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u substitution is the reverse of the chain rule, validated by the fundamental
theorem of calculus. Integration by parts is the reverse of the product rule. It
says, if f and g are differentiable functions, then:

∫ b

a

f(x)g′(x) dx = f(x)g(x)
∣∣b
a
−
∫ b

a

f ′(x)g(x) dx (1)

=
(
f(b)g(b) − f(a)g(a)

)
−
∫ b

a

f ′(x)g(x) dx (2)

This is often written (though, slightly abusing notation), as follows:

∫ b

a

f dg = fg
∣∣b
a
−
∫ b

a

g df (3)

Before we give a rigorous proof, let’s give a geometric and intuitive one. Suppose
f is a function with inverse f−1. We can write y = f(x) and x = f−1(y). The
area under the curve f from a to b can be computed via the figure below. We
compute the area under y = f(x) by noting this area, plus the area to the left
of x = f−1(y), plus the area of the grey rectangle, is equal to the area of the
large rectangle with x values 0 to b and y values 0 to f(b). If we know the area
to the left of the curve x = f−1(y), we can compute the area under f as follows:

∫ b

a

y dx = f(b)b− f(a)a−
∫ f(b)

f(a)

x dy (4)

See the image below for a visual. This idea is best remembered via the abuse-
of-notation equation. The indefinite integral is:

∫
f dg = fg −

∫
g df (5)

Now you ask what if f is not invertible? Well, the picture isn’t quite as nice.
So let’s prove this is true in general. The product rule says that if f and g are
differentiable functions, then:

(fg)′(x) = f ′(x)g(x) + f(x)g′(x) (6)
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x

y

a b

f(a)

f(b)

∫ b

a
y(x) dx

∫ f(b)

f(a)
x(y) dy

y = f(x)

x = f−1(y)

Figure 1: Visual for Integration by Parts

By the fundamental theorem of calculus, integrating gives us:

∫ b

a

(
f ′(x)g(x) + f(x)g′(x)

)
dx =

∫ b

a

(fg)′(x) dx (7)

= (fg)(b) − (fg)(a) (8)

= f(b)g(b) − f(a)g(a) (9)

Rearranging, we get:

∫ b

a

f(x)g′(x) dx =
(
f(b)g(b) − f(a)g(a)

)
−
∫ b

a

f ′(x)g(x) dx (10)

Now let’s use it. Integration by parts works well when we see products of
functions. Let’s integrate x sin(x). We have a choice when trying to integrate
this: Do we set f(x) = x and g′(x) = sin(x), or f(x) = sin(x) and g′(x) = x? We
should set f to be the function that’s gets simpler when we differentiate it. In
this case, f(x) = x looks ideal because differentiating gives us f ′(x) = 1. Then
we set g′(x) = sin(x) and compute the anti-derivative, which is g(x) = − cos(x).
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We have:
∫

x sin(x) dx =

∫
f(x)g′(x) dx (11)

= f(x)g(x) −
∫

f ′(x)g(x) dx (12)

= −x cos(x) −
∫

1
(
− cos(x)

)
dx (13)

= −x cos(x) +

∫
cos(x) dx (14)

= −x cos(x) + sin(x) + C (15)

We can differentiate to verify our answer:

d

dx

(
− x cos(x) + sin(x) + C

)
=

d

dx

(
− x cos(x)

)
+

d

dx

(
sin(x)

)
(16)

= − cos(x) + x sin(x) + cos(x) (17)

= x sin(x) (18)

As expected.
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The source code used to generate this document is free software and released
under version 3 of the GNU General Public License.
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