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The main techniques of evaluating integrals merely combine the rules for dif-
ferentiation (in reverse) via the fundamental theorem of calculus. Let’s look at
the chain rule. It says if we have two differentiable functions f and g, then:

(g ◦ f)′(x) = g′
(
f(x)

)
f ′(x) (1)

Let’s integrate this. The fundamental theorem of calculus says:∫ b

a

(g ◦ f)′(x) dx = (g ◦ f)(b) − (g ◦ f)(a) (2)

But we have a formula for (g ◦ f)′(x) above. Combining this, we have:∫ b

a

g′
(
f(x)

)
f ′(x) dx = g

(
f(b)

)
− g
(
f(a)

)
(3)

This method of integration is usually called u substitution. Why? Well, let’s
set u = f(x). We then have:∫ b

a

g′
(
f(x)

)
f ′(x) dx =

∫ b

a

g′(u)
du

dx
dx = g

(
f(b)

)
− g
(
f(a)

)
(4)

But g(f(b)) − g(f(a)) is also equal to the following:

g(f(b)) − g(f(a)) =

∫ f(b)

f(a)

g′(u) du (5)

Again, this is from the fundamental theorem of calculus. This is all rigorously
justified by the chain rule and the fundamental theorem of calculus. Let’s forget
rigor for a second and direct our attention to the previous equation:∫ b

a

g′(u)
du

dx
dx = g

(
f(b)

)
− g
(
f(a)

)
(6)

It’s almost as if the du
dxdx cancels and simplifies to du and the limits change

from a to b and become f(a) to f(b). This is a great way to remember this,
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even if it isn’t a rigorous statement. We know the thinking is justified by other
means.

To use the method of substitution, when trying to integrate a function f we try
to break it into a product g(u)u′. For example, let’s integrate 2x/(1 + x2).∫ 1

0

2x

1 + x2
dx =

∫ 1

0

1

1 + x2

d

dx

(
1 + x2

)
dx (7)

=

∫ 1

0

d

dx
ln(1 + x2) dx (8)

= ln(1 + x2)
∣∣1
0

(9)

= ln(1 + 12) − ln(1 + 02) (10)

= ln(2) − ln(1) (11)

Recognizing that 2x/(1+x2) is the derivative of ln(1+x2) is hard so instead we
use u substitution. I see that 2x is the derivative of 1 + x2. So I set u = 1 + x2.
Then du = 2x dx. So: ∫ 1

0

2x

1 + x2
dx =

∫ 1

0

2x dx

1 + x2
(12)

=

∫ ?

?

du

u
(13)

What do the limits of integration become when we perform a u substitution?
This comes from the chain rule. The limits go from being a to b to being u(a)
to u(b). We have u = 1 + x2 so u(0) = 1 and u(1) = 2. Our integral is then:∫ 2

1

1

u
du = ln(u)

∣∣2
1

= ln(2) − ln(1) (14)

Which is precisely what we got before.
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