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The second fundamental theorem of calculus is (in my opinion) more pictorial
than the first. Indeed, if you sit and think on what it is saying for a while
you may convince yourself that the second fundamental theorem of calculus is
obvious. To convince you of this, I’ll need some pictures. First, the statement:∫ b

a

df

dx
(x) dx = f(b) − f(a) (1)

If you prefer f ′ notation, then:∫ b

a

f ′(x) dx = f(b) − f(a) (2)

Let’s examinine what this says by approximating it with Riemann sums and
difference quotients. These equations are trying to validate the following ap-
proximation:

N−1∑
n=0

f(xn + h) − f(xn)

h
∆xn ≈ f(b) − f(a) (3)

For the derivative, we want h to be small. For the integral we want ∆xn to be
small. So, why don’t we just make them equal? Then, if one is small, the other
one is too. This yields:

N−1∑
n=0

f(xn + ∆xn) − f(xn)

∆xn
∆xn =

N−1∑
n=0

(
f(xn + ∆xn) − f(xn)

)
(4)

Before proceeding, let’s see what this means, geometrically. We start at a.
We then draw the tangent line of f at a and we walk along this tangent line
∆x to the right to get to our new point. Pictorially, we start at (a, f(a))
in the plane. We walk along the tangent line ∆x and arrive at a new point
(a + ∆x, f(a) + f ′(a)∆x). We then compute the tangent line at a + ∆x, walk
along this line ∆x to the right, and arrive at our new point. The sum over
(∆f/∆x)∆x asks what’s our change in the y axis? As we see in the image,
we end up nearly at the point (b, f(b)) meaning our net change in the y axis
is roughly f(b) − f(a). What if we make ∆x smaller? With a smaller ∆x we
see that, after our walk, we end up very close to (b, f(b)). The net change in
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Figure 1: Approximation for Second Fundamental Theorem of Calculus
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Figure 2: Approximation for Second Fundamental Theorem of Calculus
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Figure 3: Approximation for Second Fundamental Theorem of Calculus
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the y axis is even closer to f(b) − f(a). And if we choose a really small ∆x?
With a really small ∆x, for all intent and purpose, we end up at (b, f(b)) after
our walk. The change in the y axis is almost identically f(b) − f(a). The
second fundamental theorem of calculus says that in the limit, we get precisely
f(b)−f(a). This makes sense! Remember, the integral is just a glorified addition
machine. We are asking at each point what is the change in the y axis with
respect to a change in the x axis? This is the derivative. We then sum over all
of these changes. What do we get? We get the net change!

Let’s phrase this in terms of physics. If we integrate our velocity v(t) over a
time interval [t0, t1], what do we get? That is, we add up the instantaneous
velocity v(t) over all points t, what do we get? We should get our displacement!
If I sum the velocity over time, I get how far I moved. That’s what the second
fundamental theorem of calculus says. If r(t) is our position, we have:∫ t1

t0

v(t) dt =

∫ t1

t0

r′(t) dt = r(t1) − r(t0) (5)

Let’s now prove this. Given any partition xn of the interval [a, b] we have:

f(b) − f(a) = f(xN ) − f(x0) (6)

= f(xN ) + 0 − f(x0) (7)

= f(xN ) +

N−1∑
n=1

(
− f(xn) + f(xn)

)
− f(x0) (8)

=

N−1∑
n=0

(
f(xn+1) − f(xn)

)
(9)

=

N−1∑
n=0

f(xn+1) − f(xn)

xn+1 − xn

(
xn+1 − xn

)
(10)

By the mean value theorem, for each n there is a point cn in the interval
(xn, xn+1) such that:

f ′(cn) =
f(xn+1) − f(xn)

xn+1 − xn
(11)

So, we have:

f(b) − f(a) =

N−1∑
n=0

f ′(cn)(xn+1 − xn) =

N−1∑
n=0

f ′(xn)∆xn (12)

This is true regardless of the partition we choose. So, if we have finer and finer
partitions and take a limit, we get:

f(b) − f(a) = lim
N→∞

N−1∑
n=0

f ′(cn)∆xn =

∫ b

a

f ′(x) dx (13)

Which completes the proof.
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