d} x=f(b)-f(a) \tag{2}
\end{equation*}
$$

Let's examinine what this says by approximating it with Riemann sums and difference quotients. These equations are trying to validate the following approximation:

$$
\begin{equation*}
\sum_{n=0}^{N-1} \frac{f\left(x_{n}+h\right)-f\left(x_{n}\right)}{h} \Delta x_{n} \approx f(b)-f(a) \tag{3}
\end{equation*}
$$

For the derivative, we want h to be small. For the integral we want Δx_{n} to be small. So, why don't we just make them equal? Then, if one is small, the other one is too. This yields:

$$
\begin{equation*}
\sum_{n=0}^{N-1} \frac{f\left(x_{n}+\Delta x_{n}\right)-f\left(x_{n}\right)}{\Delta x_{n}} \Delta x_{n}=\sum_{n=0}^{N-1}\left(f\left(x_{n}+\Delta x_{n}\right)-f\left(x_{n}\right)\right) \tag{4}
\end{equation*}
$$

Before proceeding, let's see what this means, geometrically. We start at a. We then draw the tangent line of f at a and we walk along this tangent line Δx to the right to get to our new point. Pictorially, we start at $(a, f(a))$ in the plane. We walk along the tangent line Δx and arrive at a new point $\left(a+\Delta x, f(a)+f^{\prime}(a) \Delta x\right)$. We then compute the tangent line at $a+\Delta x$, walk along this line Δx to the right, and arrive at our new point. The sum over $(\Delta f / \Delta x) \Delta x$ asks what's our change in the y axis? As we see in the image, we end up nearly at the point $(b, f(b))$ meaning our net change in the y axis is roughly $f(b)-f(a)$. What if we make Δx smaller? With a smaller Δx we see that, after our walk, we end up very close to $(b, f(b))$. The net change in

Figure 1: Approximation for Second Fundamental Theorem of Calculus

Figure 2: Approximation for Second Fundamental Theorem of Calculus

Figure 3: Approximation for Second Fundamental Theorem of Calculus
the y axis is even closer to $f(b)-f(a)$. And if we choose a really small Δx ? With a really small Δx, for all intent and purpose, we end up at $(b, f(b))$ after our walk. The change in the y axis is almost identically $f(b)-f(a)$. The second fundamental theorem of calculus says that in the limit, we get precisely $f(b)-f(a)$. This makes sense! Remember, the integral is just a glorified addition machine. We are asking at each point what is the change in the y axis with respect to a change in the x axis? This is the derivative. We then sum over all of these changes. What do we get? We get the net change!

Let's phrase this in terms of physics. If we integrate our velocity $v(t)$ over a time interval $\left[t_{0}, t_{1}\right]$, what do we get? That is, we add up the instantaneous velocity $v(t)$ over all points t, what do we get? We should get our displacement! If I sum the velocity over time, I get how far I moved. That's what the second fundamental theorem of calculus says. If $r(t)$ is our position, we have:

$$
\begin{equation*}
\int_{t_{0}}^{t_{1}} v(t) \mathrm{d} t=\int_{t_{0}}^{t_{1}} r^{\prime}(t) \mathrm{d} t=r\left(t_{1}\right)-r\left(t_{0}\right) \tag{5}
\end{equation*}
$$

Let's now prove this. Given any partition x_{n} of the interval $[a, b]$ we have:

$$
\begin{align*}
f(b)-f(a) & =f\left(x_{N}\right)-f\left(x_{0}\right) \tag{6}\\
& =f\left(x_{N}\right)+0-f\left(x_{0}\right) \tag{7}\\
& =f\left(x_{N}\right)+\sum_{n=1}^{N-1}\left(-f\left(x_{n}\right)+f\left(x_{n}\right)\right)-f\left(x_{0}\right) \tag{8}\\
& =\sum_{n=0}^{N-1}\left(f\left(x_{n+1}\right)-f\left(x_{n}\right)\right) \tag{9}\\
& =\sum_{n=0}^{N-1} \frac{f\left(x_{n+1}\right)-f\left(x_{n}\right)}{x_{n+1}-x_{n}}\left(x_{n+1}-x_{n}\right) \tag{10}
\end{align*}
$$

By the mean value theorem, for each n there is a point c_{n} in the interval $\left(x_{n}, x_{n+1}\right)$ such that:

$$
\begin{equation*}
f^{\prime}\left(c_{n}\right)=\frac{f\left(x_{n+1}\right)-f\left(x_{n}\right)}{x_{n+1}-x_{n}} \tag{11}
\end{equation*}
$$

So, we have:

$$
\begin{equation*}
f(b)-f(a)=\sum_{n=0}^{N-1} f^{\prime}\left(c_{n}\right)\left(x_{n+1}-x_{n}\right)=\sum_{n=0}^{N-1} f^{\prime}\left(x_{n}\right) \Delta x_{n} \tag{12}
\end{equation*}
$$

This is true regardless of the partition we choose. So, if we have finer and finer partitions and take a limit, we get:

$$
\begin{equation*}
f(b)-f(a)=\lim _{N \rightarrow \infty} \sum_{n=0}^{N-1} f^{\prime}\left(c_{n}\right) \Delta x_{n}=\int_{a}^{b} f^{\prime}(x) \mathrm{d} x \tag{13}
\end{equation*}
$$

Which completes the proof.

I, the copyright holder of this work, release it into the public domain. This applies worldwide. In some countries this may not be legally possible; if so: I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

The source code used to generate this document is free software and released under version 3 of the GNU General Public License.

